Predicting Prognosis and Platinum Resistance in Ovarian Cancer: Role of Immunohistochemistry Biomarkers
Abstract
:1. Introduction
Search Strategy of Review
2. Signature Alterations in Women with Chemotherapy Resistance
3. Immunohistochemistry Biomarkers of Chemotherapy Resistance in Ovarian Cancer
3.1. Vascular Endothelial Growth Factor (VEGF)
3.2. CD133
3.3. P53
3.4. MIB-1/KI-67
3.5. The Mitotic Arrest Deficiency Protein 2 (MAD2)
3.6. Check Point Kinase 2 (Chk2)
3.7. Insulin-like Growth Factor 1 Receptor (IGF-1R)
3.8. Prostaglandin D2 (PGD2)
3.9. Endonuclease Non-Catalytic Subunit (ERCC1)
3.10. Notch Receptor 3
3.11. Glypican-3 (GPC3)
3.12. Aldehyde Dehydrogenase (ALDH1)
3.13. Homeobox A10 (HOXA10)
3.14. AT-Rich Interaction Domain 1A (ARID1A)
3.15. Hepatocyte Nuclear Factor-1β (HNF-1β)
3.16. Cyclooxygenase-1 and 2 (COX-1 and COX- 2)
3.17. Breast Cancer Gene 1 (BRAC1)
3.18. Programmed Cell Death Ligands (PD-L)
3.19. Forkhead Box Transcription Factor (FOXP3)
3.20. Tumour Necrosis Factor Receptor 2 (TNFR2)
3.21. Signal Transducer and Activator of Transcription 3 (STAT3)
4. Limitations Associated with the Immunohistochemistry Technique in the Clinical Settings
5. Future Directions
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Atallah, G.; Aziz, N.A.; Teik, C.; Shafiee, M.; Kampan, N. New Predictive Biomarkers for Ovarian Cancer. Diagnostics 2021, 11, 465. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.; Naishadham, D.; Ma, M.D.N. Cancer statistics for Hispanics/Latinos, 2012. CA A Cancer J. Clin. 2012, 62, 283–298. [Google Scholar] [CrossRef] [PubMed]
- Torre, L.A.; Trabert, B.; DeSantis, C.E.; Miller, K.D.; Samimi, G.; Runowicz, C.D.; Gaudet, M.M.; Jemal, A.; Siegel, R.L. Ovarian cancer statistics, 2018. CA Cancer J. Clin. 2018, 68, 284–296. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Yang, Y.; Yang, J.; Zhao, X.; Wei, X. Tumor Microenvironment in Ovarian Cancer: Function and Therapeutic Strategy. Front. Cell Dev. Biol. 2020, 8, 758. [Google Scholar] [CrossRef]
- Winter, W.E., 3rd; Maxwell, G.L.; Tian, C.; Carlson, J.W.; Ozols, R.F.; Rose, P.G.; Markman, M.; Armstrong, D.K.; Muggia, F.; McGuire, W.P.; et al. Prognostic Factors for Stage III Epithelial Ovarian Cancer: A Gynecologic Oncology Group Study. J. Clin. Oncol. 2007, 25, 3621–3627. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Wright, J.D.; Powell, M.A.; Gibb, R.K.; Rader, J.S.; Allsworth, J.E.; Mutch, D.G. Prognostic factors associated with response in platinum retreatment of platinum-resistant ovarian cancer. Int. J. Gynecol. Cancer 2008, 18, 1194–1199. [Google Scholar] [CrossRef]
- Soeda, S.; Watanabe, T.; Kamo, N.; Sato, T.; Okabe, C.; Ueda, M.; Endo, Y.; Manabu, K.; Nomura, S.; Furukawa, S.; et al. Successful Management of Platinum-resistant Ovarian Cancer by Weekly Nedaplatin Followed by Olaparib: Three Case Reports. Anticancer Res. 2020, 40, 5263–5270. [Google Scholar] [CrossRef]
- Ledermann, J.A.; Raja, F.A.; Fotopoulou, C.; Gonzalez-Martin, A.; Colombo, N.; Sessa, C. Newly diagnosed and relapsed epithelial ovarian carcinoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2013, 24, vi24–vi32. [Google Scholar] [CrossRef]
- Lisio, M.-A.; Fu, L.; Goyeneche, A.; Gao, Z.-H.; Telleria, C. High-Grade Serous Ovarian Cancer: Basic Sciences, Clinical and Therapeutic Standpoints. Int. J. Mol. Sci. 2019, 20, 952. [Google Scholar] [CrossRef]
- Zhou, L.; Yao, L.; Dai, L.; Zhu, H.; Ye, X.; Wang, S.; Cheng, H.; Ma, R.; Liu, H.; Cui, H.; et al. Ovarian endometrioid carcinoma and clear cell carcinoma: A 21-year retrospective study. J. Ovarian Res. 2021, 14, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Vang, R.; Shih Ie, M.; Kurman, R.J. Ovarian low-grade and high-grade serous carcinoma: Pathogenesis, clinicopathologic and molecular biologic features, and diagnostic problems. Adv. Anat. Pathol. 2009, 16, 267–282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Babaier, A.; Ghatage, P. Mucinous Cancer of the Ovary: Overview and Current Status. Diagnostics 2020, 10, 52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, E.W.; Wei, C.H.; Liu, S.; Lee, S.J.-J.; Shehayeb, S.; Glaser, S.; Li, R.; Saadat, S.; Shen, J.; Dellinger, T.; et al. Frontline Management of Epithelial Ovarian Cancer—Combining Clinical Expertise with Community Practice Collaboration and Cutting-Edge Research. J. Clin. Med. 2020, 9, 2830. [Google Scholar] [CrossRef]
- Hennessy, B.T.; Coleman, R.; Markman, M. Ovarian cancer. Lancet 2009, 374, 1371–1382. [Google Scholar] [CrossRef]
- Tewari, K.S.; Burger, R.A.; Enserro, D.; Norquist, B.M.; Swisher, E.M.; Brady, M.F.; Bookman, M.A.; Fleming, G.F.; Huang, H.; Homesley, H.D.; et al. Final Overall Survival of a Randomized Trial of Bevacizumab for Primary Treatment of Ovarian Cancer. J. Clin. Oncol. 2019, 37, 2317–2328. [Google Scholar] [CrossRef]
- Pejovic, T.; Fitch, K.; Mills, G. Ovarian cancer recurrence: “is the definition of platinum resistance modified by PARP inhibitors and other intervening treatments?”. Cancer Drug Resist. 2022, 5, 451–458. [Google Scholar] [CrossRef]
- Markman, M.; Rothman, R.; Hakes, T.; Reichman, B.; Hoskins, W.; Rubin, S.; Jones, W.; Almadrones, L.; Lewis, J.L. Second-line platinum therapy in patients with ovarian cancer previously treated with cisplatin. J. Clin. Oncol. 1991, 9, 389–393. [Google Scholar] [CrossRef]
- Oza, A.M.; Castonguay, V.; Tsoref, D.; Diaz-Padilla, I.; Karakasis, K.; Mackay, H.; Welch, S.; Weberpals, J.; Hoskins, P.; Plante, M.; et al. Progression-free survival in advanced ovarian cancer: A Canadian review and expert panel perspective. Curr. Oncol. 2011, 18 (Suppl. S2), S20–S27. [Google Scholar] [CrossRef]
- Baert, T.; Ferrero, A.; Sehouli, J.; O′Donnell, D.M.; González-Martín, A.; Joly, F.; van der Velden, J.; Blecharz, P.; Tan, D.S.P.; Querleu, D.; et al. The systemic treatment of recurrent ovarian cancer revisited. Ann. Oncol. 2021, 32, 710–725. [Google Scholar] [CrossRef]
- Wolff, A.C.; Hammond, M.E.H.; Hicks, D.G.; Dowsett, M.; McShane, L.M.; Allison, K.H.; Allred, D.C.; Bartlett, J.M.; Bilous, M.; Fitzgibbons, P.; et al. Recommendations for Human Epidermal Growth Factor Receptor 2 Testing in Breast Cancer: American Society of Clinical Oncology/College of American Pathologists Clinical Practice Guideline Update. Arch. Pathol. Lab. Med. 2013, 138, 241–256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loupakis, F.; Ruzzo, A.; Cremolini, C.; Vincenzi, B.; Salvatore, L.; Santini, D.; Masi, G.; Stasi, I.; Canestrari, E.; Rulli, E.; et al. KRAS codon 61, 146 and BRAF mutations predict resistance to cetuximab plus irinotecan in KRAS codon 12 and 13 wild-type metastatic colorectal cancer. Br. J. Cancer 2009, 101, 715–721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leong, A.-Y.; Wright, J. The contribution of immunohistochemical staining in tumour diagnosis. Histopathology 1987, 11, 1295–1305. [Google Scholar] [CrossRef]
- Matos, L.L.; Trufelli, D.C.; De Matos, M.G.L.; da Silva Pinhal, M.A. Immunohistochemistry as an Important Tool in Biomarkers Detection and Clinical Practice. Biomark. Insights 2010, 5, BMI.S2185-20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swanson, P.E. HIERanarchy: The State of the Art in Immunohistochemistry. Am. J. Clin. Pathol. 1997, 107, 139–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rickert, R.R.; Maliniak, R.M. Intralaboratory quality assurance of immunohistochemical procedures. Recommended practices for daily application. Arch. Pathol. Lab. Med. 1989, 113, 673–679. [Google Scholar] [PubMed]
- Bodey, B. The significance of immunohistochemistry in the diagnosis and therapy of neoplasms. Expert Opin. Biol. Ther. 2002, 2, 371–393. [Google Scholar] [CrossRef]
- Diamandis, E.P. The failure of protein cancer biomarkers to reach the clinic: Why, and what can be done to address the problem? BMC Med. 2012, 10, 87. [Google Scholar] [CrossRef] [Green Version]
- Brustmann, H. Vascular endothelial growth factor expression in serous ovarian carcinoma: Relationship with topoisomerase IIα and prognosis. Gynecol. Oncol. 2004, 95, 16–22. [Google Scholar] [CrossRef]
- Guo, B.-Q.; Lu, W.-Q. The prognostic significance of high/positive expression of tissue VEGF in ovarian cancer. Oncotarget 2018, 9, 30552–30560. [Google Scholar] [CrossRef]
- Cheng, D.; Liang, B.; Li, Y. Serum Vascular Endothelial Growth Factor (VEGF-C) as a Diagnostic and Prognostic Marker in Patients with Ovarian Cancer. PLoS ONE 2013, 8, e55309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, K.K.; Izaguirre, D.I.; Kwan, S.Y.; King, E.R.; Deavers, M.T.; Sood, A.K.; Mok, S.C.; Gershenson, D.M. Poor survival with wild-type TP53 ovarian cancer? Gynecol. Oncol. 2013, 130, 565–569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frutuoso, C.; Silva, M.R.; Amaral, N.; Martins, I.; De Oliveira, C.; De Oliveira, H.M. Prognosis value of p53, C-erB-2 and Ki67 proteins in ovarian carcinoma. Acta Med. Port. 2001, 14, 277–283. [Google Scholar] [PubMed]
- Reles, A.; Wen, W.H.; Schmider, A.; Gee, C.; Runnebaum, I.B.; Kilian, U.; A Jones, L.; El-Naggar, A.; Minguillon, C.; Schönborn, I.; et al. Correlation of p53 mutations with resistance to platinum-based chemotherapy and shortened survival in ovarian cancer. Clin. Cancer Res. 2001, 7, 2984–2997. [Google Scholar]
- Chen, M.; Yao, S.; Cao, Q.; Xia, M.; Liu, J.; He, M. The prognostic value of Ki67 in ovarian high-grade serous carcinoma: An 11-year cohort study of Chinese patients. Oncotarget 2016, 8, 107877–107885. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahadevappa, A.; Krishna, S.; Vimala, M. Diagnostic and prognostic significance of Ki-67 immunohistochemical expression in surface epithelial ovarian carcinoma. J. Clin. Diagn. Res. 2017, 11, EC08. [Google Scholar] [CrossRef]
- Alkema, N.; Tomar, T.; van der Zee, A.; Everts, M.; Meersma, G.; Hollema, H.; de Jong, S.; van Vugt, M.; Wisman, G. Checkpoint kinase 2 (Chk2) supports sensitivity to platinum-based treatment in high grade serous ovarian cancer. Gynecol. Oncol. 2014, 133, 591–598. [Google Scholar] [CrossRef]
- Liang, X.; Reed, E.; Yu, J.J. Protein phosphatase 2A interacts with Chk2 and regulates phosphorylation at Thr-68 after cisplatin treatment of human ovarian cancer cells. Int. J. Mol. Med. 2006, 17, 703–708. [Google Scholar] [CrossRef] [Green Version]
- Jung, S.G.; Kwon, Y.D.; Song, J.A.; Back, M.J.; Lee, S.Y.; Lee, C.; Hwang, Y.Y.; An, H.J. Prognostic significance of Notch 3 gene expression in ovarian serous carcinoma. Cancer Sci. 2010, 101, 1977–1983. [Google Scholar] [CrossRef]
- Rahman, M.T.; Nakayama, K.; Rahman, M.; Katagiri, H.; Katagiri, A.; Ishibashi, T.; Ishikawa, M.; Iida, K.; Nakayama, S.; Otsuki, Y.; et al. Notch3 Overexpression as Potential Therapeutic Target in Advanced Stage Chemoresistant Ovarian Cancer. Am. J. Clin. Pathol. 2012, 138, 535–544. [Google Scholar] [CrossRef]
- Ferrandina, G.; Lauriola, L.; Zannoni, G.F.; Fagotti, A.; Fanfani, F.; Legge, F.; Maggiano, N.; Gessi, M.; Mancuso, S.; Ranelletti, F.O.; et al. Increased cyclooxygenase-2 (COX-2) expression is associated with chemotherapy resistance and outcome in ovarian cancer patients. Ann. Oncol. 2002, 13, 1205–1211. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Miner, K.; Fannin, R.; Barrett, J.C.; Davis, B.J. Cyclooxygenase-1 and 2 in normal and malignant human ovarian epithelium. Gynecol. Oncol. 2004, 92, 622–627. [Google Scholar] [CrossRef] [PubMed]
- Moes-Sosnowska, J.; Rzepecka, I.K.; Chodzynska, J.; Dansonka-Mieszkowska, A.; Szafron, L.M.; Balabas, A.; Lotocka, R.; Sobiczewski, P.; Kupryjanczyk, J. Clinical importance of FANCD2, BRIP1, BRCA1, BRCA2 and FANCF expression in ovarian carcinomas. Cancer Biol. Ther. 2019, 20, 843–854. [Google Scholar] [CrossRef] [PubMed]
- Hamanishi, J.; Mandai, M.; Iwasaki, M.; Okazaki, T.; Tanaka, Y.; Yamaguchi, K.; Higuchi, T.; Yagi, H.; Takakura, K.; Minato, N.; et al. Programmed cell death 1 ligand 1 and tumor-infiltrating CD8+ T lymphocytes are prognostic factors of human ovarian cancer. Proc. Natl. Acad. Sci. USA 2007, 104, 3360–3365. [Google Scholar] [CrossRef] [Green Version]
- Ohigashi, Y.; Sho, M.; Yamada, Y.; Tsurui, Y.; Hamada, K.; Ikeda, N.; Mizuno, T.; Yoriki, R.; Kashizuka, H.; Yane, K.; et al. Clinical Significance of Programmed Death-1 Ligand-1 and Programmed Death-1 Ligand-2 Expression in Human Esophageal Cancer. Clin. Cancer Res. 2005, 11, 2947–2953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Curley, M.D.; Therrien, V.A.; Cummings, C.L.; Sergent, P.A.; Koulouris, C.R.; Friel, A.M.; Roberts, D.J.; Seiden, M.V.; Scadden, D.T.; Rueda, B.R.; et al. CD133 Expression Defines a Tumor Initiating Cell Population in Primary Human Ovarian Cancer. Stem Cells 2009, 27, 2875–2883. [Google Scholar] [CrossRef]
- Ma, L.; Lai, D.; Liu, T.; Cheng, W.; Guo, L. Cancer stem-like cells can be isolated with drug selection in human ovarian cancer cell line SKOV3. Acta Biochim. Biophys. Sin. 2010, 42, 593–602. [Google Scholar] [CrossRef] [Green Version]
- Deo, A.; Chaudhury, S.; Kannan, S.; Rekhi, B.; Maheshwari, A.; Gupta, S.; Ray, P. IGF1R predicts better survival in high-grade serous epithelial ovarian cancer patients and correlates with hCtr1 levels. Biomarkers Med. 2019, 13, 511–521. [Google Scholar] [CrossRef]
- Alves, M.R.; Amaral, N.S.D.; Marchi, F.A.; Silva, F.I.D.B.; Da Costa, A.A.B.A.; Baiocchi, G.; Soares, F.A.; De Brot, L.; Rocha, R.M. Prostaglandin D2 expression is prognostic in high-grade serous ovarian cancer. Oncol. Rep. 2019, 41, 2254–2264. [Google Scholar] [CrossRef] [Green Version]
- Scurry, J.; van Zyl, B.; Gulliver, D.; Otton, G.; Jaaback, K.; Lombard, J.; Vilain, R.E.; Bowden, N.A. Nucleotide excision repair protein ERCC1 and tumour-infiltrating lymphocytes are potential biomarkers of neoadjuvant platinum resistance in high grade serous ovarian cancer. Gynecol. Oncol. 2018, 151, 306–310. [Google Scholar] [CrossRef]
- Vassalli, G. Aldehyde Dehydrogenases: Not Just Markers, but Functional Regulators of Stem Cells. Stem Cells Int. 2019, 2019, 3904645. [Google Scholar] [CrossRef] [PubMed]
- Kuroda, T.; Hirohashi, Y.; Torigoe, T.; Yasuda, K.; Takahashi, A.; Asanuma, H.; Morita, R.; Mariya, T.; Asano, T.; Mizuuchi, M.; et al. ALDH1-High Ovarian Cancer Stem-Like Cells Can Be Isolated from Serous and Clear Cell Adenocarcinoma Cells, and ALDH1 High Expression Is Associated with Poor Prognosis. PLoS ONE 2013, 8, e65158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mandai, M.; Amano, Y.; Yamaguchi, K.; Matsumura, N.; Baba, T.; Konishi, I. Ovarian clear cell carcinoma meets metabolism; HNF-1β confers survival benefits through the Warburg effect and ROS reduction. Oncotarget 2015, 6, 30704–30714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kato, N.; Toukairin, M.; Asanuma, I.; Motoyama, T. Immunocytochemistry for hepatocyte nuclear factor-1β (HNF-1β): A marker for ovarian clear cell carcinoma. Diagn. Cytopathol. 2007, 35, 193–197. [Google Scholar] [CrossRef] [PubMed]
- Leffers, N.; Gooden, M.J.M.; de Jong, R.A.; Hoogeboom, B.-N.; ten Hoor, K.A.; Hollema, H.; Boezen, H.M.; van der Zee, A.G.J.; Daemen, T.; Nijman, H.W. Prognostic significance of tumor-infiltrating T-lymphocytes in primary and metastatic lesions of advanced stage ovarian cancer. Cancer Immunol. Immunother. 2009, 58, 449–459. [Google Scholar] [CrossRef] [Green Version]
- Wolf, D.; Wolf, A.M.; Rumpold, H.; Fiegl, H.; Zeimet, A.G.; Muller-Holzner, E.; Deibl, M.; Gastl, G.; Gunsilius, E.; Marth, C. The Expression of the Regulatory T Cell–Specific Forkhead Box Transcription Factor FoxP3 Is Associated with Poor Prognosis in Ovarian Cancer. Clin. Cancer Res. 2005, 11, 8326–8331. [Google Scholar] [CrossRef] [Green Version]
- Raju, J.S.; Aziz, N.A.; Atallah, G.; Teik, C.; Shafiee, M.; Saleh, M.M.; Jeganathan, R.; Zin, R.M.; Kampan, N. Prognostic Value of TNFR2 and STAT3 among High-Grade Serous Ovarian Cancer Survivors According to Platinum Sensitivity. Diagnostics 2021, 11, 526. [Google Scholar] [CrossRef]
- Dobrzycka, B.; Terlikowski, S.J.; Garbowicz, M.; Niklińska, W.; Bernaczyk, P.S.; Nikliński, J.; Kinalski, M.; Chyczewski, L. Tumor necrosis factor-alpha and its receptors in epithelial ovarian cancer. Folia Histochem. Cytobiol. 2010, 47, 609–613. [Google Scholar] [CrossRef] [Green Version]
- Gao, S.; Zhang, W.; Yan, N.; Li, M.; Mu, X.; Yin, H.; Wang, J. The impact of STAT3 and phospho-STAT3 expression on the prognosis and clinicopathology of ovarian cancer: A systematic review and meta-analysis. J. Ovarian Res. 2021, 14, 1–18. [Google Scholar] [CrossRef]
- Furlong, F.; Fitzpatrick, P.; O′Toole, S.; Phelan, S.; McGrogan, B.; Maguire, A.; O′Grady, A.; Gallagher, M.; Prencipe, M.; McGoldrick, A.; et al. Low MAD2 expression levels associate with reduced progression-free survival in patients with high-grade serous epithelial ovarian cancer. J. Pathol. 2011, 226, 746–755. [Google Scholar] [CrossRef] [Green Version]
- De Cat, B.; Muyldermans, S.-Y.; Coomans, C.; DeGeest, G.; Vanderschueren, B.; Creemers, J.; Biemar, F.; Peers, B.; David, G. Processing by proprotein convertases is required for glypican-3 modulation of cell survival, Wnt signaling, and gastrulation movements. J. Cell Biol. 2003, 163, 625–635. [Google Scholar] [CrossRef] [PubMed]
- Maeda, D.; Ota, S.; Takazawa, Y.; Aburatani, H.; Nakagawa, S.; Yano, T.; Taketani, Y.; Kodama, T.; Fukayama, M. Glypican-3 expression in clear cell adenocarcinoma of the ovary. Mod. Pathol. 2009, 22, 824–832. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Butler, H.; Saulat, O.; Guinn, B.-A. Identification of biomarkers for the diagnosis and targets for therapy in patients with clear cell ovarian cancer: A systematic literature review. Carcinogenesis 2022, 43, 183–189. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Jin, H.; Yu, Y.; Gu, C.; Zhou, X.; Zhao, N.; Feng, Y. HOXA10 is Overexpressed in Human Ovarian Clear Cell Adenocarcinoma and Correlates With Poor Survival. Int. J. Gynecol. Cancer 2009, 19, 1347–1352. [Google Scholar] [CrossRef]
- Zanatta, A.; Rocha, A.M.; Carvalho, F.M.; Pereira, R.M.; Taylor, H.S.; Motta, E.L.; Baracat, E.C.; Serafini, P.C. The role of the Hoxa10/HOXA10 gene in the etiology of endometriosis and its related infertility: A review. J. Assist. Reprod. Genet. 2010, 27, 701–710. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Xue, Y.; Zhou, S.; Kuo, A.; Cairns, B.R.; Crabtree, G.R. Diversity and specialization of mammalian SWI/SNF complexes. Genes Dev. 1996, 10, 2117–2130. [Google Scholar] [CrossRef] [Green Version]
- Sato, E.; Nakayama, K.; Razia, S.; Nakamura, K.; Ishikawa, M.; Minamoto, T.; Ishibashi, T.; Yamashita, H.; Iida, K.; Kyo, S. ARID1B as a Potential Therapeutic Target for ARID1A-Mutant Ovarian Clear Cell Carcinoma. Int. J. Mol. Sci. 2018, 19, 1710. [Google Scholar] [CrossRef] [Green Version]
- Katagiri, A.; Nakayama, K.; Rahman, M.T.; Rahman, M.; Katagiri, H.; Nakayama, N.; Ishikawa, M.; Ishibashi, T.; Iida, K.; Kobayashi, H.; et al. Loss of ARID1A expression is related to shorter progression-free survival and chemoresistance in ovarian clear cell carcinoma. Mod. Pathol. 2011, 25, 282–288. [Google Scholar] [CrossRef] [Green Version]
- Van Zyl, B.; Tang, D.; Bowden, N.A. Biomarkers of platinum resistance in ovarian cancer: What can we use to improve treatment. Endocr. Relat. Cancer 2018, 25, R303–R318. [Google Scholar] [CrossRef] [Green Version]
- Kampan, N.C.; Madondo, M.T.; McNally, O.M.; Quinn, M.; Plebanski, M. Paclitaxel and Its Evolving Role in the Management of Ovarian Cancer. BioMed Res. Int. 2015, 2015, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Kohler, M.F.; Marks, J.R.; Wiseman, R.W.; Jacobs, I.J.; Davidoff, A.M.; Clarke-Pearson, D.L.; Soper, J.T.; Bast, R.C.; Berchuck, A., Jr. Spectrum of Mutation and Frequency of Allelic Deletion of the p53 Gene in Ovarian Cancer. J. Natl. Cancer Inst. 1993, 85, 1513–1519. [Google Scholar] [CrossRef] [PubMed]
- Hibbs, K.; Skubitz, K.M.; Pambuccian, S.E.; Casey, R.C.; Burleson, K.M.; Oegema, T.R.; Thiele, J.J.; Grindle, S.M.; Bliss, R.L.; Skubitz, A.P. Differential Gene Expression in Ovarian Carcinoma: Identification of Potential Biomarkers. Am. J. Pathol. 2004, 165, 397–414. [Google Scholar] [CrossRef] [PubMed]
- Ghose, A.; Gullapalli, S.V.N.; Chohan, N.; Bolina, A.; Moschetta, M.; Rassy, E.; Boussios, S. Applications of Proteomics in Ovarian Cancer: Dawn of a New Era. Proteomes 2022, 10, 16. [Google Scholar] [CrossRef] [PubMed]
- Testa, U.; Petrucci, E.; Pasquini, L.; Castelli, G.; Pelosi, E. Ovarian Cancers: Genetic Abnormalities, Tumor Heterogeneity and Progression, Clonal Evolution and Cancer Stem Cells. Medicines 2018, 5, 16. [Google Scholar] [CrossRef] [Green Version]
- Karst, A.M.; Drapkin, R. Ovarian Cancer Pathogenesis: A Model in Evolution. J. Oncol. 2010, 2010, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Shih, I.-M.; Kurman, R. Ovarian tumorigenesis: A proposed model based on morphological and molecular genetic analysis. Am. J. Pathol. 2004, 164, 1511–1518. [Google Scholar] [CrossRef]
- George Coukos, M.; Rubin, S.C. Chemotherapy resistance in ovarian cancer: New molecular perspectives. Obstet. Gynecol. 1998, 91, 783–792. [Google Scholar]
- Khella, C.; Mehta, G.; Mehta, R.; Gatza, M. Recent Advances in Integrative Multi-Omics Research in Breast and Ovarian Cancer. J. Pers. Med. 2021, 11, 149. [Google Scholar] [CrossRef]
- Yamamoto, S.; Konishi, I.; Tsuruta, Y.; Nanbu, K.; Mandai, M.; Kuroda, H.; Matsushita, K.; Hamid, A.A.; Yura, Y.; Mori, T. Expression of vascular endothelial growth factor (VEGF) during folliculogenesis and corpus luteum formation in the human ovary. Gynecol. Endocrinol. 1997, 11, 371–381. [Google Scholar] [CrossRef]
- Yamamoto, S.; Konishi, I.; Mandai, M.; Kuroda, H.; Komatsu, T.; Nanbu, K.; Sakahara, H.; Mori, T. Expression of vascular endothelial growth factor (VEGF) in epithelial ovarian neoplasms: Correlation with clinicopathology and patient survival, and analysis of serum VEGF levels. Br. J. Cancer 1997, 76, 1221–1227. [Google Scholar] [CrossRef]
- Siddiqui, G.K.; MacLean, A.B.; Elmasry, K.; Fong, A.W.T.; Morris, R.W.; Rashid, M.; Begent, R.H.J.; Boxer, G.M. Immunohistochemical expression of VEGF predicts response to platinum based chemotherapy in patients with epithelial ovarian cancer. Angiogenesis 2011, 14, 155–161. [Google Scholar] [CrossRef] [PubMed]
- Moghaddam, S.M.; Amini, A.; Morris, D.L.; Pourgholami, M.H. Significance of vascular endothelial growth factor in growth and peritoneal dissemination of ovarian cancer. Cancer Metastasis Rev. 2011, 31, 143–162. [Google Scholar] [CrossRef] [PubMed]
- Miraglia, S.; Godfrey, W.; Yin, A.H.; Atkins, K.; Warnke, R.; Holden, J.T.; Bray, R.A.; Waller, E.K.; Buck, D.W. A Novel Five-Transmembrane Hematopoietic Stem Cell Antigen: Isolation, Characterization, and Molecular Cloning. Blood 1997, 90, 5013–5021. [Google Scholar] [CrossRef]
- Baba, T.; Convery, P.A.; Matsumura, N.; Whitaker, R.S.; Kondoh, E.; Perry, T.; Huang, Z.; Bentley, R.C.; Mori, S.; Fujii, S.; et al. Epigenetic regulation of CD133 and tumorigenicity of CD133+ ovarian cancer cells. Oncogene 2009, 28, 209–218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosen, D.G.; Mercado-Uribe, I.; Yang, G.; Bast, R.C., Jr.; Amin, H.M.; Lai, R.; Liu, J. The role of constitutively active signal transducer and activator of transcription 3 in ovarian tumorigenesis and prognosis. Cancer 2006, 107, 2730–2740. [Google Scholar] [CrossRef]
- Neuzil, J.; Stantic, M.; Zobalova, R.; Chladova, J.; Wang, X.; Prochazka, L.; Dong, L.; Andera, L.; Ralph, S.J. Tumour-initiating cells vs. cancer ‘stem’ cells and CD133: What’s in the name? Biochem. Biophys. Res. Commun. 2007, 355, 855–859. [Google Scholar] [CrossRef]
- Levine, A.J.; Momand, J.; Finlay, C. The p53 tumour suppressor gene. Nature 1991, 351, 453–456. [Google Scholar] [CrossRef]
- Chan, W.-Y.; Cheung, K.-K.; Schorge, J.O.; Huang, L.-W.; Welch, W.R.; Bell, D.A.; Berkowitz, R.S.; Mok, S.C. Bcl-2 and p53 Protein Expression, Apoptosis, and p53 Mutation in Human Epithelial Ovarian Cancers. Am. J. Pathol. 2000, 156, 409–417. [Google Scholar] [CrossRef] [Green Version]
- Corney, D.C.; Flesken-Nikitin, A.; Choi, J.; Nikitin, A.Y. Role of p53 and Rb in Ovarian Cancer. Ovarian Cancer 2008, 622, 99–117. [Google Scholar] [CrossRef] [Green Version]
- Singer, G.; Stöhr, R.; Cope, L.; Dehari, R.; Hartmann, A.; Cao, D.F.; Wang, T.L.; Kurman, R.J.; Shih, I.M. Patterns of p53 mutations separate ovarian serous borderline tumors and low-and high-grade carcinomas and provide support for a new model of ovarian carcinogenesis: A mutational analysis with immunohistochemical correlation. Am. J. Surg. Pathol. 2005, 29, 218–224. [Google Scholar] [CrossRef]
- Lowe, S.W.; Ruley, H.; Jacks, T.; Housman, D.E. p53-dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell 1993, 74, 957–967. [Google Scholar] [CrossRef] [PubMed]
- Hientz, K.; Mohr, A.; Bhakta-Guha, D.; Efferth, T. The role of p53 in cancer drug resistance and targeted chemotherapy. Oncotarget 2016, 8, 8921–8946. [Google Scholar] [CrossRef]
- Vikhanskaya, F.; Clerico, L.; Valenti, M.; Stanzione, M.S.; Broggini, M.; Parodi, S.; Russo, P. Mechanism of resistance to cisplatin in a human ovarian-carcinoma cell line selected for resistance to doxorubicin: Possible role of p53. Int. J. Cancer 1997, 72, 155–159. [Google Scholar] [CrossRef]
- Cattoretti, G.; Becker, M.H.G.; Key, G.; Duchrow, M.; Schlüuter, C.; Galle, J.; Gerdes, J. Monoclonal antibodies against recombinant parts of the Ki-67 antigen (MIB 1 and MIB 3) detect proliferating cells in microwave-processed formalin-fixed paraffin sections. J. Pathol. 1992, 168, 357–363. [Google Scholar] [CrossRef] [PubMed]
- Aune, G.; Stunes, A.K.; Tingulstad, S.; Salvesen, O.; Syversen, U.; Torp, S.H. The proliferation markers Ki-67/MIB-1, phosphohistone H3, and survivin may contribute in the identification of aggressive ovarian carcinomas. Int. J. Clin. Exp. Pathol. 2011, 4, 444–453. [Google Scholar] [PubMed]
- Li, L.T.; Jiang, G.; Chen, Q.; Zheng, J.N. Ki67 is a promising molecular target in the diagnosis of cancer (Review). Mol. Med. Rep. 2014, 11, 1566–1572. [Google Scholar] [CrossRef] [Green Version]
- Mishra, S.K.; Crasta, J.A. An Immunohistochemical Comparison of P53 and Bcl-2 as Apoptotic and MIB1 as Proliferative Markers in Low-Grade and High-Grade Ovarian Serous Carcinomas. Int. J. Gynecol. Cancer 2010, 20, 537–541. [Google Scholar] [CrossRef]
- Ji, H.; Singer, G.; Kurman, R.; Shih, I. Tumor cell proliferation activity correlates with clinical aggressiveness of ovarian serous carcinomas. In Laboratory Investigation; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2003. [Google Scholar]
- Heeran, M.C.; Høgdall, C.K.; Kjaer, S.K.; Christensen, L.; Jensen, A.; Blaakaer, J.; Christensen, I.J.; Høgdall, E.V. Prognostic value of tissue protein expression levels of MIB-1 (Ki-67) in Danish ovarian cancer patients. From the ‘MALOVA’ ovarian cancer study. Apmis 2013, 121, 1177–1186. [Google Scholar] [CrossRef]
- Kucukgoz Gulec, U.; Gumurdulu, D.; Guzel, A.B.; Paydas, S.; Seydaoglu, G.; Acikalin, A.; Khatib, G.; Zeren, H.; Vardar, M.A.; Altintas, A. Prognostic importance of survivin, Ki-67, and topoisomerase IIα in ovarian carcinoma. Arch. Gynecol. Obstet. 2014, 289, 393–398. [Google Scholar] [CrossRef]
- Wang, X.; Jin, D.-Y.; Ng, R.W.M.; Feng, H.; Wong, Y.C.; Cheung, A.L.M.; Tsao, S.W. Significance of MAD2 expression to mitotic checkpoint control in ovarian cancer cells. Cancer Res. 2002, 62, 1662–1668. [Google Scholar]
- Nakano, Y.; Sumi, T.; Teramae, M.; Morishita, M.; Fukuda, T.; Terada, H.; Yoshida, H.; Matsumoto, Y.; Yasui, T.; Ishiko, O. Expression of the mitotic-arrest deficiency 2 is associated with chemotherapy resistance in ovarian serous adenocarcinoma. Oncol. Rep. 2012, 28, 1200–1204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zannini, L.; Delia, D.; Buscemi, G. CHK2 kinase in the DNA damage response and beyond. J. Mol. Cell Biol. 2014, 6, 442–457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Li, Y.; Zhang, J.; Zheng, C.; Zhu, H.; Yu, H.; Fan, L. Circulating Insulin-Like Growth Factor-1 Level and Ovarian Cancer Risk. Cell. Physiol. Biochem. 2016, 38, 589–597. [Google Scholar] [CrossRef] [PubMed]
- Rohr, I.; Zeillinger, R.; Heinrich, M.; Concin, N.; Vergote, I.; Nassir, M.; Mahner, S.; Van Nieuwenhuysen, E.; Trillsch, F.; Cacsire-Tong, D.; et al. Role of IGF-I in Primary Ovarian Cancer—A Study of the OVCAD European Consortium. Anticancer Res. 2016, 36, 1015–1022. [Google Scholar] [PubMed]
- Rodrigue, M.; Moreau, C.; Larivière, R.; Lebel, M. Relationship between Eicosanoids and Endothelin-1 in the Pathogenesis of Erythropoietin-induced Hypertension in Uremic Rats. J. Cardiovasc. Pharmacol. 2003, 41, 388–395. [Google Scholar] [CrossRef]
- Dabholkar, M.; Bostick-Bruton, F.; Weber, C.; Bohr, V.A.; Egwuagu, C.; Reed, E. ERCC1 and ERCC2 Expression in Malignant Tissues from Ovarian Cancer Patients. Gynecol. Oncol. 1992, 84, 1512–1517. [Google Scholar] [CrossRef]
- Guffanti, F.; Alvisi, M.; Caiola, E.; Ricci, F.; De Maglie, M.; Soldati, S.; Ganzinelli, M.; Decio, A.; Giavazzi, R.; Rulli, E.; et al. Impact of ERCC1, XPF and DNA Polymerase β Expression on Platinum Response in Patient-Derived Ovarian Cancer Xenografts. Cancers 2020, 12, 2398. [Google Scholar] [CrossRef]
- Ceccarelli, S.; Megiorni, F.; Bellavia, D.; Marchese, C.; Screpanti, I.; Checquolo, S. Notch3 Targeting: A Novel Weapon against Ovarian Cancer Stem Cells. Stem Cells Int. 2019, 2019, 1–8. [Google Scholar] [CrossRef]
- Pellegrini, M.; Pilia, G.; Pantano, S.; Lucchini, F.; Uda, M.; Fumi, M.; Cao, A.; Schlessinger, D.; Forabosco, A. Gpc3 expression correlates with the phenotype of the Simpson-Golabi-Behmel syndrome. Dev. Dyn. 1998, 213, 431–439. [Google Scholar] [CrossRef]
- Poturnajova, M.; Kozovska, Z.; Matuskova, M. Aldehyde dehydrogenase 1A1 and 1A3 isoforms—Mechanism of activation and regulation in cancer. Cell. Signal. 2021, 87, 110120. [Google Scholar] [CrossRef]
- Jones, R.; Barber, J.; Vala, M.; Collector, M.; Kaufmann, S.; Ludeman, S.; Colvin, O.; Hilton, J. Assessment of aldehyde dehydrogenase in viable cells. Blood 1995, 85, 2742–2746. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meng, E.; Mitra, A.; Tripathi, K.; Finan, M.A.; Scalici, J.; McClellan, S.; da Silva, L.M.; Reed, E.; Shevde, L.A.; Palle, K.; et al. ALDH1A1 Maintains Ovarian Cancer Stem Cell-Like Properties by Altered Regulation of Cell Cycle Checkpoint and DNA Repair Network Signaling. PLoS ONE 2014, 9, e107142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bach, I.; Mattei, M.-G.; Cereghini, S.; Yaniv, M. Two members of an HNF1 homeoprotein family are expressed in human liver. Nucleic Acids Res. 1991, 19, 3553–3559. [Google Scholar] [CrossRef] [PubMed]
- Matsumura, N.; Mandai, M.; Okamoto, T.; Yamaguchi, K.; Yamamura, S.; Oura, T.; Baba, T.; Hamanishi, J.; Kang, H.S.; Matsui, S.; et al. Sorafenib efficacy in ovarian clear cell carcinoma revealed by transcriptome profiling. Cancer Sci. 2010, 101, 2658–2663. [Google Scholar] [CrossRef]
- Deo, A.; Mukherjee, S.; Rekhi, B.; Ray, P. Subtype specific biomarkers associated with chemoresistance in epithelial ovarian cancer. Indian J. Pathol. Microbiol. 2020, 63, S64–S69. [Google Scholar] [CrossRef]
- Malerba, P.; Crews, B.C.; Ghebreselasie, K.; Daniel, C.K.; Jashim, E.; Aleem, A.M.; Salam, R.A.; Marnett, L.J.; Uddin, J. Targeted Detection of Cyclooxygenase-1 in Ovarian Cancer. ACS Med. Chem. Lett. 2019, 11, 1837–1842. [Google Scholar] [CrossRef]
- Hilton, J.L.; Geisler, J.P.; Rathe, J.A.; Hattermann-Zogg, M.A.; Deyoung, B.; Buller, R.E. Inactivation of BRCA1 and BRCA2 in Ovarian Cancer. Gynecol. Oncol. 2002, 94, 1396–1406. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Horiuchi, A.; Imai, T.; Ohira, S.; Itoh, K.; Nikaido, T.; Katsuyama, Y.; Konishi, I. Expression of BRCA1 protein in benign, borderline, and malignant epithelial ovarian neoplasms and its relationship to methylation and allelic loss of the BRCA1 gene. J. Pathol. 2004, 202, 215–223. [Google Scholar] [CrossRef]
- Manchana, T.; Tantbirojn, P.; Pohthipornthawat, N. BRCA immunohistochemistry for screening of BRCA mutation in epithelial ovarian cancer patients. Gynecol. Oncol. Rep. 2020, 33, 100582. [Google Scholar] [CrossRef]
- Petrucelli, N.; Daly, M.; Pal, T. BRCA1-and BRCA2-associated hereditary breast and ovarian cancer. In GeneReviews®[Internet]; University of Washington: Seattle, WA, USA, 2016. [Google Scholar]
- Jiang, Y.; Chen, M.; Nie, H.; Yuan, Y. PD-1 and PD-L1 in cancer immunotherapy: Clinical implications and future considerations. Hum. Vaccines Immunother. 2019, 15, 1111–1122. [Google Scholar] [CrossRef]
- Zhu, J.; Wen, H.; Bi, R.; Wu, Y.; Wu, X. Prognostic value of programmed death-ligand 1 (PD-L1) expression in ovarian clear cell carcinoma. J. Gynecol. Oncol. 2017, 28, e77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garzetti, G.; Ciavattini, A.; Goteri, G.; De Nictolis, M.; Stramazzotti, D.; Lucarini, G.; Biagini, G. Ki67 Antigen Immunostaining (MIB 1 Monoclonal Antibody) in Serous Ovarian Tumors: Index of Proliferative Activity with Prognostic Significance. Gynecol. Oncol. 1995, 56, 169–174. [Google Scholar] [CrossRef] [PubMed]
- Milne, K.; Köbel, M.; Kalloger, S.E.; Barnes, R.O.; Gao, D.; Gilks, C.B.; Watson, P.; Nelson, B.H. Systematic Analysis of Immune Infiltrates in High-Grade Serous Ovarian Cancer Reveals CD20, FoxP3 and TIA-1 as Positive Prognostic Factors. PLoS ONE 2009, 4, e6412. [Google Scholar] [CrossRef] [PubMed]
- Coffer, P.J.; Burgering, B.M.T. Forkhead-box transcription factors and their role in the immune system. Nat. Rev. Immunol. 2004, 4, 889–899. [Google Scholar] [CrossRef]
- Takahashi, H.; Yoshimatsu, G.; Faustman, D.L. The Roles of TNFR2 Signaling in Cancer Cells and the Tumor Microenvironment and the Potency of TNFR2 Targeted Therapy. Cells 2022, 11, 1952. [Google Scholar] [CrossRef] [PubMed]
- Mengie Ayele, T.; Tilahun Muche, Z.; Behaile Teklemariam, A.; Bogale Kassie, A.; Chekol Abebe, E. Role of JAK2/STAT3 Signaling Pathway in the Tumorigenesis, Chemotherapy Resistance, and Treatment of Solid Tumors: A Systemic Review. J. Inflamm. Res. 2022, 15, 1349–1364. [Google Scholar] [CrossRef]
- Yoshikawa, T.; Miyamoto, M.; Aoyama, T.; Soyama, H.; Goto, T.; Hirata, J.; Suzuki, A.; Nagaoka, I.; Tsuda, H.; Furuya, K.; et al. JAK2/STAT3 pathway as a therapeutic target in ovarian cancers. Oncol. Lett. 2018, 15, 5772–5780. [Google Scholar] [CrossRef] [Green Version]
- Ji, T.; Gong, D.; Han, Z.; Wei, X.; Yan, Y.; Ye, F.; Ding, W.; Wang, J.; Xia, X.; Li, F.; et al. Abrogation of constitutive Stat3 activity circumvents cisplatin resistant ovarian cancer. Cancer Lett. 2013, 341, 231–239. [Google Scholar] [CrossRef]
- Liang, R.; Chen, X.; Chen, L.; Wan, F.; Chen, K.; Sun, Y.; Zhu, X. STAT3 signaling in ovarian cancer: A potential therapeutic target. J. Cancer 2020, 11, 837–848. [Google Scholar] [CrossRef]
Biomarker | FIGO Stage | Study Design | Cut-Off Score of Expression | Outcome Measured | Clinical Indicator | Reference |
---|---|---|---|---|---|---|
VEGF | I–III | NR | 10% | PFS, OS | Early detection of poor prognosis | [29,30,31] |
P53 | I–IV | NR | ≥10% | OS | Poor survival | [32,33,34] |
MIB1/KI67 | 1–IV | NR | ≥50% | PFS | Poor survival | [33,35,36] |
Chk2 | I–IV | RC | ≥50% | Chemotherapy response | Predicts good response to platinum-based chemotherapy | [37,38] |
Notch3 | I–II | RC | ≥50% | Chemotherapy response, OS | Chemoresistance, poor OS | [39,40] |
COX-1, COX- 2 | NR | RC | >30% | OS | Poor OS indicator | [41,42] |
BRCA1 | NR | RC | ≥10% | PFS, OS | Positive prognostic factor Predicts good response to platinum-based chemotherapy | [43] |
PD-L1 & PD-L2 | NR | RC | >20% | PFS, OS | Negative prognostic factor | [44,45] |
Biomarker | FIGO Stage | Study Design | Cut-Off Score of Expression | Outcome Measured | Clinical Indicator | Reference |
---|---|---|---|---|---|---|
Subtype—High-Grade Serous Ovarian Cancer (HGSOC) | ||||||
CD133 | I–IV | RC | ≥10% | OS | Early detection of poor survival | [46,47] |
IGF-1R | I–IV | RC | ≥5% | PFS, OS | Improves PFS and OS | [48] |
PGD2 | NR | RC | ≥50% | PFS, response to chemotherapy | Predict good prognosis, PFS and chemotherapy sensitivity | [49] |
ERCC1 | NR | RC | >50% | PFS, OS | Predict longer PFS and OS | [50] |
Aldh1a1 | NR | RC | >20% | OS | Poor prognostic marker | [51,52] |
HNF-1β | NR | RC | >30% | PFS | Chemotherapy resistance indicator | [53,54] |
FOXP3 | I–IV | RC | ≥50% | DSS | Positive prognostic factors Negative prognostic factors, shorter OS and PFS | [55] [56] |
TNFR2 | NR | RC | >50% | PFS, OS | Shorter OS and PFS | [57,58] |
STAT3 | NR | RC | >50% | PFS | Shorter PFS | [57,59] |
MAD2 | I–III | RC | ≤ 50% | PFS, OS | Resistance to paclitaxel, Shorter PFS | [60] |
Subtype—Ovarian Clear Cell Carcinoma (OCCC) | ||||||
GPC3 | I–II | RC | >15% | OS | Poor prognostic marker | [61,62,63] |
Aldh1a1 | NR | RC | >20% | OS | Poor prognostic marker | [51,52] |
HOXA10 | I–III | RC | ≥50% | 5-year survival | Poor indication of 5-year survival | [64,65,66] |
ARID1A | NR | NR | 0-≤40% | PFS, OS | Poor prognostic marker | [67,68] |
HNF-1β | NR | RC | >30% | PFS | Chemotherapy resistance indicator | [53,54] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Atallah, G.A.; Kampan, N.C.; Chew, K.T.; Mohd Mokhtar, N.; Md Zin, R.R.; Shafiee, M.N.b.; Abd. Aziz, N.H.b. Predicting Prognosis and Platinum Resistance in Ovarian Cancer: Role of Immunohistochemistry Biomarkers. Int. J. Mol. Sci. 2023, 24, 1973. https://doi.org/10.3390/ijms24031973
Atallah GA, Kampan NC, Chew KT, Mohd Mokhtar N, Md Zin RR, Shafiee MNb, Abd. Aziz NHb. Predicting Prognosis and Platinum Resistance in Ovarian Cancer: Role of Immunohistochemistry Biomarkers. International Journal of Molecular Sciences. 2023; 24(3):1973. https://doi.org/10.3390/ijms24031973
Chicago/Turabian StyleAtallah, Ghofraan Abdulsalam, Nirmala Chandralega Kampan, Kah Teik Chew, Norfilza Mohd Mokhtar, Reena Rahayu Md Zin, Mohamad Nasir bin Shafiee, and Nor Haslinda binti Abd. Aziz. 2023. "Predicting Prognosis and Platinum Resistance in Ovarian Cancer: Role of Immunohistochemistry Biomarkers" International Journal of Molecular Sciences 24, no. 3: 1973. https://doi.org/10.3390/ijms24031973
APA StyleAtallah, G. A., Kampan, N. C., Chew, K. T., Mohd Mokhtar, N., Md Zin, R. R., Shafiee, M. N. b., & Abd. Aziz, N. H. b. (2023). Predicting Prognosis and Platinum Resistance in Ovarian Cancer: Role of Immunohistochemistry Biomarkers. International Journal of Molecular Sciences, 24(3), 1973. https://doi.org/10.3390/ijms24031973