An Overview on the Treatment of Oil Pollutants in Soil Using Synthetic and Biological Surfactant Foam and Nanoparticles
Abstract
:1. Introduction
2. Remediation Methods of Oil Pollutants in Soil
2.1. Application of Nanoparticles for Remediating Oil Pollutants in Soil
2.1.1. Effect of Nanoparticles on Soil Properties
2.1.2. Removal Mechanisms
2.1.3. Treatment of Oil Pollutants in Soil by Nanoparticles
3. Surfactants
3.1. Surfactant Characteristics
3.2. Critical Micelle Concentration of Surfactant
3.3. Degradability of Surfactants
4. Surfactant Foam
4.1. Surfactant Foam Properties
4.2. Use of Surfactant Foam for Soil Remediation
4.2.1. Removal Mechanism of Contaminants in Soil by Surfactant Foam
4.2.2. Use of Surfactant Foam for Remediation of Oil Pollutants from Soil
- Nonionic surfactant foam
- Anionic surfactant foam
- Effect of various factors on the remediation of oil pollutants in soil by surfactant foam
5. Remediation of Oil Pollutants in Soil by Surfactant Foam/Nanoparticle Mixture
5.1. Interaction of Surfactant Foam and Nanoparticles
5.2. Use of Surfactant Foam–Nanoparticle Mixture in Soil Remediation
5.3. Effect of Some Factors on Soil Remediation Performance by Surfactant Foam–Nanoparticles
5.3.1. Effect of Environmental Conditions
5.3.2. Effect of Soil Characteristics
5.3.3. Effect of Nanoparticle Properties
5.3.4. Effect of Surfactant Concentration
5.4. Limitations
6. Conclusions and Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fate and Transport of Petroleum Hydrocarbons in Soil and Ground Water at Big South Fork National River and Recreation Area, Tennessee and Kentucky. 2002–2003. Available online: https://pubs.er.usgs.gov/publication/sir20055104 (accessed on 11 November 2022).
- Varjani, S.J. Microbial degradation of petroleum hydrocarbons. Bioresour. Technol. 2017, 223, 277–286. [Google Scholar] [CrossRef] [PubMed]
- Vu, K.A.; Tawfiq, K.; Chen, G. Rhamnolipid transport in biochar-amended agricultural soil. Water Air Soil Pollut. 2015, 226, 256–264. [Google Scholar] [CrossRef]
- Vu, K.A. Rhamnolipid Biosurfactant Adsorption and Transport in Biochar Amended Agricultural Soil. Mater’s Thesis, Florida State University, Tallahassee, FL, USA, 1 November 2013. [Google Scholar]
- Vandana; Priyadarshanee, M.; Mahto, U.; Das, S. Mechanism of toxicity and adverse health effects of environmental pollutants. In Microbial Biodegradation and Bioremediation, 2nd ed.; Das, S., Dash, H.R., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; Volume 1, pp. 33–53. [Google Scholar]
- BP Statistical Review of World Energy. Available online: www.bp.com/statisticalreview (accessed on 16 November 2022).
- Ogunneye, A.L.; Omoboyowa, D.A.; Sonibare, A.L.; Adebusuyi, A.J.; Faniran, T.P. Hepatotoxic and nephrotoxic effects of petroleum fumes on petrol attendants in Ibadan, Nigeria. Niger. J. Basic Appl. Sci. 2014, 22, 57–62. [Google Scholar]
- Treatment Technologies for Site Cleanup: Annual Status Report. Available online: https://www.epa.gov/remedytech/treatment-technologies-site-cleanup-annual-status-report-twelfth-edition (accessed on 16 November 2022).
- Vu, K.A.; Mulligan, C.N. Synthesis of carbon-based nanomaterials and their use in nanoremediation. In Bio and Nanoremediation of Hazardous Environmental Pollutants, 1st ed.; Taylor & Francis Group: Boca Raton, FL, USA, 2023; accepted. [Google Scholar]
- Zheng, M.; Ahuja, M.; Bhattacharya, D.; Clement, T.P.; Hayworth, J.S.; Dhanasekaran, M. Evaluation of differential cytotoxic effects of the oil spill dispersant Corexit 9500. Life Sci. 2014, 95, 108–117. [Google Scholar] [CrossRef] [PubMed]
- Vázquez-Luna, D. Chronic toxicity of weathered oil-contaminated soil. In Environmental Risk Assessment of Soil Contamination, 1st ed.; Hernamdez-Soriano, C., Ed.; IntechOpen: London, UK, 2014; Volume 1, pp. 8–103. [Google Scholar]
- Yuanyuan, W.; Qixing, Z.; Shengwei, P.; Lena, Q.M.; Xiaowei, N. Toxic effects of crude-oil-contaminated soil in aquatic environment on Carassius auratus and their hepatic antioxidant defense system. J. Environ. Sci. 2009, 21, 612–617. [Google Scholar]
- Li, X.; Karakashev, S.I.; Evans, G.M.; Stevenson, P. Effect of environmental humidity on static foam stability. Langmuir 2012, 28, 4060–4068. [Google Scholar] [CrossRef]
- Mulligan, C.N. Sustainable remediation of contaminated soil using biosurfactants. Front. Bioeng. Biotechnol. 2021, 9, 635196. [Google Scholar] [CrossRef]
- Ossai, I.C.; Ahmed, A.; Hassan, A.; Hamid, F.S. Remediation of soil and water contaminated with petroleum hydrocarbon: A review. Environ. Technol. Innov. 2020, 17, 100526. [Google Scholar] [CrossRef]
- Zhang, M.; He, F.; Zhao, D.; Hao, X. Degradation of soil-sorbed trichloroethylene by stabilized zero valent iron nanoparticles: Effects of sorption, surfactants, and natural organic matter. Water Res. 2011, 45, 2401–2414. [Google Scholar] [CrossRef]
- Chen, X.; Yao, X.; Yu, C.; Su, X.; Shen, C.; Chen, C.; Huang, R.; Xu, X. Hydrodechlorination of polychlorinated biphenyls in contaminated soil from an e-waste recycling area, using nanoscale zerovalent iron and Pd/Fe bimetallic nanoparticles. Environ. Sci. Pollut. Res. 2014, 21, 5201–5210. [Google Scholar] [CrossRef]
- Wang, J.; Chen, Z.; Chen, B. Adsorption of polycyclic aromatic hydrocarbons by graphene and graphene oxide nanosheets. Environ. Sci. Technol. 2014, 48, 4817–4825. [Google Scholar] [CrossRef]
- Chaillan, F.; Chaineau, C.H.; Point, V.; Saliot, A.; Oudot, J. Factors inhibiting bioremediation of soil contaminated with weathered oils and drill cuttings. Environ. Pollut. 2006, 144, 255–265. [Google Scholar] [CrossRef]
- Jeong, S.W.; Jeong, J.; Kim, J. Simple surface foam application enhances bioremediation of oil-contaminated soil in cold conditions. J. Hazard. Mater. 2015, 286, 164–170. [Google Scholar] [CrossRef]
- Kahraman, B.F.; Altin, A.; Ozdogan, N. Remediation of Pb-diesel fuel co-contaminated soil using nano/bio process: Subsequent use of nanoscale zero-valent iron and bioremediation approaches. Environ. Sci. Pollut. Res. 2022, 29, 41110–41124. [Google Scholar] [CrossRef]
- Ren, H.; Zhou, S.; Wang, B.; Peng, L.; Li, X. Treatment mechanism of sludge containing highly viscous heavy oil using biosurfactant. Colloids Surf. A Physicochem. Eng. Asp. 2020, 585, 124117. [Google Scholar] [CrossRef]
- Perfumo, A.; Banat, I.M.; Marchant, R.; Vezzulli, L. Thermally enhanced approaches for bioremediation of hydrocarbon-contaminated soils. Chemosphere 2007, 66, 179–184. [Google Scholar] [CrossRef]
- Wang, L.; Peng, L.; Xie, L.; Deng, P.; Deng, D. Compatibility of surfactants and thermally activated persulfate for enhanced subsurface remediation. Environ. Sci. Technol. 2017, 51, 7055–7064. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, X.; Wang, S.; Zhao, S. Improved remediation of co-contaminated soils by heavy metals and PAHs with biosurfactant-enhanced soil washing. Sci. Rep. 2022, 12, 3801. [Google Scholar] [CrossRef]
- Huguenot, D.; Mousset, E.; van Hullebusch, E.D.; Oturan, M.A. Combination of surfactant enhanced soil washing and electro-Fenton process for the treatment of soils contaminated by petroleum hydrocarbons. J. Environ. Manag. 2015, 153, 40–47. [Google Scholar] [CrossRef]
- Rongsayamanont, W.; Tongcumpou, C.; Phasukarratchai, N. Diesel-contaminated soil washing by mixed nonionic surfactant emulsion and seed germination test. Water Air Soil Pollut. 2020, 231, 267. [Google Scholar] [CrossRef]
- Souza, L.R.R.; Pomarolli, L.C.; da Veiga, M.A.M.S. From classic methodologies to application of nanomaterials for soil remediation: An integrated view of methods for decontamination of toxic metal(oid)s. Environ. Sci. Pollut. Res. 2020, 27, 10205–10227. [Google Scholar] [CrossRef] [PubMed]
- Pan, B.; Xing, B. Applications and implications of manufactured nanoparticles in soils: A review. Eur. J. Soil Sci. 2012, 63, 437–456. [Google Scholar] [CrossRef]
- Nador, F.; Moglie, Y.; Vitale, C.; Yus, M.; Alonso, F.; Radivoy, G. Reduction of polycyclic aromatic hydrocarbons promoted by cobalt or manganese nanoparticles. Tetrahedron 2010, 66, 4318–4325. [Google Scholar] [CrossRef] [Green Version]
- Verma, Y.; Singh, S.K.; Jatav, H.S.; Rajput, V.D.; Minkina, T. Interaction of zinc oxide nanoparticles with soil: Insights into the chemical and biological properties. Environ. Geochem. Health 2022, 44, 221–234. [Google Scholar] [CrossRef] [PubMed]
- Xue, W.; Huang, D.; Zeng, G.; Wan, J.; Zhang, C.; Xu, R.; Cheng, M.; Deng, R. Nanoscale zero-valent iron coated with rhamnolipid as an effective stabilizer for immobilization of Cd and Pb in river sediments. J. Hazard. Mater. 2018, 341, 381–389. [Google Scholar] [CrossRef]
- Huang, H.; Chen, J.; Liu, S.; Pu, S. Impact of ZnO nanoparticles on soil lead bioavailability and microbial properties. Sci. Total Environ. 2022, 806, 150299. [Google Scholar] [CrossRef]
- Vu, K.A.; Mulligan, C.N. Utilization of a biosurfactant foam/nanoparticle mixture for treatment of oil pollutants in soil. Environ. Sci. Pollut. Res. 2022, 29, 88618–88629. [Google Scholar] [CrossRef]
- Vu, K.A.; Mulligan, C.N. Oil removal from contaminated soil by biosurfactants and Fe/Cu nanoparticles. In Proceedings of the Canadian Society for Civil Engineering Annual Conference, Whistler, BC, Canada, 25–28 May 2022. [Google Scholar]
- Vu, K.A.; Mulligan, C.N. Preparation of a biosurfactant foam/nanoparticle mixture for removing the oil from soil. In Proceedings of the 44th AMOP Technical Seminar on Environmental Contamination and Response, Edmonton, AB, Canada, 7–9 June 2022. [Google Scholar]
- Kumar, R.; Raizada, P.; Khan, A.A.P.; Nguyen, V.; Van Le, Q.; Ghotekar, S.; Selvasembian, R.; Gandhi, V.; Singh, A.; Singh, P. Recent progress in emerging BiPO4-based photocatalysts: Synthesis, properties, modification strategies, and photocatalytic applications. J. Mater. Sci. Technol. 2022, 108, 208–225. [Google Scholar] [CrossRef]
- Vu, K.A.; Mulligan, C.N. Remediation of Organic Contaminated Soil by Fe-Based Nanoparticles and Surfactants: A review. Environ. Technol. Rev. 2022, accepted. [Google Scholar]
- Chen, X.; Chen, B. Macroscopic and spectroscopic investigations of the adsorption of nitroaromatic compounds on graphene oxide, reduced graphene oxide, and graphene nanosheets. Environ. Sci. Technol. 2015, 49, 6181–6189. [Google Scholar] [CrossRef]
- Vu, K.A.; Mulligan, C.N. Remediation of oil-contaminated soil using Fe/Cu nanoparticles and biosurfactants. Environ. Technol. 2022, 44, 1–13. [Google Scholar] [CrossRef]
- Gupta, H.; Kumar, R.; Park, H.; Jeon, B. Photocatalytic efficiency of iron oxide nanoparticles for the degradation of priority pollutant anthracene. Geosyst. Eng. 2017, 20, 21–27. [Google Scholar] [CrossRef]
- Konnova, S.A.; Lvov, Y.M.; Fakhrullin, R.F. Nanoshell assembly for magnet-responsive oil-degrading bacteria. Langmuir 2016, 32, 12552–12558. [Google Scholar] [CrossRef]
- Barzegar, G.; Jorfi, S.; Soltani, R.D.C.; Ahmadi, M.; Saeedi, R.; Abtahi, M.; Ramavandi, B.; Baboli, Z. Enhanced Sono-Fenton-like oxidation of PAH-contaminated soil using Nano-sized magnetite as catalyst: Optimization with response surface methodology. Soil Sediment Contam. Int. J. 2017, 26, 538–557. [Google Scholar] [CrossRef]
- Hou, L.; Wang, L.; Royer, S.; Zhang, H. Ultrasound-assisted heterogeneous Fenton-like degradation of tetracycline over a magnetite catalyst. J. Hazard. Mater. 2016, 302, 458–467. [Google Scholar] [CrossRef]
- Bai, H.; Zhou, J.; Zhang, H.; Tang, G. Enhanced adsorbability and photocatalytic activity of TiO2-graphene composite for polycyclic aromatic hydrocarbons removal in aqueous phase. Colloids Surf. B Biointerfaces 2017, 150, 68–77. [Google Scholar] [CrossRef]
- Marquès, M.; Mari, M.; Audí-Miró, C.; Sierra, J.; Soler, A.; Nadal, M.; Domingo, J.L. Photodegradation of polycyclic aromatic hydrocarbons in soils under a climate change base scenario. Chemosphere 2016, 148, 495–503. [Google Scholar] [CrossRef]
- Li, S.; Anderson, T.A.; Green, M.J.; Maul, J.D.; Cañas-Carrell, J.E. Polyaromatic hydrocarbons (PAHs) sorption behavior unaffected by the presence of multi-walled carbon nanotubes (MWNTs) in a natural soil system. Environ. Sci. Process. Impacts 2013, 15, 1130–1136. [Google Scholar] [CrossRef]
- El-Temsah, Y.S.; Joner, E.J. Effects of nano-sized zero-valent iron (nZVI) on DDT degradation in soil and its toxicity to collembola and ostracods. Chemosphere 2013, 92, 131–137. [Google Scholar] [CrossRef] [Green Version]
- Yu, K.; Sheng, G.D.; McCall, W. Cosolvent effects on dechlorination of soil-sorbed polychlorinated biphenyls using bentonite clay-templated nanoscale zero valent iron. Environ. Sci. Technol. 2016, 50, 12949–12956. [Google Scholar] [CrossRef]
- Jorfi, S.; Rezaee, A.; Moheb-Ali, G. Pyrene removal from contaminated soils by modified Fenton oxidation using iron nano particles. J. Environ. Health Sci. Eng. 2013, 11, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karam, F.F.; Hussein, F.H.; Baqir, S.J.; Halbus, A.F.; Dillert, R.; Bahnemann, D. Photocatalytic degradation of anthracene in closed system reactor. Int. J. Photoenergy 2014, 2014, 503825. [Google Scholar] [CrossRef] [Green Version]
- Gu, H.; Hu, K.; Li, D.; Long, Y. SERS detection of polycyclic aromatic hydrocarbons using a bare gold nanoparticles coupled film system. Analyst 2016, 141, 4359–4365. [Google Scholar] [CrossRef] [PubMed]
- Shanker, U.; Jassal, V.; Rani, M. Green synthesis of iron hexacyanoferrate nanoparticles: Potential candidate for the degradation of toxic PAHs. J. Environ. Chem. Eng. 2017, 5, 4108–4120. [Google Scholar] [CrossRef]
- Sannino, F.; Pirozzi, D.; Vitiello, G.; D’errico, G.; Aronne, A.; Fanelli, E.; Pernice, P. Oxidative degradation of phenanthrene in the absence of light irradiatiion by hybrid ZrO2-acetylacetonate gel-derived catalyst. Appl. Catal. B Environ. 2014, 156, 101–107. [Google Scholar] [CrossRef]
- Zhao, S.; Jia, H.; Nulaji, G.; Gao, H.; Wang, F.; Wang, C. Photolysis of polycyclic aromatic hydrocarbons (PAHs) on Fe3+-montmorillonite surface under visible light: Degradation kinetics, mechanism, and toxicity assessments. Chemosphere 2017, 184, 1346–1354. [Google Scholar] [CrossRef]
- Dong, D.; Li, P.; Li, X.; Zhao, Q.; Zhang, Y.; Jia, C.; Li, P. Investigation on the photocatalytic degradation of pyrene on soil surfaces using nanometer anatase TiO2 under UV irradiation. J. Hazard. Mater. 2010, 174, 859–863. [Google Scholar] [CrossRef]
- Moussawi, R.N.; Patra, D. Nanoparticle self-assembled grain like curcumin conjugated ZnO: Curcumin conjugation enhances removal of perylene, fluoranthene and chrysene by ZnO. Sci. Rep. 2016, 6, 24565. [Google Scholar] [CrossRef] [Green Version]
- Xia, S.; Zhang, L.; Zhou, X.; Shao, M.; Pan, G.; Ni, Z. Fabrication of highly dispersed Ti/ZnO-Cr2O3 composite as highly efficient photocatalyst for naphthalene degradation. Appl. Catal. B Environ. 2015, 176, 266–277. [Google Scholar] [CrossRef]
- Liao, W.; Ma, Y.; Chen, A.; Yang, Y. Preparation of fatty acids coated Fe3O4 nanoparticles for adsorption and determination of benzo (a) pyrene in environmental water samples. Chem. Eng. J. 2015, 271, 232–239. [Google Scholar] [CrossRef]
- Vu, K.A.; Mulligan, C.N. Synthesis and application of nanoparticles and biosurfactant for oil-contaminated soil removal. In Proceedings of the 73rd Canadian Geotechnical Conference, Calgary, AB, Canada, 14–16 September 2020. [Google Scholar]
- Xia, X.; Li, Y.; Zhou, Z.; Feng, C. Bioavailability of adsorbed phenanthrene by black carbon and multi-walled carbon nanotubes to Agrobacterium. Chemosphere 2010, 78, 1329–1336. [Google Scholar] [CrossRef]
- Wang, X.; Tao, S.; Xing, B. Sorption and competition of aromatic compounds and humic acid on multiwalled carbon nanotubes. Environ. Sci. Technol. 2009, 43, 6214–6219. [Google Scholar] [CrossRef]
- Kuang, Y.; Zhou, Y.; Chen, Z.; Megharaj, M.; Naidu, R. Impact of Fe and Ni/Fe nanoparticles on biodegradation of phenol by the strain Bacillus fusiformis (BFN) at various pH values. Bioresour. Technol. 2013, 136, 588–594. [Google Scholar] [CrossRef]
- Varanasi, P.; Fullana, A.; Sidhu, S. Remediation of PCB contaminated soils using iron nano-particles. Chemosphere 2007, 66, 1031–1038. [Google Scholar] [CrossRef]
- Chang, M.; Shu, H.; Hsieh, W.; Wang, M. Remediation of soil contaminated with pyrene using ground nanoscale zero-valent iron. J. Air Waste Manag. Assoc. 2007, 57, 221–227. [Google Scholar] [CrossRef] [Green Version]
- Tungittiplakorn, W.; Lion, L.W.; Cohen, C.; Kim, J. Engineered polymeric nanoparticles for soil remediation. Environ. Sci. Technol. 2004, 38, 1605–1610. [Google Scholar] [CrossRef]
- Gil-Díaz, M.; Pérez, R.A.; Alonso, J.; Miguel, E.; Diez-Pascual, S.; Lobo, M.C. Iron nanoparticles to recover a co-contaminated soil with Cr and PCBs. Sci. Rep. 2022, 12, 3541. [Google Scholar] [CrossRef]
- Zhu, Y.; Ji, S.; Liang, W.; Li, C.; Nie, Y.; Dong, J.; Shi, W.; Ai, S. A low-cost and eco-friendly powder catalyst: Iron and copper nanoparticles supported on biochar/geopolymer for activating potassium peroxymonosulfate to degrade naphthalene in water and soil. Chemosphere 2022, 303, 135185. [Google Scholar] [CrossRef] [PubMed]
- Dong, D.; Li, P.; Li, X.; Xu, C.; Gong, D.; Zhang, Y.; Zhao, Q.; Li, P. Photocatalytic degradation of phenanthrene and pyrene on soil surfaces in the presence of nanometer rutile TiO2 under UV-irradiation. Chem. Eng. J. 2010, 158, 378–383. [Google Scholar] [CrossRef]
- Gupta, H.; Gupta, B. Photocatalytic degradation of polycyclic aromatic hydrocarbon benzo [a] pyrene by iron oxides and identification of degradation products. Chemosphere 2015, 138, 924–931. [Google Scholar] [CrossRef]
- Gupta, H. Photocatalytic degradation of phenanthrene in the presence of akaganeite nano-rods and the identification of degradation products. RSC Adv. 2016, 6, 112721–112727. [Google Scholar] [CrossRef]
- Yang, X.; Cai, H.; Bao, M.; Yu, J.; Lu, J.; Li, Y. Insight into the highly efficient degradation of PAHs in water over graphene oxide/Ag3PO4 composites under visible light irradiation. Chem. Eng. J. 2018, 334, 355–376. [Google Scholar] [CrossRef]
- Theerakarunwong, C.D.; Phanichphant, S. Visible-light-induced photocatalytic degradation of PAH-contaminated soil and their pathways by Fe-doped TiO2 nanocatalyst. Water Air Soil Pollut. 2018, 229, 291. [Google Scholar] [CrossRef]
- Rachna; Rani, M.; Shanker, U. Degradation of tricyclic polyaromatic hydrocarbons in water, soil and river sediment with a novel TiO2 based heterogeneous nanocomposite. J. Environ. Manag. 2019, 248, 109340. [Google Scholar] [CrossRef]
- Wang, J.; Luo, Z.; Song, Y.; Zheng, X.; Qu, L.; Qian, J.; Wu, Y.; Wu, X.; Wu, Z. Remediation of phenanthrene contaminated soil by g-C3N4/Fe3O4 composites and its phytotoxicity evaluation. Chemosphere 2019, 221, 554–562. [Google Scholar] [CrossRef]
- Xu, Q.; Huang, Z.; Ji, S.; Zhou, J.; Shi, R.; Shi, W. Cu2O nanoparticles grafting onto PLA fibers via electron beam irradiation: Bifunctional composite fibers with enhanced photocatalytic of organic pollutants in aqueous and soil systems. J. Radioanal. Nucl. Chem. 2020, 323, 253–261. [Google Scholar] [CrossRef]
- Kumari, B.; Singh, D.P. A review on multifaceted application of nanoparticles in the field of bioremediation of petroleum hydrocarbons. Ecol. Eng. 2016, 97, 98–105. [Google Scholar] [CrossRef]
- Khatoon, H.; Rai, J.P.N. Optimization studies on biodegradation of atrazine by Bacillus badius ABP6 strain using response surface methodology. Biotechnol. Rep. 2020, 26, e00459. [Google Scholar] [CrossRef]
- Bebić, J.; Banjanac, K.; Ćorović, M.; Milivojević, A.; Simović, M.; Marinković, A.; Bezbradica, D. Immobilization of laccase from Myceliophthora thermophila on functionalized silica nanoparticles: Optimization and application in lindane degradation. Chin. J. Chem. Eng. 2020, 28, 1136–1144. [Google Scholar] [CrossRef]
- Mulligan, C.N. Environmental applications for biosurfactants. Environ. Pollut. 2005, 133, 183–198. [Google Scholar] [CrossRef]
- Rapp, B.E. Surface Tension. In Microfluidics: Modelling, Mechanics and Mathematics, 1st ed.; Holt, S., Webber, S., Eds.; Elsevier: Amsterdam, The Netherlands, 2016; Volume 1, pp. 421–444. [Google Scholar]
- Javanbakht, G.; Goual, L. Impact of surfactant structure on NAPL mobilization and solubilization in porous media. Ind. Eng. Chem. Res. 2016, 55, 11736–11746. [Google Scholar] [CrossRef]
- Cheng, K.Y.; Wong, J. Effect of synthetic surfactants on the solubilization and distribution of PAHs in water/soil-water systems. Environ. Technol. 2006, 27, 835–844. [Google Scholar] [CrossRef] [PubMed]
- Sharma, N.; Ghosh, A.; Fortner, J.D.; Giammar, D.E. Modeling performance of rhamnolipid-coated engineered magnetite nanoparticles for U (vi) sorption and separation. Environ. Sci. Nano 2020, 7, 2010–2020. [Google Scholar] [CrossRef]
- Urum, K.; Pekdemir, T. Evaluation of biosurfactants for crude oil contaminated soil washing. Chemosphere 2004, 57, 1139–1150. [Google Scholar] [CrossRef] [PubMed]
- Karthick, A.; Roy, B.; Chattopadhyay, P. Comparison of zero-valent iron and iron oxide nanoparticle stabilized alkyl polyglucoside phosphate foams for remediation of diesel-contaminated soils. J. Environ. Manag. 2019, 240, 93–107. [Google Scholar] [CrossRef] [PubMed]
- Chaprão, M.J.; Ferreira, I.N.; Correa, P.F.; Rufino, R.D.; Luna, J.M.; Silva, E.J.; Sarubbo, L.A. Application of bacterial and yeast biosurfactants for enhanced removal and biodegradation of motor oil from contaminated sand. Electron. J. Biotechnol. 2015, 18, 471–479. [Google Scholar] [CrossRef] [Green Version]
- Cheng, M.; Zeng, G.; Huang, D.; Yang, C.; Lai, C.; Zhang, C.; Liu, Y. Advantages and challenges of Tween 80 surfactant-enhanced technologies for the remediation of soils contaminated with hydrophobic organic compounds. Chem. Eng. J. 2017, 314, 98–113. [Google Scholar] [CrossRef]
- Jahan, R.; Bodratti, A.M.; Tsianou, M.; Alexandridis, P. Biosurfactants, natural alternatives to synthetic surfactants: Physicochemical properties and applications. Adv. Colloid Interface Sci. 2020, 275, 102061. [Google Scholar] [CrossRef]
- Gitipour, S.; Hedayati, M.; Madadian, E. Soil washing for reduction of aromatic and aliphatic contaminants in soil. CLEAN-Soil Air Water 2015, 43, 1419–1425. [Google Scholar] [CrossRef]
- Li, G.; Guo, S.; Hu, J. The influence of clay minerals and surfactants on hydrocarbon removal during the washing of petroleum-contaminated soil. Chem. Eng. J. 2016, 286, 191–197. [Google Scholar] [CrossRef]
- Lai, C.; Huang, Y.; Wei, Y.; Chang, J. Biosurfactant-enhanced removal of total petroleum hydrocarbons from contaminated soil. J. Hazard. Mater. 2009, 167, 609–614. [Google Scholar] [CrossRef]
- Olasanmi, I.O.; Thring, R.W. Evaluating rhamnolipid-enhanced washing as a first step in remediation of drill cuttings and petroleum-contaminated soils. J. Adv. Res. 2020, 21, 79–90. [Google Scholar] [CrossRef]
- Mulligan, C.N.; Sharma, S.K.; Mudhoo, A. Biosurfactants: Research Trends and Applications, 1st ed.; Taylor & Francis Group: Boca Raton, FL, USA, 2014; pp. 352–362. [Google Scholar]
- Vu, K.A. Synthesis and Application of Iron/Copper Nanoparticles and Biosurfactants for Remediation of Oil-Contaminated Soil. Ph.D. Dissertation, Concordia University, Montreal, QC, Canada, 27 October 2022. [Google Scholar]
- Franzetti, A.; Di Gennaro, P.; Bevilacqua, A.; Papacchini, M.; Bestetti, G. Environmental features of two commercial surfactants widely used in soil remediation. Chemosphere 2006, 62, 1474–1480. [Google Scholar] [CrossRef]
- Li, G.; Lan, G.; Liu, Y.; Chen, C.; Lei, L.; Du, J.; Lu, Y.; Li, Q.; Du, G.; Zhang, J. Evaluation of biodegradability and biotoxicity of surfactants in soil. RSC Adv. 2017, 7, 31018–31026. [Google Scholar] [CrossRef] [Green Version]
- Cowan-Ellsberry, C.; Belanger, S.; Dorn, P.; Dyer, S.; McAvoy, D.; Sanderson, H.; Versteeg, D.; Ferrer, D.; Stanton, K. Environmental safety of the use of major surfactant classes in North America. Crit. Rev. Environ. Sci. Technol. 2014, 44, 1893–1993. [Google Scholar] [CrossRef] [Green Version]
- Sekiguchi, H.; Miura, K.; Oba, K.; Mori, A. Biodegradation of α-olefin sulfonates (AOS) and other surfactants. J. Jpn. Oil Chem. Soc. 1975, 24, 145–148. [Google Scholar] [CrossRef] [Green Version]
- Khleifat, K.M. Biodegradation of sodium lauryl ether sulfate (SLES) by two different bacterial consortia. Curr. Microbiol. 2006, 53, 444–448. [Google Scholar] [CrossRef]
- Hrenovic, J.; Ivankovic, T. Toxicity of anionic and cationic surfactant to Acinetobacter junii in pure culture. Open Life Sci. 2007, 2, 405–414. [Google Scholar] [CrossRef]
- Xiaohong, P.; Xinhua, Z.; Lixiang, Z. Effect of biosurfactant on the sorption of phenanthrene onto original and H2O2-treated soils. J. Environ. Sci. 2009, 21, 1378–1385. [Google Scholar]
- Scott, M.J.; Jones, M.N. The biodegradation of surfactants in the environment. Biochim. Biophys. Acta BBA Biomembr. 2000, 1508, 235–251. [Google Scholar] [CrossRef] [Green Version]
- De Oliveira, D.W.; Cara, A.B.; Lechuga-Villena, M.; García-Román, M.; Melo, V.M.; Gonçalves, L.R.; Vaz, D.A. Aquatic toxicity and biodegradability of a surfactant produced by Bacillus subtilis ICA56. J. Environ. Sci. Health Part A 2017, 52, 174–181. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Strevett, K.A.; Vanegas, B. Naphthalene, phenanthrene and surfactant biodegradation. Biodegradation 2001, 12, 433–442. [Google Scholar] [CrossRef] [PubMed]
- Abboud, M.M.; Khleifat, K.M.; Batarseh, M.; Tarawneh, K.A.; Al-Mustafa, A.; Al-Madadhah, M. Different optimization conditions required for enhancing the biodegradation of linear alkylbenzosulfonate and sodium dodecyl sulfate surfactants by novel consortium of Acinetobacter calcoaceticus and Pantoea agglomerans. Enzym. Microb. Technol. 2007, 41, 432–439. [Google Scholar] [CrossRef]
- Jimenez-Gonzalez, A.; Salazar-Gonzalez, M.; Gutierrez-Rojas, M.; Monroy, O. Anaerobic digestion of a nonionic surfactant: Inhibition effect and biodegradation. Water Sci. Technol. 2001, 44, 175–181. [Google Scholar] [CrossRef] [PubMed]
- Jahan, K.; Balzer, S.; Mosto, P. Toxicity of nonionic surfactants. WIT Trans. Ecol. Environ. 2008, 110, 281–290. [Google Scholar]
- Yeh, D.H.; Pennell, K.D.; Pavlostathis, S.G. Toxicity and biodegradability screening of nonionic surfactants using sediment-derived methanogenic consortia. Water Sci. Technol. 1998, 38, 55–62. [Google Scholar] [CrossRef]
- Ghildyala, N.P.; Lonsanea, B.K.; Karantha, N.G. Foam control in submerged fermentation: State of the art. Adv. Appl. Microbiol. 1988, 33, 173–222. [Google Scholar]
- Ali, N.; Bilal, M.; Khan, A.; Ali, F.; Iqbal, H.M. Effective exploitation of anionic, nonionic, and nanoparticle-stabilized surfactant foams for petroleum hydrocarbon contaminated soil remediation. Sci. Total Environ. 2020, 704, 135391. [Google Scholar] [CrossRef]
- Thomas, W.D.B.; Hall, D.J. Adsorption of surfactants in dilute aqueous solutions. J. Colloid Interface Sci. 1977, 51, 328–334. [Google Scholar] [CrossRef]
- Shokrollahi, A.; Ghazanfari, M.H.; Badakhshan, A. Application of foam floods for enhancing heavy oil recovery through stability analysis and core flood experiments. Can. J. Chem. Eng. 2014, 92, 1975–1987. [Google Scholar] [CrossRef]
- Osei-Bonsu, K.; Shokri, N.; Grassia, P. Foam stability in the presence and absence of hydrocarbons: From bubble- to bulk-scale. Colloid. Surf. Physicochem. Eng. Asp. 2015, 481, 514–526. [Google Scholar] [CrossRef]
- Rashed Rohani, M.; Ghotbi, C.; Badakhshan, A. Foam stability and foam-oil interactions. Pet. Sci. Technol. 2014, 32, 1843–1850. [Google Scholar] [CrossRef]
- Chowdiah, P.; Misra, B.R.; Kilbane, J.J., II; Srivastava, V.J.; Hayes, T.D. Foam propagation through soils for enhanced in-situ remediation. J. Hazard. Mater. 1998, 62, 265–280. [Google Scholar] [CrossRef]
- Wang, H.; Chen, J. Experimental investigation on influence of foam mobility on polychlorinated biphenyl removal in foam flushing. Environ. Technol. 2014, 35, 993–1002. [Google Scholar] [CrossRef]
- Sun, Q.; Li, Z.; Li, S.; Jiang, L.; Wang, J.; Wang, P. Utilization of surfactant-stabilized foam for enhanced oil recovery by adding nanoparticles. Energy Fuels 2014, 28, 2384–2394. [Google Scholar] [CrossRef]
- Ma, K.; Lopez-Salinas, J.L.; Puerto, M.C.; Miller, C.A.; Biswal, S.L.; Hirasaki, G.J. Estimation of parameters for the simulation of foam flow through porous media. Part 1: The Dry-out effect. Energy Fuels 2013, 27, 2363–2375. [Google Scholar] [CrossRef]
- Yang, X.; Beckmann, D.; Fiorenza, S.; Niedermeier, C. Field study of pulsed air sparging for remediation of petroleum hydrocarbon contaminated soil and groundwater. Environ. Sci. Technol. 2005, 39, 7279–7286. [Google Scholar] [CrossRef]
- Farajzadeh, R.; Andrianov, A.; Krastev, R.; Hirasaki, G.J.; Rossen, W.R. Foam-oil interaction in porous media: Implications for foam assisted enhanced oil recovery. In Proceedings of the SPE EOR Conference at Oil and Gas West Asia, Muscat, Oman, 16–18 April 2012. [Google Scholar]
- Kovscek, A.R.; Bertin, H.J. Foam Mobility in Heterogeneous Porous Media. Transp. Porous Media 2003, 52, 17–35. [Google Scholar] [CrossRef]
- Mulligan, C.N.; Eftekhari, F. Remediation with surfactant foam of PCP-contaminated soil. Eng. Geol. 2003, 70, 269–279. [Google Scholar] [CrossRef]
- Osei-Bonsu, K.; Grassia, P.; Shokri, N. Investigation of foam flow in a 3D printed porous medium in the presence of oil. J. Colloid Interface Sci. 2017, 490, 850–858. [Google Scholar] [CrossRef]
- Anderson, R.H.; Adamson, D.T.; Stroo, H.F. Partitioning of poly-and perfluoroalkyl substances from soil to groundwater within aqueous film-forming foam source zones. J. Contam. Hydrol. 2019, 220, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Fameau, A.; Carl, A.; Saint-Jalmes, A.; Von Klitzing, R. Responsive aqueous foams. ChemPhysChem 2015, 16, 66–75. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.W.; Chang, C.H. A laboratory study on foam-enhanced surfactant solution flooding in removing n-pentadecane from contaminated columns. Colloids Surf. Physicochem. Eng. Asp. 2000, 173, 171–179. [Google Scholar] [CrossRef]
- Parnian, M.M.; Ayatollah, S. Surfactant Remediation of LNAPL Contaminated Soil; Effects of adding alkaline and foam producing substances. Iran. J. Chem. Chem. Eng. 2008, 5, 34–44. [Google Scholar]
- Shi, Z.; Chen, J. The influence of defoamer on removal of PAHs in soil washing. J. Air Waste Manag. Assoc. 2012, 63, 80–86. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.C.; Choi, M.H.; Han, J.I.; Lim, Y.L.; Lee, M. A low-foaming and biodegradable surfactant as a soil-flushing agent for diesel-contaminated soil. Sep. Sci. Technol. 2013, 48, 1872–1880. [Google Scholar] [CrossRef]
- Maire, J.; Coyer, A.; Fatin-Rouge, N. Surfactant foam technology for in situ removal of heavy chlorinated compounds-DNAPLs. J. Hazard. Mater. 2015, 299, 630–638. [Google Scholar] [CrossRef]
- Rothmel, R.K.; Peters, R.W.; Martin, E.; DeFlaun, M.F. Surfactant foam/bioaugmentation technology for in situ treatment of TCE-DNAPLs. Environ. Sci. Technol. 1998, 32, 1667–1675. [Google Scholar] [CrossRef]
- Couto, H.J.B.; Massarani, G.; Biscaia, E.C.; Sant’Anna, G.L. Remediation of sandy soils using surfactant solutions and foams. J. Hazard. Mater. 2009, 164, 1325–1334. [Google Scholar] [CrossRef]
- Da Rosa, C.F.C.; Freire, D.M.G.; Ferraz, H.C. Biosurfactant microfoam: Application in the removal of pollutants from soil. J. Environ. Chem. Eng. 2015, 3, 89–94. [Google Scholar] [CrossRef]
- Wang, H.; Chen, J. Enhanced flushing of polychlorinated biphenyls contaminated sands using surfactant foam: Effect of partition coefficient and sweep efficiency. J. Environ. Sci. 2012, 24, 1270–1277. [Google Scholar] [CrossRef]
- Ward, C.H. NAPL Removal: Surfactants, Foams and Microemulsion, 1st ed.; CRC Press: Boca Raton, FL, USA, 2000; pp. 1–32. [Google Scholar]
- Szafranski, R.; Lawson, J.B.; Hirasaki, G.J.; Miller, C.A.; Akiya, N.; King, S.; Jackson, R.E.; Meinardus, H.; Londergan, J. Surfactant/foam process for improved efficiency of aquifer remediation. In Structure, Dynamics and Properties of Disperse Colloidal Systems, Proceedings of the 38th General Metting of the German Colloid Society, Essen, Germany, 29 September–2 October 1997; Regage, H., Peschel, G., Eds.; University of Essen: Duisburg, Germany, 1997. [Google Scholar]
- Sihag, S.; Pathak, H.; Jaroli, D.P. Factors affecting the rate of biodegradation of polyaromatic hydrocarbons. Int. J. Pure Appl. Biosci. 2014, 2, 185–202. [Google Scholar]
- Souza, E.C.; Vessoni-Penna, T.C.; de Souza Oliveira, R.P. Biosurfactant-enhanced hydrocarbon bioremediation: An overview. Int. Biodeterior. Biodegrad. 2014, 89, 88–94. [Google Scholar] [CrossRef]
- Brakstad, O.G.; Bonaunet, K. Biodegradation of petroleum hydrocarbons in seawater at low temperatures (0–5 °C) and bacterial communities associated with degradation. Biodegradation 2006, 17, 71–82. [Google Scholar] [CrossRef]
- Scherr, K.; Aichberger, H.; Braun, R.; Loibner, A.P. Influence of soil fractions on microbial degradation behavior of mineral hydrocarbons. Eur. J. Soil Biol. 2007, 43, 341–350. [Google Scholar] [CrossRef]
- Reid, B.J.; Jones, K.C.; Semple, K.T. Bioavailability of persistent organic pollutants in soils and sediments-a perspective on mechanisms, consequences and assessment. Environ. Pollut. 2000, 108, 103–112. [Google Scholar] [CrossRef]
- Liu, P.G.; Chang, T.C.; Chen, C.; Wang, M.; Hsu, H. Bioaugmentation efficiency investigation on soil organic matters and microbial community shift of diesel-contaminated soils. Int. Biodeterior. Biodegrad. 2014, 95, 276–284. [Google Scholar] [CrossRef]
- Nam, K.; Chung, N.; Alexander, M. Relationship between organic matter content of soil and the sequestration of phenanthrene. Environ. Sci. Technol. 1998, 32, 3785–3788. [Google Scholar] [CrossRef]
- Alexander, M. Aging, bioavailability, and overestimation of risk from environmental pollutants. Environ. Sci. Technol. 2000, 34, 4259–4265. [Google Scholar] [CrossRef]
- Yang, G.; Wang, B.; Vu, K.; Tawfiq, K.; Chen, G. Role of bacterial adhesion in their subsurface deposition and transport: A critical review. Rev. Adhes. Adhes. 2015, 3, 216–252. [Google Scholar] [CrossRef]
- Simjoo, M.; Rezaei, T.; Andrianov, A.; Zitha, P.L.J. Foam stability in the presence of oil: Effect of surfactant concentration and oil type. Colloid. Surf. A Physicochem. Eng. Asp. 2013, 438, 148–158. [Google Scholar] [CrossRef]
- Schramm, L.L.; Novosad, J.J. Micro-visualization of foam interactions with a crude oil. Colloids Surf. 1990, 46, 21–43. [Google Scholar] [CrossRef]
- Hurtado, Y.; Beltrán, C.; Zabala, R.D.; Lopera, S.H.; Franco, C.A.; Nassar, N.N.; Cortés, F.B. Effects of surface acidity and polarity of SiO2 nanoparticles on the foam stabilization applied to natural gas flooding in tight gas-condensate reservoirs. Energy Fuels 2018, 32, 5824–5833. [Google Scholar] [CrossRef]
- Binks, B.P. Colloidal particles at a range of fluid–fluid interfaces. Langmuir 2017, 33, 6947–6963. [Google Scholar] [CrossRef] [PubMed]
- Horozov, T.S.; Aveyard, R.; Clint, J.H.; Neumann, B. Particle zips: Vertical emulsion films with particle monolayers at their surfaces. Langmuir 2005, 21, 2330–2341. [Google Scholar] [CrossRef]
- Xie, W.; Vu, K.; Yang, G.; Tawfiq, K.; Chen, G. Escherichia coli growth and transport in the presence of nanosilver under variable growth conditions. Environ. Technol. 2014, 35, 2306–2313. [Google Scholar] [CrossRef]
- Gonzenbach, U.T.; Studart, A.R.; Tervoort, E.; Gauckler, L.J. Stabilization of foams with inorganic colloidal particles. Langmuir 2006, 22, 10983–10988. [Google Scholar] [CrossRef]
- Sun, Q.; Li, Z.; Wang, J.; Li, S.; Li, B.; Jiang, L.; Wang, H.; Lü, Q.; Zhang, C.; Liu, W. Aqueous foam stabilized by partially hydrophobic nanoparticles in the presence of surfactant. Colloids Surf. A Physicochem. Eng. Asp. 2015, 471, 54–64. [Google Scholar] [CrossRef]
- Li, Q.; Prigiobbe, V. Measuring and modeling nanoparticle transport by foam in porous media. J. Contam. Hydrol. 2021, 243, 103881. [Google Scholar] [CrossRef]
- Li, Q.; Prigiobbe, V. Studying the generation of foam in the presence of nanoparticles using a microfluidic system. Chem. Eng. Sci. 2020, 215, 115427. [Google Scholar] [CrossRef]
- Oliveira, R.C.; Oliveira, J.F.; Moudgil, B.M. The effect of hydrophobic fine particles on the foam flushing remediation process. Surf. Colloid Sci. 2004, 128, 293–297. [Google Scholar]
- Garbin, V.; Jenkins, I.; Sinno, T.; Crocker, J.C.; Stebe, K.J. Interactions and stress relaxation in monolayers of soft nanoparticles at fluid-fluid interfaces. Phys. Rev. Lett. 2015, 114, 108301. [Google Scholar] [CrossRef] [Green Version]
- Zargartalebi, M.; Kharrat, R.; Barati, N. Enhancement of surfactant flooding performance by the use of silica nanoparticles. Fuel 2015, 143, 21–27. [Google Scholar] [CrossRef]
- Yu, H.; He, Y.; Li, P.; Li, S.; Zhang, T.; Rodriguez-Pin, E.; Du, S.; Wang, C.; Cheng, S.; Bielawski, C.W. Flow enhancement of water-based nanoparticle dispersion through microscale sedimentary rocks. Sci. Rep. 2015, 5, 8702. [Google Scholar] [CrossRef] [Green Version]
- Shearer, L.T.; Akers, W.W. Foam stability. J. Phys. Chem. 1958, 62, 1264–1268. [Google Scholar] [CrossRef]
- Ju, B.; Fan, T.; Ma, M. Enhanced oil recovery by flooding with hydrophilic nanoparticles. China Particuol. 2006, 4, 41–46. [Google Scholar] [CrossRef]
- Otto, M.; Floyd, M.; Bajpai, S. Nanotechnology for site remediation. Remediat. J. Environ. Cleanup Costs Technol. Tech. 2008, 19, 99–108. [Google Scholar] [CrossRef]
- Worthen, A.J.; Bagaria, H.G.; Chen, Y.; Bryant, S.L.; Huh, C.; Johnston, K.P. Nanoparticle-stabilized carbon dioxide-in-water foams with fine texture. J. Colloid Interface Sci. 2013, 391, 142–151. [Google Scholar] [CrossRef]
- Lv, Q.; Li, Z.; Li, B.; Li, S.; Sun, Q. Study of nanoparticle-surfactant-stabilized foam as a fracturing fluid. Ind. Eng. Chem. Res. 2015, 54, 9468–9477. [Google Scholar] [CrossRef]
- Zheng, X.; Jang, J. Hydraulic properties of porous media saturated with nanoparticle-stabilized air-water foam. Sustainability 2016, 8, 1317. [Google Scholar] [CrossRef] [Green Version]
- Ding, Y.; Liu, B.; Shen, X.; Zhong, L.; Li, X. Foam-assisted delivery of nanoscale zero valent iron in porous media. J. Environ. Eng. 2013, 139, 1206–1212. [Google Scholar] [CrossRef]
- Shen, X.; Zhao, L.; Ding, Y.; Liu, B.; Zeng, H.; Zhong, L.; Li, X. Foam, a promising vehicle to deliver nanoparticles for vadose zone remediation. J. Hazard. Mater. 2011, 186, 1773–1780. [Google Scholar] [CrossRef] [PubMed]
- Chattopadhyay, P.; Karthick, R.A. Characterization and Application of Surfactant Foams Produced from Ethanol-Sodium Lauryl Sulfate-Silica Nanoparticle Mixture for Soil Remediation. Macromol. Symp. 2017, 376, 1600182. [Google Scholar] [CrossRef]
- Karthick, R.A.; Chattopadhyay, P. Remediation of diesel contaminated soil by tween-20 foam stabilized by silica nanoparticles. Int. J. Chem. Eng. Appl. 2017, 8, 194–198. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.; Mohanty, K.K. Foams stabilized by in-situ surface-activated nanoparticles in bulk and porous media. J. Soc. Pet. Eng. 2016, 21, 121–130. [Google Scholar] [CrossRef]
- Karthick, A.; Chattopadhyay, P. Optimum conditions of zero-valent iron nanoparticle stabilized foam application for diesel-contaminated soil remediation involving three major soil types. Environ. Monit. Assess. 2021, 193, 611. [Google Scholar] [CrossRef]
- Rattanaudom, P.; Shiau, B.-J.; Suriyapraphadilok, U.; Charoensaeng, A. Effect of pH on silica nanoparticle-stabilized foam for enhanced oil recovery using carboxylate-based extended surfactants. J. Pet. Sci. Eng. 2021, 196, 107729. [Google Scholar] [CrossRef]
- Priyadarshini, I.; Chattopadhyay, P. Remediation of Diesel-Contaminated Soil Using Zero-Valent Nano-Nickel and Zero-Valent Nano Copper Particles-Stabilized Tween 80 Surfactant Foam. Mater. Today Proc. 2022, accepted. [Google Scholar] [CrossRef]
- Priyadarshini, I.; Chowdhury, A.; Rao, A.; Roy, B.; Chattopadhyay, P. Assessment of bimetallic Zn/Fe0 nanoparticles stabilized Tween-80 and rhamnolipid foams for the remediation of diesel contaminated clay soil. J. Environ. Manag. 2023, 325, 116596. [Google Scholar] [CrossRef]
- Quinn, J.; Geiger, C.; Clausen, C.; Brooks, K.; Coon, C.; O’Hara, S.; Krug, T.; Major, D.; Yoon, W.; Gavaskar, A. Field demonstration of DNAPL dehalogenation using emulsified zero-valent iron. Environ. Sci. Technol. 2005, 39, 1309–1318. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Liu, W.; Cai, Z.; Han, B.; Qian, T.; Zhao, D. An overview of preparation and applications of stabilized zero-valent iron nanoparticles for soil and groundwater remediation. Water Res. 2016, 100, 245–266. [Google Scholar] [CrossRef] [Green Version]
- He, F.; Zhao, D.; Paul, C. Field assessment of carboxymethyl cellulose stabilized iron nanoparticles for in situ destruction of chlorinated solvents in source zones. Water Res. 2010, 44, 2360–2370. [Google Scholar] [CrossRef]
- Bennett, P.; He, F.; Zhao, D.; Aiken, B.; Feldman, L. In situ testing of metallic iron nanoparticle mobility and reactivity in a shallow granular aquifer. J. Contam. Hydrol. 2010, 116, 35–46. [Google Scholar] [CrossRef]
- Ishiguro, M.; Koopal, L.K. Surfactant adsorption to soil components and soils. Adv. Colloid Interface Sci. 2016, 231, 59–102. [Google Scholar] [CrossRef]
- Ramprasad, C.; Philip, L. Sorption of surfactants and personal care products in Indian soils. Int. J. Environ. Sci. Technol. 2017, 14, 853–866. [Google Scholar] [CrossRef]
- Brandt, K.K.; Hesselsoe, M.; Roslev, P.; Henriksen, K.; Sorensen, J. Toxic effects of linear alkylbenzene sulfonate on metabolic activity, growth rate, and microcolony formation of Nitrosomonas and Nitrosospira strains. Appl. Environ. Microbiol. 2001, 67, 2489–2498. [Google Scholar] [CrossRef] [Green Version]
- Volkering, F.; Breure, A.M.; Rulkens, W.H. Microbiological aspects of surfactant use for biological soil remediation. Biodegradation 1997, 8, 401–417. [Google Scholar] [CrossRef]
- Mnif, I.; Sahnoun, R.; Ellouz-Chaabouni, S.; Ghribi, D. Application of bacterial biosurfactants for enhanced removal and biodegradation of diesel oil in soil using a newly isolated consortium. Process Saf. Environ. Prot. 2017, 109, 72–81. [Google Scholar] [CrossRef]
- Yen, C.; Chen, K.; Kao, C.; Liang, S.; Chen, T. Application of persulfate to remediate petroleum hydrocarbon-contaminated soil: Feasibility and comparison with common oxidants. J. Hazard. Mater. 2011, 186, 2097–2102. [Google Scholar] [CrossRef]
- Li, J.; He, N.; Wei, X.; Gao, Y.; Zuo, Y. Changes in temperature sensitivity and activation energy of soil organic matter decomposition in different Qinghai-Tibet Plateau grasslands. PLoS ONE 2015, 10, e0132795. [Google Scholar] [CrossRef]
- Vu, K.A.; Mulligan, C.N. Treatment of oil pollutants in soil using a biosurfactant/nanoparticle suspension. In Proceedings of the 20th Global Joint Seminar on Geo-Environmental Engineering, Osaka, Japan, 19–20 May 2022. [Google Scholar]
- Xinhong, G.; Ying, T.; Wenjie, R.; Jun, M.A.; Christie, P.; Yongming, L. Optimization of ex-situ washing removal of polycyclic aromatic hydrocarbons from a contaminated soil using nano-sulfonated graphene. Pedosphere 2017, 27, 527–536. [Google Scholar]
- Mańko, D.; Zdziennicka, A.; Jańczuk, B. Thermodynamic properties of rhamnolipid micellization and adsorption. Colloids Surf. B Biointerfaces 2014, 119, 22–29. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhou, D.; Wang, Y.; Wang, L.; Cang, L. Automatic pH control system enhances the dechlorination of 2,4,4′-trichlorobiphenyl and extracted PCBs from contaminated soil by nanoscale Fe0 and Pd/Fe0. Environ. Sci. Pollut. Res. 2012, 19, 448–457. [Google Scholar] [CrossRef] [PubMed]
- Gil-Díaz, M.; Alonso, J.; Rodríguez-Valdés, E.; Gallego, J.R.; Lobo, M.C. Comparing different commercial zero valent iron nanoparticles to immobilize As and Hg in brownfield soil. Sci. Total Environ. 2017, 584, 1324–1332. [Google Scholar] [CrossRef] [PubMed]
- Blanco, E.; Lam, S.; Smoukov, S.K.; Velikov, K.P.; Khan, S.A.; Velev, O.D. Stability and viscoelasticity of magneto-pickering foams. Langmuir 2013, 29, 10019–10027. [Google Scholar] [CrossRef]
- Harikrishnan, A.R.; Dhar, P.; Agnihotri, P.K.; Gedupudi, S.; Das, S.K. Effects of interplay of nanoparticles, surfactants and base fluid on the surface tension of nanocolloids. Eur. Phys. J. E 2017, 40, 53. [Google Scholar] [CrossRef]
- Bhuiyan, M.; Saidur, R.; Amalina, M.A.; Mostafizur, R.M.; Islam, A. Effect of nanoparticles concentration and their sizes on surface tension of nanofluids. Procedia Eng. 2015, 105, 431–437. [Google Scholar] [CrossRef] [Green Version]
- Gong, X.; Huang, D.; Liu, Y.; Zeng, G.; Wang, R.; Wan, J.; Zhang, C.; Cheng, M.; Qin, X.; Xue, W. Stabilized nanoscale zerovalent iron mediated cadmium accumulation and oxidative damage of Boehmeria nivea (L.) Gaudich cultivated in cadmium contaminated sediments. Environ. Sci. Technol. 2017, 51, 11308–11316. [Google Scholar] [CrossRef]
- Liang, J.; Xia, X.; Yuan, L.; Zhang, W.; Lin, K.; Zhou, B.; Hu, S. The reproductive responses of earthworms (Eisenia fetida) exposed to nanoscale zero-valent iron (nZVI) in the presence of decabromodiphenyl ether (BDE209). Environ. Pollut. 2018, 237, 784–791. [Google Scholar] [CrossRef]
- Burketová, L.; Martinec, J.; Siegel, J.; Macůrková, A.; Maryška, L.; Valentová, O. Noble metal nanoparticles in agriculture: Impacts on plants, associated microorganisms, and biotechnological practices. Biotechnol. Adv. 2022, 58, 107929. [Google Scholar] [CrossRef]
- Pawlett, M.; Ritz, K.; Dorey, R.A.; Rocks, S.; Ramsden, J.; Harris, J.A. The impact of zero-valent iron nanoparticles upon soil microbial communities is context dependent. Environ. Sci. Pollut. Res. 2013, 20, 1041–1049. [Google Scholar] [CrossRef] [Green Version]
- Saccà, M.L.; Fajardo, C.; Nande, M.; Martín, M. Effects of nano zero-valent iron on Klebsiella oxytoca and stress response. Microb. Ecol. 2013, 66, 806–812. [Google Scholar] [CrossRef]
- Diao, M.; Yao, M. Use of zero-valent iron nanoparticles in inactivating microbes. Water Res. 2009, 43, 5243–5251. [Google Scholar] [CrossRef]
- Vanzetto, G.V.; Thomé, A. Toxicity of nZVI in the growth of bacteria present in contaminated soil. Chemosphere 2022, 303, 135002. [Google Scholar] [CrossRef]
- Fajardo, C.; Ortíz, L.T.; Rodríguez-Membibre, M.L.; Nande, M.; Lobo, M.C.; Martin, M. Assessing the impact of zero-valent iron (ZVI) nanotechnology on soil microbial structure and functionality: A molecular approach. Chemosphere 2012, 86, 802–808. [Google Scholar] [CrossRef]
- El-Temsah, Y.S.; Sevcu, A.; Bobcikova, K.; Cernik, M.; Joner, E.J. DDT degradation efficiency and ecotoxicological effects of two types of nano-sized zero-valent iron (nZVI) in water and soil. Chemosphere 2016, 144, 2221–2228. [Google Scholar] [CrossRef] [Green Version]
- Ortega-Calvo, J.; Jimenez-Sanchez, C.; Pratarolo, P.; Pullin, H.; Scott, T.B.; Thompson, I.P. Tactic response of bacteria to zero-valent iron nanoparticles. Environ. Pollut. 2016, 213, 438–445. [Google Scholar] [CrossRef]
- Vu, K.; Yang, G.; Wang, B.; Tawfiq, K.; Chen, G. Bacterial interactions and transport in geological formation of alumino-silica clays. Colloids Surf. B Biointerfaces 2015, 125, 45–50. [Google Scholar] [CrossRef]
Nanoparticle Name | Pollutant Name | Treatment Time, Day | Treatment Efficiency, % | Reference |
---|---|---|---|---|
MWCNTs 1 | Phenanthrene | 21 | 54.2 | [61] |
MWCNTs | PAHs 2 | 5 | 79 | [62] |
nZVI 3 | Phenol | 12 h | 9 | [63] |
nZVI/BFN 4 | Phenol | 7 h | 98.5 | [63] |
Iron nanoparticles | PCBs 5 | 6 h | 95 | [64] |
nZVI | PAHs | 1 h | 70 | [65] |
APU nanoparticles 6 | PAHs | 5 | 67 | [66] |
nZVI/biosurfactant | Oil compounds | 1 h | 83 | [40] |
nZVI/biosurfactant foam | Oil compounds | 30 min | 67 | [34] |
nZVI | PCBs | 15 | 42 | [67] |
nZVI-Pd | PCBs | 15 | 64 | [67] |
nFe3O4 | PCBs | 15 | 68 | [67] |
Fe-Cu/biochar/geopolymer | Naphthalene | 2 h | 68 | [68] |
nZVI/bioattenuation | Diesel fuel | 75 | 41.0 | [21] |
nZVI/biostimulation | Diesel fuel | 45 | 64.6 | [21] |
nZVI/bioaugmentation | Diesel fuel | 15–30 | 85.3 | [21] |
nZVI/biostimulation + bioaugmentation | Diesel fuel | 30–60 | 89.5 | [21] |
Iron oxide nanoparticles | Crude oil | 1 | N/A | [42] |
Nano rutile TiO2 | Pyrene | 25 h | 52.2 | [69] |
Nano rutile TiO2 | Phenanthrene | 25 h | 38.9 | [69] |
Iron oxide nanoparticles | PAHs | 5 | 70 | [70] |
Akaganeite nano-rods | PAHs | 1 | 65 | [71] |
Iron oxide nanoparticles | Anthracene | 10 | 99 | [41] |
Graphene oxide | PAHs | 7 min | ~100 | [72] |
Fe-doped TiO2 nanocatalyst | PAHs | 35 min | 80 | [73] |
TiO2-based ZnHCF nanocomposite | PAHs | 1 | 86 | [74] |
C3N4/Fe3O4 nanocomposite | Phenanthrene | 2 h | 92.3 | [75] |
Cu2OPLA composite nanofiber | Fluoranthene | 8 h | 67.6 | [76] |
Surfactant Name | Surfactant Type | Oil Compound | Remediation Time, Hour | Remediation Efficiency, % | Reference |
---|---|---|---|---|---|
SDS 1 | Anionic | Aliphatic | 0.5 | 92 | [90] |
SDS | Anionic | Aromatic | 0.5 | 77 | [90] |
Dodec-MNS | Anionic | TPH 3 | 0.8 | 68 | [91] |
SDS | Anionic | TPH | 0.5 | 80 | [85] |
C12-MADS | Anionic | PAHs 4 | 72 | 68 | [24] |
SDBS 2 | Anionic | PAHs | 72 | 54 | [24] |
Tween 20 | Nonionic | TPH | 0.8 | 48 | [91] |
Triton X-100 | Nonionic | PAHs | 72 | 38 | [24] |
Span 20 + Tween 80 | Nonionic | Diesel | 1 | 48 | [27] |
Tween 80 | Nonionic | TPH | 24 | 40 | [92] |
Triton X-100 | Nonionic | TPH | 24 | 35 | [92] |
Rhamnolipid | Biosurfactant | TPH | 24 | 63 | [92] |
Surfactin | Biosurfactant | TPH | 24 | 62 | [92] |
Rhamnolipid | Biosurfactant | TPH | 0.5 | 78 | [85] |
Saponin | Biosurfactant | TPH | 0.5 | 76 | [85] |
Rhamnolipid | Biosurfactant | TPH | 0.5 | 59 | [93] |
Surfactant Name | Chemical Formula | Degradability, % | Degradation Time, Days | Reference |
---|---|---|---|---|
AOS 1 | C16H31SO3Na | 99 | 3 | [99] |
AOT 2 | C20H37SO7Na | 90 | 7 | [100] |
CTAB 3 | C19H42BrN | 98 | 13 | [101] |
JBR425 4 | C32H58O13 | 92 | 7 | [102] |
LAS 5 | C18H29SO3Na | 99 (under aerobic condition) | N/A 9 | [103] |
SAP 6 | C36H58O9 | 93 | 3 | [104] |
SDBS 7 | C12H25C6H4SO3Na | 20 | N/A | [105] |
SDS 8 | NaC12H25SO4 | 100 | N/A | [106] |
Steol | CH3(CH2)10CH2-(OCH2CH2)nOSO3Na | 100 | 6 | [100] |
Triton SP | C14H22O(C2H4O)n | 90 | 1.3 | [107] |
Tween 20 | C58H114O26 | 20 (under anaerobic condition) | N/A | [108] |
Tween 40 | C62H125O26 | 20 | 28 | [109] |
Tween 80 | C64H124O26 | 99 | 0.3 | [26] |
Surfactant Name | Foam Type | Foam Concentration, mg/L | Pollutant Type | Treatment Efficiency, % | Reference |
---|---|---|---|---|---|
SDS 1 | Spraying foam | 6.6 | Diesel | 73.7 | [20] |
AOS 2 | Spraying foam | 6.6 | Diesel | 71.8 | [20] |
LAS 3 | Spraying foam | 6.6 | Diesel | 65.9 | [20] |
Steol CS-330 | Microfoam | 1800 | TCE 5 | 75 | [132] |
SDS | Microfoam | 2300 | Diesel | 62.9 | [134] |
RML 4 | Microfoam | 100 | Diesel | 44.75 | [134] |
SDS | Foam flushing | 5000 | PCBs 6 | 75.8 | [135] |
SDS | Foam flushing | 50,000 | DNAPL 7 | 93–97 | [131] |
SDS | Microfoam | 2300–11,700 | Diesel | 88 | [133] |
Standapol ES-2 | Foam flushing | 1000 | PAHs 8 | N/A 10 | [116] |
GL5757 | Foam flushing | 2000 | TCE | 60 | [137] |
RML | Foam flushing | 1% | PCP 9 | 67 | [123] |
Surfactant Foam Name | Nanoparticle Type | Pollutant Type | Treatment Efficiency, % | Reference |
---|---|---|---|---|
RML 1 | nZVI | Crude oil | 67 | [34] |
APG-Ph 2 | nZVI | Diesel | 95 | [86] |
APG-Ph | Fe3O4 | Diesel | 76 | [86] |
SDS 3 | SiO2 | Crude oil | 68 | [118] |
SLS 4 | SiO2 | Diesel | 95 | [169] |
Tween 20 | SiO2 | Diesel | 78 | [170] |
APG-Ph | SiO2 | Diesel | 54 | [171] |
APG-Ph | nZVI | Diesel | 98 | [172] |
SDS | SiO2 | Crude oil | 54 | [173] |
Tween 80 | Ni0 | Diesel | 99 | [174] |
Tween 80 | Cu0 | Diesel | 99 | [174] |
RML | Zn/Fe0 | Diesel | 84 | [175] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vu, K.A.; Mulligan, C.N. An Overview on the Treatment of Oil Pollutants in Soil Using Synthetic and Biological Surfactant Foam and Nanoparticles. Int. J. Mol. Sci. 2023, 24, 1916. https://doi.org/10.3390/ijms24031916
Vu KA, Mulligan CN. An Overview on the Treatment of Oil Pollutants in Soil Using Synthetic and Biological Surfactant Foam and Nanoparticles. International Journal of Molecular Sciences. 2023; 24(3):1916. https://doi.org/10.3390/ijms24031916
Chicago/Turabian StyleVu, Kien A., and Catherine N. Mulligan. 2023. "An Overview on the Treatment of Oil Pollutants in Soil Using Synthetic and Biological Surfactant Foam and Nanoparticles" International Journal of Molecular Sciences 24, no. 3: 1916. https://doi.org/10.3390/ijms24031916
APA StyleVu, K. A., & Mulligan, C. N. (2023). An Overview on the Treatment of Oil Pollutants in Soil Using Synthetic and Biological Surfactant Foam and Nanoparticles. International Journal of Molecular Sciences, 24(3), 1916. https://doi.org/10.3390/ijms24031916