Therapeutic Potential and Limitation of Serotonin Type 7 Receptor Modulation
Abstract
:1. Introduction
Receptor | LUR | APZ | Brex | CLZ | OLZ | PMZ | QTP | RIS | ZTP | VTX |
---|---|---|---|---|---|---|---|---|---|---|
5-HT1A | 6.8 | 5.6 | 0.12 | 124 | >1000 | 650 | 432 | 423 | 471 | 15.0 |
5-HT2A | 2.0 | 8.7 | 0.47 | 5.4 | 2.3 | 48.4 | 100 | 0.2 | 2.7 | |
5-HT3 | >1000 | 630 | 241 | 57 | >1000 | >1000 | >1000 | 472 | 3.7 | |
5-HT7 | 0.5 | 10.3 | 3.7 | 18.0 | 365 | 0.5 | 307 | 6.6 | 12.0 | 19.0 |
H1 | >1000 | 27.6 | 19 | 1.13 | 1.2 | 692 | 11 | 20.1 | 3.21 | |
D1 | 262 | >1000 | 160 | 266 | 100 | >1000 | 712 | 244 | 71.0 | |
D2 | 1.7 | 3.3 | 0.3 | 157 | 52.3 | 0.3 | 245 | 3.6 | 25.0 | |
Reference | [27] | [28,29] | [30] | [31,32] | [33,49] | [34] | [35] | [29,36] | [37] | [38] |
2. Preclinical Findings about Therapeutic Potential of 5-HT7 Modulation
2.1. Depression
2.2. Anxiety
2.3. Schizophrenia
Model | Agent Manipulation | Effects | Ref. |
---|---|---|---|
Depression | |||
Forced swim | Knockout | Decreased immobility | [22,55] |
SB269970 | Decreased immobility (systemic administration) | [22,23] | |
Decreased immobility (hippocampus) | [60] | ||
6-OH-dopamine lesions (medial forebrain bundle) | AS-19 SB269970 | Decreased immobility (into PrL) Increased immobility (into PrL) (Prl: the prelimbic subregion of the ventral medial prefrontal cortex) | [61] |
Tail suspension | Knockout | Decreased immobility | [22] |
SB269970 | Decreased immobility | [22,23,56] | |
Olfactory bulbectomy | SB269970 | Decreased hyperactivity | [59] |
Anxiety | |||
Elevated plus maze | Knockout Knockdown | No difference between models and wild-type | [55,64,65] |
SB269970 | Increased time in open arms and entries into open arms | [23,60] | |
Light/dark transfer | Knockout Knockdown | No difference between models and wild-type | [55,64,65] |
Vogel drinking Four plates test | SB269970 | Increased the number of the accepted shocks Increased the number of punished crossings | [23,60] |
Marble-burying | Knockout SB269970 | Reduced stereotypic behaviour | [66] |
Schizophrenia | |||
Prepulse inhibition | Knockout | Less susceptible to prepulse inhibition deficits by phencyclidine | [67] |
SB269970 | Improved amphetamine-induced prepulse inhibition deficits | [69] | |
No effects on prepulse inhibition deficits induced by phencyclidine/ketamine | [67,70] | ||
SB258741 | No effect on amphetamine-induced prepulse inhibition deficits | [71] | |
Suppressed phencyclidine-induced prepulse-inhibition deficits | [71] | ||
SB269970 | Suppressed hyperactivity induced by ketamine, phencyclidine and amphetamine | [68,69] | |
Social withdrawal | SB269970 | Improved | [70,71] |
SB258741 | No effect | [70,71] | |
Amnesia induced by ketamine/MK801 | SB269970 | Improved | [72,73] |
5-choice serial reaction time task | SB269970 | Improved working memory impairment and impulsivity | [75] |
3. Clinical Evaluation of 5-HT7 Modulators
3.1. Vortioxetine
3.2. Lurasidone
4. Intracellular Signalling Associated with 5-HT7
5. Effects of 5-HT7 on Neuronal Transmission
6. Therapeutic Potential in Other Disease and Disorders Based on the Preclinical Findings
6.1. Neurodevelopmental Disorders
6.2. Neurodegenerative Diseases
6.3. Epilepsy
6.4. Cartinoma
7. Impacts of 5-HT7 Inhibition on Metabolic Complication in Patients with Intake of Atypical Antipsychotics
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bard, J.A.; Zgombick, J.; Adham, N.; Vaysse, P.; Branchek, T.A.; Weinshank, R.L. Cloning of a novel human serotonin receptor (5-ht7) positively linked to adenylate cyclase. J. Biol. Chem. 1993, 268, 23422–23426. [Google Scholar] [CrossRef] [PubMed]
- Lovenberg, T.W.; Baron, B.M.; de Lecea, L.; Miller, J.D.; Prosser, R.A.; Rea, M.A.; Foye, P.E.; Racke, M.; Slone, A.L.; Siegel, B.W. A novel adenylyl cyclase-activating serotonin receptor (5-ht7) implicated in the regulation of mammalian circadian rhythms. Neuron 1993, 11, 449–458. [Google Scholar] [CrossRef] [PubMed]
- Ruat, M.; Traiffort, E.; Leurs, R.; Tardivel-Lacombe, J.; Diaz, J.; Arrang, J.-M.; Schwartz, J.-C. Molecular cloning, characterization, and localization of a high-affinity serotonin receptor (5-ht7) activating camp formation. Proc. Natl. Acad. Sci. USA 1993, 90, 8547–8551. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, Y.; Monsma, F.; Metcalf, M.; Jose, P.; Hamblin, M.; Sibley, D. Molecular cloning and expression of a 5-hydroxytryptamine7 serotonin receptor subtype. J. Biol. Chem. 1993, 268, 18200–18204. [Google Scholar] [CrossRef]
- Blattner, K.M.; Canney, D.J.; Pippin, D.A.; Blass, B.E. Pharmacology and therapeutic potential of the 5-ht7 receptor. ACS Chem. Neurosci. 2018, 10, 89–119. [Google Scholar] [CrossRef]
- Gellynck, E.; Heyninck, K.; Andressen, K.W.; Haegeman, G.; Levy, F.O.; Vanhoenacker, P.; Van Craenenbroeck, K. The serotonin 5-ht 7 receptors: Two decades of research. Exp. Brain Res. 2013, 230, 555–568. [Google Scholar] [CrossRef]
- Matthys, A.; Haegeman, G.; Van Craenenbroeck, K.; Vanhoenacker, P. Role of the 5-ht7 receptor in the central nervous system: From current status to future perspectives. Mol. Neurobiol. 2011, 43, 228–253. [Google Scholar] [CrossRef]
- L’Estrade, E.T.; Erlandsson, M.; Edgar, F.G.; Ohlsson, T.; Knudsen, G.M.; Herth, M.M. Towards selective cns pet imaging of the 5-ht7 receptor system: Past, present and future. Neuropharmacology 2020, 172, 107830. [Google Scholar] [CrossRef]
- Lippiello, P.; Hoxha, E.; Speranza, L.; Volpicelli, F.; Ferraro, A.; Leopoldo, M.; Lacivita, E.; Perrone-Capano, C.; Tempia, F.; Miniaci, M.C. The 5-ht7 receptor triggers cerebellar long-term synaptic depression via pkc-mapk. Neuropharmacology 2016, 101, 426–438. [Google Scholar] [CrossRef]
- Volpicelli, F.; Speranza, L.; di Porzio, U.; Crispino, M.; Perrone-Capano, C. The serotonin receptor 7 and the structural plasticity of brain circuits. Front. Behav. Neurosci. 2014, 8, 318. [Google Scholar] [CrossRef]
- Gocho, Y.; Sakai, A.; Yanagawa, Y.; Suzuki, H.; Saitow, F. Electrophysiological and pharmacological properties of gabaergic cells in the dorsal raphe nucleus. J. Physiol. Sci. 2013, 63, 147–154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okada, M.; Fukuyama, K.; Okubo, R.; Shiroyama, T.; Ueda, Y. Lurasidone sub-chronically activates serotonergic transmission via desensitization of 5-ht1a and 5-ht7 receptors in dorsal raphe nucleus. Pharmaceuticals 2019, 12, 149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nativio, P.; Zoratto, F.; Romano, E.; Lacivita, E.; Leopoldo, M.; Pascale, E.; Passarelli, F.; Laviola, G.; Adriani, W. Stimulation of 5-ht 7 receptor during adolescence determines its persistent upregulation in adult rat forebrain areas. Synapse 2015, 69, 533–542. [Google Scholar] [CrossRef] [PubMed]
- Aubert, Y.; Allers, K.A.; Sommer, B.; de Kloet, E.R.; Abbott, D.H.; Datson, N.A. Brain regionspecific transcriptomic markers of serotonin1a receptor agonist action mediating sexual rejection and aggression in female marmoset monkeys. J. Sex. Med. 2013, 10, 1461–1475. [Google Scholar] [CrossRef] [PubMed]
- Zareifopoulos, N.; Papatheodoropoulos, C. Effects of 5-ht-7 receptor ligands on memory and cognition. Neurobiol. Learn. Mem. 2016, 136, 204–209. [Google Scholar] [CrossRef]
- Okubo, R.; Hasegawa, T.; Fukuyama, K.; Shiroyama, T.; Okada, M. Current limitations and candidate potential of 5-ht7 receptor antagonism in psychiatric pharmacotherapy. Front. Psychiatry 2021, 12, 623684. [Google Scholar] [CrossRef]
- Bonaventure, P.; Nepomuceno, D.; Hein, L.; Sutcliffe, J.G.; Lovenberg, T.; Hedlund, P.B. Radioligand binding analysis of knockout mice reveals 5-hydroxytryptamine(7) receptor distribution and uncovers 8-hydroxy-2-(di-n-propylamino)tetralin interaction with alpha(2) adrenergic receptors. Neuroscience 2004, 124, 901–911. [Google Scholar] [CrossRef]
- Fatima, S.; Shi, X.; Lin, Z.; Chen, G.Q.; Pan, X.H.; Wu, J.C.; Ho, J.W.; Lee, N.P.; Gao, H.; Zhang, G.; et al. 5-hydroxytryptamine promotes hepatocellular carcinoma proliferation by influencing beta-catenin. Mol. Oncol. 2016, 10, 195–212. [Google Scholar] [CrossRef] [Green Version]
- Tzirogiannis, K.N.; Kourentzi, K.T.; Zyga, S.; Papalimneou, V.; Tsironi, M.; Grypioti, A.D.; Protopsaltis, I.; Panidis, D.; Panoutsopoulos, G.I. Effect of 5-ht7 receptor blockade on liver regeneration after 60–70% partial hepatectomy. BMC Gastroenterol. 2014, 14, 201. [Google Scholar] [CrossRef] [Green Version]
- Svejda, B.; Kidd, M.; Timberlake, A.; Harry, K.; Kazberouk, A.; Schimmack, S.; Lawrence, B.; Pfragner, R.; Modlin, I.M. Serotonin and the 5-ht7 receptor: The link between hepatocytes, igf-1 and small intestinal neuroendocrine tumors. Cancer Sci. 2013, 104, 844–855. [Google Scholar] [CrossRef]
- Gautam, J.; Banskota, S.; Regmi, S.C.; Ahn, S.; Jeon, Y.H.; Jeong, H.; Kim, S.J.; Nam, T.G.; Jeong, B.S.; Kim, J.A. Tryptophan hydroxylase 1 and 5-ht(7) receptor preferentially expressed in triple-negative breast cancer promote cancer progression through autocrine serotonin signaling. Mol. Cancer 2016, 15, 75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hedlund, P.B.; Huitron-Resendiz, S.; Henriksen, S.J.; Sutcliffe, J.G. 5-ht7 receptor inhibition and inactivation induce antidepressantlike behavior and sleep pattern. Biol. Psychiatry 2005, 58, 831–837. [Google Scholar] [CrossRef] [PubMed]
- Wesolowska, A.; Nikiforuk, A.; Stachowicz, K.; Tatarczynska, E. Effect of the selective 5-ht7 receptor antagonist sb 269970 in animal models of anxiety and depression. Neuropharmacology 2006, 51, 578–586. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, S.; Furini, C.; Zinn, C.; Cavalcante, L.; Ferreira, F.; Behling, J.; Myskiw, J.; Izquierdo, I. Modulation of the consolidation and reconsolidation of fear memory by three different serotonin receptors in hippocampus. Neurobiol. Learn. Mem. 2017, 142, 48–54. [Google Scholar] [CrossRef] [PubMed]
- Horiguchi, M.; Huang, M.; Meltzer, H.Y. The role of 5-hydroxytryptamine 7 receptors in the phencyclidine-induced novel object recognition deficit in rats. J. Pharmacol. Exp. Ther. 2011, 338, 605–614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costa, L.; Spatuzza, M.; D’Antoni, S.; Bonaccorso, C.M.; Trovato, C.; Musumeci, S.A.; Leopoldo, M.; Lacivita, E.; Catania, M.V.; Ciranna, L. Activation of 5-ht7 serotonin receptors reverses metabotropic glutamate receptor-mediated synaptic plasticity in wild-type and fmr1 knockout mice, a model of fragile x syndrome. Biol. Psychiatry 2012, 72, 924–933. [Google Scholar] [CrossRef] [PubMed]
- Ishibashi, T.; Horisawa, T.; Tokuda, K.; Ishiyama, T.; Ogasa, M.; Tagashira, R.; Matsumoto, K.; Nishikawa, H.; Ueda, Y.; Toma, S.; et al. Pharmacological profile of lurasidone, a novel antipsychotic agent with potent 5-hydroxytryptamine 7 (5-ht7) and 5-ht1a receptor activity. J. Pharmacol. Exp. Ther. 2010, 334, 171–181. [Google Scholar] [CrossRef] [Green Version]
- Shapiro, D.A.; Renock, S.; Arrington, E.; Chiodo, L.A.; Liu, L.X.; Sibley, D.R.; Roth, B.L.; Mailman, R. Aripiprazole, a novel atypical antipsychotic drug with a unique and robust pharmacology. Neuropsychopharmacology 2003, 28, 1400–1411. [Google Scholar] [CrossRef] [Green Version]
- Ghanizadeh, A.; Sahraeizadeh, A.; Berk, M. A head-to-head comparison of aripiprazole and risperidone for safety and treating autistic disorders, a randomized double blind clinical trial. Child Psychiatry Hum. Dev. 2014, 45, 185–192. [Google Scholar] [CrossRef]
- Maeda, K.; Sugino, H.; Akazawa, H.; Amada, N.; Shimada, J.; Futamura, T.; Yamashita, H.; Ito, N.; McQuade, R.D.; Mork, A.; et al. Brexpiprazole i: In vitro and in vivo characterization of a novel serotonin-dopamine activity modulator. J. Pharmacol. Exp. Ther. 2014, 350, 589–604. [Google Scholar] [CrossRef]
- Su, T.P.; Malhotra, A.K.; Hadd, K.; Breier, A.; Pickar, D. D2 dopamine receptor occupancy: A crossover comparison of risperidone with clozapine therapy in schizophrenic patients. Arch. Gen. Psychiatry 1997, 54, 972–973. [Google Scholar] [CrossRef] [PubMed]
- Meltzer, H.Y. The mechanism of action of novel antipsychotic drugs. Schizophr. Bull. 1991, 17, 263–287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernandez, J.; Alonso, J.M.; Andres, J.I.; Cid, J.M.; Diaz, A.; Iturrino, L.; Gil, P.; Megens, A.; Sipido, V.K.; Trabanco, A.A. Discovery of new tetracyclic tetrahydrofuran derivatives as potential broad-spectrum psychotropic agents. J. Med. Chem. 2005, 48, 1709–1712. [Google Scholar] [CrossRef]
- Elmaci, I.; Altinoz, M.A. Targeting the cellular schizophrenia. Likely employment of the antipsychotic agent pimozide in treatment of refractory cancers and glioblastoma. Crit. Rev. Oncol./Hematol. 2018, 128, 96–109. [Google Scholar] [CrossRef]
- Lopez-Munoz, F.; Alamo, C. Active metabolites as antidepressant drugs: The role of norquetiapine in the mechanism of action of quetiapine in the treatment of mood disorders. Front. Psychiatry 2013, 4, 102. [Google Scholar] [CrossRef] [Green Version]
- Smith, C.; Rahman, T.; Toohey, N.; Mazurkiewicz, J.; Herrick-Davis, K.; Teitler, M. Risperidone irreversibly binds to and inactivates the h5-ht7 serotonin receptor. Mol. Pharmacol. 2006, 70, 1264–1270. [Google Scholar] [CrossRef] [Green Version]
- Schotte, A.; Janssen, P.F.; Gommeren, W.; Luyten, W.H.; Van Gompel, P.; Lesage, A.S.; De Loore, K.; Leysen, J.E. Risperidone compared with new and reference antipsychotic drugs: In vitro and in vivo receptor binding. Psychopharmacology 1996, 124, 57–73. [Google Scholar] [CrossRef]
- Bang-Andersen, B.; Ruhland, T.; Jorgensen, M.; Smith, G.; Frederiksen, K.; Jensen, K.G.; Zhong, H.; Nielsen, S.M.; Hogg, S.; Mork, A.; et al. Discovery of 1-[2-(2,4-dimethylphenylsulfanyl)phenyl]piperazine (lu aa21004): A novel multimodal compound for the treatment of major depressive disorder. J. Med. Chem. 2011, 54, 3206–3221. [Google Scholar] [CrossRef] [PubMed]
- Okada, M.; Okubo, R.; Fukuyama, K. Vortioxetine subchronically activates serotonergic transmission via desensitization of serotonin 5-ht1a receptor with 5-ht3 receptor inhibition in rats. Int. J. Mol. Sci. 2019, 20, 6235. [Google Scholar] [CrossRef] [Green Version]
- Okada, M.; Fukuyama, K.; Ueda, Y. Lurasidone inhibits nmda/glutamate antagonist-induced functional abnormality of thalamocortical glutamatergic transmission via 5-ht7 receptor blockade. Br. J. Pharmacol. 2019, 176, 4002–4018. [Google Scholar] [CrossRef]
- Okada, M.; Matsumoto, R.; Yamamoto, Y.; Fukuyama, K. Effects of subchronic administrations of vortioxetine, lurasidone and escitalopram on thalamocortical glutamatergic transmission associated with serotonin 5-ht7 receptor. Int. J. Mol. Sci. 2021, 22, 1351. [Google Scholar] [CrossRef]
- Fukuyama, K.; Motomura, E.; Shiroyama, T.; Okada, M. Impact of 5-ht7 receptor inverse agonism of lurasidone on monoaminergic tripartite synaptic transmission and pathophysiology of lower risk of weight gain. Biomed. Pharmacother. 2022, 148, 112750. [Google Scholar] [CrossRef] [PubMed]
- Shiroyama, T.; Fukuyama, K.; Okada, M. Distinct effects of escitalopram and vortioxetine on astroglial l-glutamate release associated with connexin43. Int. J. Mol. Sci. 2021, 22, 10013. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Avramets, D.; Jeon, B.; Choo, H. Modulation of serotonin receptors in neurodevelopmental disorders: Focus on 5-ht7 receptor. Molecules 2021, 26, 3348. [Google Scholar] [CrossRef] [PubMed]
- Quintero-Villegas, A.; Valdes-Ferrer, S.I. Central nervous system effects of 5-ht(7) receptors: A potential target for neurodegenerative diseases. Mol. Med. 2022, 28, 70. [Google Scholar] [CrossRef] [PubMed]
- Bijata, M.; Labus, J.; Guseva, D.; Stawarski, M.; Butzlaff, M.; Dzwonek, J.; Schneeberg, J.; Bohm, K.; Michaluk, P.; Rusakov, D.A.; et al. Synaptic remodeling depends on signaling between serotonin receptors and the extracellular matrix. Cell Rep. 2017, 19, 1767–1782. [Google Scholar] [CrossRef] [Green Version]
- Okada, M.; Fukuyama, K.; Motomura, E. Dose-dependent biphasic action of quetiapine on ampk signalling via 5-ht7 receptor: Exploring pathophysiology of clinical and adverse effects of quetiapine. Int. J. Mol. Sci. 2022, 23, 9103. [Google Scholar] [CrossRef]
- Fukuyama, K.; Motomura, E.; Okada, M. Brexpiprazole reduces 5-ht7 receptor function on astroglial transmission systems. Int. J. Mol. Sci. 2022, 23, 6571. [Google Scholar] [CrossRef]
- Bymaster, F.P.; Calligaro, D.O.; Falcone, J.F.; Marsh, R.D.; Moore, N.A.; Tye, N.C.; Seeman, P.; Wong, D.J. Radioreceptor binding profile of the atypical antipsychotic olanzapine. Neuropsychopharmacology 1996, 14, 87–96. [Google Scholar] [CrossRef] [Green Version]
- Belenky, M.A.; Pickard, G.E. Subcellular distribution of 5-ht1b and 5-ht7 receptors in the mouse suprachiasmatic nucleus. J. Comp. Neurol. 2001, 432, 371–388. [Google Scholar] [CrossRef]
- Rusak, B.; Zucker, I. Neural regulation of circadian rhythms. Physiol. Rev. 1979, 59, 449–526. [Google Scholar] [CrossRef] [PubMed]
- Mahe, C.; Loetscher, E.; Feuerbach, D.; Muller, W.; Seiler, M.P.; Schoeffter, P. Differential inverse agonist efficacies of sb-258719, sb-258741 and sb-269970 at human recombinant serotonin 5-ht7 receptors. Eur. J. Pharmacol. 2004, 495, 97–102. [Google Scholar] [CrossRef]
- Hagan, J.J.; Price, G.W.; Jeffrey, P.; Deeks, N.J.; Stean, T.; Piper, D.; Smith, M.I.; Upton, N.; Medhurst, A.D.; Middlemiss, D.N. Characterization of sb-269970-a, a selective 5-ht7 receptor antagonist. Br. J. Pharmacol. 2000, 130, 539–548. [Google Scholar] [CrossRef] [Green Version]
- Winokur, A.; Gary, K.A.; Rodner, S.; Rae-Red, C.; Fernando, A.T.; Szuba, M.P. Depression, sleep physiology, and antidepressant drugs. Depress. Anxiety 2001, 14, 19–28. [Google Scholar] [CrossRef] [PubMed]
- Guscott, M.; Bristow, L.J.; Hadingham, K.; Rosahl, T.W.; Beer, M.S.; Stanton, J.A.; Bromidge, F.; Owens, A.P.; Huscroft, I.; Myers, J.; et al. Genetic knockout and pharmacological blockade studies of the 5-ht7 receptor suggest therapeutic potential in depression. Neuropharmacology 2005, 48, 492–502. [Google Scholar] [CrossRef]
- Bonaventure, P.; Kelly, L.; Aluisio, L.; Shelton, J.; Lord, B.; Galici, R.; Miller, K.; Atack, J.; Lovenberg, T.W.; Dugovic, C. Selective blockade of 5-hydroxytryptamine (5-ht)7 receptors enhances 5-ht transmission, antidepressant-like behavior, and rapid eye movement sleep suppression induced by citalopram in rodents. J. Pharmacol. Exp. Ther. 2007, 321, 690–698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wesolowska, A.; Tatarczynska, E.; Nikiforuk, A.; Chojnacka-Wojcik, E. Enhancement of the anti-immobility action of antidepressants by a selective 5-ht7 receptor antagonist in the forced swimming test in mice. Eur. J. Pharmacol. 2007, 555, 43–47. [Google Scholar] [CrossRef]
- Wesolowska, A.; Kowalska, M. Influence of serotonin 5-ht(7) receptor blockade on the behavioral and neurochemical effects of imipramine in rats. Pharmacol. Rep. PR 2008, 60, 464–474. [Google Scholar]
- Mnie-Filali, O.; Faure, C.; Lambas-Senas, L.; El Mansari, M.; Belblidia, H.; Gondard, E.; Etievant, A.; Scarna, H.; Didier, A.; Berod, A.; et al. Pharmacological blockade of 5-ht7 receptors as a putative fast acting antidepressant strategy. Neuropsychopharmacology 2011, 36, 1275–1288. [Google Scholar] [CrossRef] [Green Version]
- Wesolowska, A.; Nikiforuk, A.; Stachowicz, K. Potential anxiolytic and antidepressant effects of the selective 5-ht7 receptor antagonist sb 269970 after intrahippocampal administration to rats. Eur. J. Pharmacol. 2006, 553, 185–190. [Google Scholar] [CrossRef]
- Zhang, Q.J.; Du, C.X.; Tan, H.H.; Zhang, L.; Li, L.B.; Zhang, J.; Niu, X.L.; Liu, J. Activation and blockade of serotonin7 receptors in the prelimbic cortex regulate depressive-like behaviors in a 6-hydroxydopamine-induced parkinson’s disease rat model. Neuroscience 2015, 311, 45–55. [Google Scholar] [CrossRef] [PubMed]
- Han, L.N.; Zhang, L.; Sun, Y.N.; Du, C.X.; Zhang, Y.M.; Wang, T.; Zhang, J.; Liu, J. Serotonin7 receptors in the lateral habenular nucleus regulate depressive-like behaviors in the hemiparkinsonian rats. Brain Res. 2016, 1644, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Yau, J.L.; Noble, J.; Seckl, J.R. Acute restraint stress increases 5-ht7 receptor mrna expression in the rat hippocampus. Neurosci. Lett. 2001, 309, 141–144. [Google Scholar] [CrossRef] [PubMed]
- Roberts, A.J.; Krucker, T.; Levy, C.L.; Slanina, K.A.; Sutcliffe, J.G.; Hedlund, P.B. Mice lacking 5-ht receptors show specific impairments in contextual learning. Eur. J. Neurosci. 2004, 19, 1913–1922. [Google Scholar] [CrossRef]
- Clemett, D.A.; Cockett, M.I.; Marsden, C.A.; Fone, K.C. Antisense oligonucleotide-induced reduction in 5-hydroxytryptamine7 receptors in the rat hypothalamus without alteration in exploratory behaviour or neuroendocrine function. J. Neurochem. 1998, 71, 1271–1279. [Google Scholar] [CrossRef] [PubMed]
- Hedlund, P.B.; Sutcliffe, J.G. The 5-ht7 receptor influences stereotypic behavior in a model of obsessive-compulsive disorder. Neurosci. Lett. 2007, 414, 247–251. [Google Scholar] [CrossRef] [Green Version]
- Semenova, S.; Geyer, M.A.; Sutcliffe, J.G.; Markou, A.; Hedlund, P.B. Inactivation of the 5-ht(7) receptor partially blocks phencyclidine-induced disruption of prepulse inhibition. Biol. Psychiatry 2008, 63, 98–105. [Google Scholar] [CrossRef] [Green Version]
- Waters, K.A.; Stean, T.O.; Hammond, B.; Virley, D.J.; Upton, N.; Kew, J.N.; Hussain, I. Effects of the selective 5-ht(7) receptor antagonist sb-269970 in animal models of psychosis and cognition. Behav. Brain Res. 2012, 228, 211–218. [Google Scholar] [CrossRef]
- Galici, R.; Boggs, J.D.; Miller, K.L.; Bonaventure, P.; Atack, J.R. Effects of sb-269970, a 5-ht7 receptor antagonist, in mouse models predictive of antipsychotic-like activity. Behav. Pharmacol. 2008, 19, 153–159. [Google Scholar] [CrossRef]
- Nikiforuk, A.; Kos, T.; Fijal, K.; Holuj, M.; Rafa, D.; Popik, P. Effects of the selective 5-ht7 receptor antagonist sb-269970 and amisulpride on ketamine-induced schizophrenia-like deficits in rats. PLoS ONE 2013, 8, e66695. [Google Scholar] [CrossRef] [Green Version]
- Pouzet, B. Sb-258741: A 5-ht7 receptor antagonist of potential clinical interest. CNS Drug Rev. 2002, 8, 90–100. [Google Scholar] [CrossRef] [PubMed]
- Liy-Salmeron, G.; Meneses, A. Effects of 5-ht drugs in prefrontal cortex during memory formation and the ketamine amnesia-model. Hippocampus 2008, 18, 965–974. [Google Scholar] [CrossRef] [PubMed]
- Meneses, A. Effects of the 5-ht7 receptor antagonists sb-269970 and dr 4004 in autoshaping pavlovian/instrumental learning task. Behav. Brain Res. 2004, 155, 275–282. [Google Scholar] [CrossRef] [PubMed]
- Perez-Garcia, G.S.; Meneses, A. Effects of the potential 5-ht7 receptor agonist as 19 in an autoshaping learning task. Behav. Brain Res. 2005, 163, 136–140. [Google Scholar] [CrossRef]
- Nikiforuk, A.; Holuj, M.; Potasiewicz, A.; Popik, P. Effects of the selective 5-ht7 receptor antagonist sb-269970 on premature responding in the five-choice serial reaction time test in rats. Behav. Brain Res. 2015, 289, 149–156. [Google Scholar] [CrossRef]
- Gaynes, B.N.; Warden, D.; Trivedi, M.H.; Wisniewski, S.R.; Fava, M.; Rush, A.J. What did star*d teach us? Results from a large-scale, practical, clinical trial for patients with depression. Psychiatr. Serv. 2009, 60, 1439–1445. [Google Scholar] [CrossRef]
- Autry, A.E.; Adachi, M.; Nosyreva, E.; Na, E.S.; Los, M.F.; Cheng, P.F.; Kavalali, E.T.; Monteggia, L.M. Nmda receptor blockade at rest triggers rapid behavioural antidepressant responses. Nature 2011, 475, 91–95. [Google Scholar] [CrossRef] [Green Version]
- Sajatovic, M.; Forester, B.P.; Tsai, J.; Kroger, H.; Pikalov, A.; Cucchiaro, J.; Loebel, A. Efficacy of lurasidone in adults aged 55 years and older with bipolar depression: Post hoc analysis of 2 double-blind, placebo-controlled studies. J. Clin. Psychiatry 2016, 77, e1324–e1331. [Google Scholar] [CrossRef]
- Suppes, T.; Silva, R.; Cucchiaro, J.; Mao, Y.; Targum, S.; Streicher, C.; Pikalov, A.; Loebel, A. Lurasidone for the treatment of major depressive disorder with mixed features: A randomized, double-blind, placebo-controlled study. Am. J. Psychiatry 2016, 173, 400–407. [Google Scholar] [CrossRef] [Green Version]
- Tsai, J.; Thase, M.E.; Mao, Y.; Ng-Mak, D.; Pikalov, A.; Loebel, A. Lurasidone for major depressive disorder with mixed features and anxiety: A post-hoc analysis of a randomized, placebo-controlled study. CNS Spectr. 2017, 22, 236–245. [Google Scholar] [CrossRef] [Green Version]
- Ostacher, M.; Ng-Mak, D.; Patel, P.; Ntais, D.; Schlueter, M.; Loebel, A. Lurasidone compared to other atypical antipsychotic monotherapies for bipolar depression: A systematic review and network meta-analysis. World J. Biol. Psychiatry Off. J. World Fed. Soc. Biol. Psychiatry 2018, 19, 586–601. [Google Scholar] [CrossRef]
- Vieta, E.; Florea, I.; Schmidt, S.N.; Areberg, J.; Ettrup, A. Intravenous vortioxetine to accelerate onset of effect in major depressive disorder: A 2-week, randomized, double-blind, placebo-controlled study. Int. Clin. Psychopharmacol. 2019, 34, 153–160. [Google Scholar] [CrossRef] [PubMed]
- Areberg, J.; Petersen, K.B.; Chen, G.; Naik, H. Population pharmacokinetic meta-analysis of vortioxetine in healthy individuals. Basic Clin. Pharmacol. Toxicol. 2014, 115, 552–559. [Google Scholar] [CrossRef] [PubMed]
- Souery, D.; Oswald, P.; Massat, I.; Bailer, U.; Bollen, J.; Demyttenaere, K.; Kasper, S.; Lecrubier, Y.; Montgomery, S.; Serretti, A.; et al. Clinical factors associated with treatment resistance in major depressive disorder: Results from a european multicenter study. J. Clin. Psychiatry 2007, 68, 1062–1070. [Google Scholar] [CrossRef] [PubMed]
- Fava, M.; Rush, A.J.; Alpert, J.E.; Balasubramani, G.K.; Wisniewski, S.R.; Carmin, C.N.; Biggs, M.M.; Zisook, S.; Leuchter, A.; Howland, R.; et al. Difference in treatment outcome in outpatients with anxious versus nonanxious depression: A star*d report. Am. J. Psychiatry 2008, 165, 342–351. [Google Scholar] [CrossRef]
- Yee, A.; Ng, C.G.; Seng, L.H. Vortioxetine treatment for anxiety disorder: A meta-analysis study. Curr. Drug Targets 2018, 19, 1412–1423. [Google Scholar] [CrossRef]
- Baldwin, D.S.; Florea, I.; Jacobsen, P.L.; Zhong, W.; Nomikos, G.G. A meta-analysis of the efficacy of vortioxetine in patients with major depressive disorder (mdd) and high levels of anxiety symptoms. J. Affect. Disord. 2016, 206, 140–150. [Google Scholar] [CrossRef] [Green Version]
- Fu, J.; Peng, L.; Li, X. The efficacy and safety of multiple doses of vortioxetine for generalized anxiety disorder: A meta-analysis. Neuropsychiatr. Dis. Treat. 2016, 12, 951–959. [Google Scholar] [CrossRef] [Green Version]
- Qin, B.; Huang, G.; Yang, Q.; Zhao, M.; Chen, H.; Gao, W.; Yang, M. Vortioxetine treatment for generalised anxiety disorder: A meta-analysis of anxiety, quality of life and safety outcomes. BMJ Open 2019, 9, e033161. [Google Scholar] [CrossRef]
- Kong, W.; Deng, H.; Wan, J.; Zhou, Y.; Zhou, Y.; Song, B.; Wang, X. Comparative remission rates and tolerability of drugs for generalised anxiety disorder: A systematic review and network meta-analysis of double-blind randomized controlled trials. Front. Pharmacol. 2020, 11, 580858. [Google Scholar] [CrossRef]
- Meza, N.; Leyton, F. Vortioxetine for generalised anxiety disorder in adults. Medwave 2021, 21, e8172. [Google Scholar] [CrossRef] [PubMed]
- McIntyre, R.S.; Lophaven, S.; Olsen, C.K. A randomized, double-blind, placebo-controlled study of vortioxetine on cognitive function in depressed adults. Int. J. Neuropsychopharmacol. 2014, 17, 1557–1567. [Google Scholar] [CrossRef] [PubMed]
- Mahableshwarkar, A.R.; Zajecka, J.; Jacobson, W.; Chen, Y.; Keefe, R.S. A randomized, placebo-controlled, active-reference, double-blind, flexible-dose study of the efficacy of vortioxetine on cognitive function in major depressive disorder. Neuropsychopharmacology 2015, 40, 2025–2037. [Google Scholar] [CrossRef] [Green Version]
- McIntyre, R.S.; Florea, I.; Tonnoir, B.; Loft, H.; Lam, R.W.; Christensen, M.C. Efficacy of vortioxetine on cognitive functioning in working patients with major depressive disorder. J. Clin. Psychiatry 2017, 78, 115–121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baune, B.T.; Brignone, M.; Larsen, K.G. A network meta-analysis comparing effects of various antidepressant classes on the digit symbol substitution test (dsst) as a measure of cognitive dysfunction in patients with major depressive disorder. Int. J. Neuropsychopharmacol. 2018, 21, 97–107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harrison, J.E.; Lophaven, S.; Olsen, C.K. Which cognitive domains are improved by treatment with vortioxetine? Int. J. Neuropsychopharmacol. 2016, 19, pyw054. [Google Scholar] [CrossRef] [Green Version]
- Chokka, P.; Bougie, J.; Proulx, J.; Tvistholm, A.H.; Ettrup, A. Long-term functioning outcomes are predicted by cognitive symptoms in working patients with major depressive disorder treated with vortioxetine: Results from the atworc study. CNS Spectr. 2019, 24, 616–627. [Google Scholar] [CrossRef] [Green Version]
- Huhn, M.; Nikolakopoulou, A.; Schneider-Thoma, J.; Krause, M.; Samara, M.; Peter, N.; Arndt, T.; Backers, L.; Rothe, P.; Cipriani, A.; et al. Comparative efficacy and tolerability of 32 oral antipsychotics for the acute treatment of adults with multi-episode schizophrenia: A systematic review and network meta-analysis. Lancet 2019, 394, 939–951. [Google Scholar] [CrossRef] [Green Version]
- Krause, M.; Zhu, Y.; Huhn, M.; Schneider-Thoma, J.; Bighelli, I.; Chaimani, A.; Leucht, S. Efficacy, acceptability, and tolerability of antipsychotics in children and adolescents with schizophrenia: A network meta-analysis. Eur. Neuropsychopharmacol. J. Eur. Coll. Neuropsychopharmacol. 2018, 28, 659–674. [Google Scholar] [CrossRef]
- Kishi, T.; Ikuta, T.; Sakuma, K.; Okuya, M.; Iwata, N. Efficacy and safety of antipsychotic treatments for schizophrenia: A systematic review and network meta-analysis of randomized trials in japan. J. Psychiatr. Res. 2021, 138, 444–452. [Google Scholar] [CrossRef]
- Phalguni, A.; McCool, R.; Wood, H.; Sanderson, A.; Rydevik, G.; Franklin, B.; James, D. Systematic literature review and network meta-analysis of lurasidone, brexpiprazole and cariprazine for schizophrenia. Int. Clin. Psychopharmacol. 2023, 38, 45–56. [Google Scholar] [CrossRef] [PubMed]
- Bahji, A.; Ermacora, D.; Stephenson, C.; Hawken, E.R.; Vazquez, G. Comparative efficacy and tolerability of pharmacological treatments for the treatment of acute bipolar depression: A systematic review and network meta-analysis. J. Affect. Disord. 2020, 269, 154–184. [Google Scholar] [CrossRef] [PubMed]
- Kishi, T.; Ikuta, T.; Matsuda, Y.; Sakuma, K.; Okuya, M.; Mishima, K.; Iwata, N. Mood stabilizers and/or antipsychotics for bipolar disorder in the maintenance phase: A systematic review and network meta-analysis of randomized controlled trials. Mol. Psychiatry 2021, 26, 4146–4157. [Google Scholar] [CrossRef]
- Loebel, A.; Cucchiaro, J.; Silva, R.; Kroger, H.; Hsu, J.; Sarma, K.; Sachs, G. Lurasidone monotherapy in the treatment of bipolar i depression: A randomized, double-blind, placebo-controlled study. Am. J. Psychiatry 2014, 171, 160–168. [Google Scholar] [CrossRef] [Green Version]
- Loebel, A.; Cucchiaro, J.; Silva, R.; Kroger, H.; Sarma, K.; Xu, J.; Calabrese, J.R. Lurasidone as adjunctive therapy with lithium or valproate for the treatment of bipolar i depression: A randomized, double-blind, placebo-controlled study. Am. J. Psychiatry 2014, 171, 169–177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kato, T.; Ishigooka, J.; Miyajima, M.; Watabe, K.; Fujimori, T.; Masuda, T.; Higuchi, T.; Vieta, E. Double-blind, placebo-controlled study of lurasidone monotherapy for the treatment of bipolar i depression. Psychiatry Clin. Neurosci. 2020, 74, 635–644. [Google Scholar] [CrossRef] [PubMed]
- DelBello, M.P.; Goldman, R.; Phillips, D.; Deng, L.; Cucchiaro, J.; Loebel, A. Efficacy and safety of lurasidone in children and adolescents with bipolar i depression: A double-blind, placebo-controlled study. J. Am. Acad. Child Adolesc. Psychiatry 2017, 56, 1015–1025. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meltzer, H.Y.; Share, D.B.; Jayathilake, K.; Salomon, R.M.; Lee, M.A. Lurasidone improves psychopathology and cognition in treatment-resistant schizophrenia. J. Clin. Psychopharmacol. 2020, 40, 240–249. [Google Scholar] [CrossRef]
- Miskowiak, K.W.; Seeberg, I.; Jensen, M.B.; Balanza-Martinez, V.; Del Mar Bonnin, C.; Bowie, C.R.; Carvalho, A.F.; Dols, A.; Douglas, K.; Gallagher, P.; et al. Randomised controlled cognition trials in remitted patients with mood disorders published between 2015 and 2021: A systematic review by the international society for bipolar disorders targeting cognition task force. Bipolar. Disord. 2022, 24, 354–374. [Google Scholar] [CrossRef]
- Srisurapanont, M.; Suttajit, S.; Likhitsathian, S.; Maneeton, B.; Maneeton, N. A network meta-analysis of the dose-response effects of lurasidone on acute schizophrenia. Sci. Rep. 2021, 11, 5571. [Google Scholar] [CrossRef]
- Leucht, S.; Crippa, A.; Siafis, S.; Patel, M.X.; Orsini, N.; Davis, J.M. Dose-response meta-analysis of antipsychotic drugs for acute schizophrenia. Am. J. Psychiatry 2020, 177, 342–353. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Xiao, L.; Wang, H.L.; Wang, G.H. Efficacy and safety of lurasidone versus placebo as adjunctive to mood stabilizers in bipolar i depression: A meta-analysis. J. Affect. Disord. 2020, 264, 227–233. [Google Scholar] [CrossRef] [PubMed]
- Heidmann, D.E.; Szot, P.; Kohen, R.; Hamblin, M.W. Function and distribution of three rat 5-hydroxytryptamine7 (5-ht7) receptor isoforms produced by alternative splicing. Neuropharmacology 1998, 37, 1621–1632. [Google Scholar] [CrossRef]
- Heidmann, D.E.; Metcalf, M.A.; Kohen, R.; Hamblin, M.W. Four 5-hydroxytryptamine7 (5-ht7) receptor isoforms in human and rat produced by alternative splicing: Species differences due to altered intron-exon organization. J. Neurochem. 1997, 68, 1372–1381. [Google Scholar] [CrossRef] [PubMed]
- Krobert, K.A.; Bach, T.; Syversveen, T.; Kvingedal, A.M.; Levy, F.O. The cloned human 5-ht7 receptor splice variants: A comparative characterization of their pharmacology, function and distribution. Naunyn Schmiedebergs Arch. Pharmacol. 2001, 363, 620–632. [Google Scholar] [CrossRef] [PubMed]
- Andressen, K.W.; Manfra, O.; Brevik, C.H.; Ulsund, A.H.; Vanhoenacker, P.; Levy, F.O.; Krobert, K.A. The atypical antipsychotics clozapine and olanzapine promote down-regulation and display functional selectivity at human 5-ht7 receptors. Br. J. Pharmacol. 2015, 172, 3846–3860. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guthrie, C.R.; Murray, A.T.; Franklin, A.A.; Hamblin, M.W. Differential agonist-mediated internalization of the human 5-hydroxytryptamine 7 receptor isoforms. J. Pharmacol. Exp. Ther. 2005, 313, 1003–1010. [Google Scholar] [CrossRef] [Green Version]
- Kvachnina, E.; Liu, G.; Dityatev, A.; Renner, U.; Dumuis, A.; Richter, D.W.; Dityateva, G.; Schachner, M.; Voyno-Yasenetskaya, T.A.; Ponimaskin, E.G. 5-ht7 receptor is coupled to g alpha subunits of heterotrimeric g12-protein to regulate gene transcription and neuronal morphology. J. Neurosci. 2005, 25, 7821–7830. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baker, L.P.; Nielsen, M.D.; Impey, S.; Metcalf, M.A.; Poser, S.W.; Chan, G.; Obrietan, K.; Hamblin, M.W.; Storm, D.R. Stimulation of type 1 and type 8 ca2+/calmodulin-sensitive adenylyl cyclases by the gs-coupled 5-hydroxytryptamine subtype 5-ht7a receptor. J Biol Chem 1998, 273, 17469–17476. [Google Scholar] [CrossRef] [Green Version]
- Grimes, M.T.; Powell, M.; Gutierrez, S.M.; Darby-King, A.; Harley, C.W.; McLean, J.H. Epac activation initiates associative odor preference memories in the rat pup. Learn. Mem. 2015, 22, 74–82. [Google Scholar] [CrossRef] [Green Version]
- Lin, S.L.; Johnson-Farley, N.N.; Lubinsky, D.R.; Cowen, D.S. Coupling of neuronal 5-ht7 receptors to activation of extracellular-regulated kinase through a protein kinase a-independent pathway that can utilize epac. J. Neurochem. 2003, 87, 1076–1085. [Google Scholar] [CrossRef]
- Speranza, L.; Chambery, A.; Di Domenico, M.; Crispino, M.; Severino, V.; Volpicelli, F.; Leopoldo, M.; Bellenchi, G.C.; di Porzio, U.; Perrone-Capano, C. The serotonin receptor 7 promotes neurite outgrowth via erk and cdk5 signaling pathways. Neuropharmacology 2013, 67, 155–167. [Google Scholar] [CrossRef] [PubMed]
- Costa, L.; Sardone, L.M.; Bonaccorso, C.M.; D’Antoni, S.; Spatuzza, M.; Gulisano, W.; Tropea, M.R.; Puzzo, D.; Leopoldo, M.; Lacivita, E.; et al. Activation of serotonin 5-ht7 receptors modulates hippocampal synaptic plasticity by stimulation of adenylate cyclases and rescues learning and behavior in a mouse model of fragile x syndrome. Front. Mol. Neurosci. 2018, 11, 353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salminen, A.; Kaarniranta, K.; Kauppinen, A. Age-related changes in ampk activation: Role for ampk phosphatases and inhibitory phosphorylation by upstream signaling pathways. Ageing Res. Rev. 2016, 28, 15–26. [Google Scholar] [CrossRef] [PubMed]
- Fields, D.P.; Springborn, S.; Mitchell, G.S. Spinal 5-ht7 receptors induce phrenic motor facilitation via epac-mtorc1 signaling. J. Neurophysiol. 2015, 114, 2015–2022. [Google Scholar] [CrossRef] [Green Version]
- Gupta, R.; Ambasta, R.K.; Pravir, K. Autophagy and apoptosis cascade: Which is more prominent in neuronal death? Cell. Mol. Life Sci. 2021, 78, 8001–8047. [Google Scholar] [CrossRef]
- Speranza, L.; Giuliano, T.; Volpicelli, F.; De Stefano, M.E.; Lombardi, L.; Chambery, A.; Lacivita, E.; Leopoldo, M.; Bellenchi, G.C.; di Porzio, U.; et al. Activation of 5-ht7 receptor stimulates neurite elongation through mtor, cdc42 and actin filaments dynamics. Front. Behav. Neurosci. 2015, 9, 62. [Google Scholar] [CrossRef] [Green Version]
- Ponimaskin, E.; Voyno-Yasenetskaya, T.; Richter, D.W.; Schachner, M.; Dityatev, A. Morphogenic signaling in neurons via neurotransmitter receptors and small gtpases. Mol. Neurobiol. 2007, 35, 278–287. [Google Scholar] [CrossRef]
- Wirth, A.; Holst, K.; Ponimaskin, E. How serotonin receptors regulate morphogenic signalling in neurons. Prog. Neurobiol. 2017, 151, 35–56. [Google Scholar] [CrossRef]
- Crispino, M.; Volpicelli, F.; Perrone-Capano, C. Role of the serotonin receptor 7 in brain plasticity: From development to disease. Int. J. Mol. Sci. 2020, 21, 505. [Google Scholar] [CrossRef] [Green Version]
- Ibata, K.; Sun, Q.; Turrigiano, G.G. Rapid synaptic scaling induced by changes in postsynaptic firing. Neuron 2008, 57, 819–826. [Google Scholar] [CrossRef] [PubMed]
- Citri, A.; Malenka, R.C. Synaptic plasticity: Multiple forms, functions, and mechanisms. Neuropsychopharmacology 2008, 33, 18–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hübener, M.; Bonhoeffer, T. Neuronal plasticity: Beyond the critical period. Cell 2014, 159, 727–737. [Google Scholar] [CrossRef] [Green Version]
- Kobe, F.; Guseva, D.; Jensen, T.P.; Wirth, A.; Renner, U.; Hess, D.; Muller, M.; Medrihan, L.; Zhang, W.; Zhang, M.; et al. 5-ht7r/g12 signaling regulates neuronal morphology and function in an age-dependent manner. J. Neurosci. 2012, 32, 2915–2930. [Google Scholar] [CrossRef] [Green Version]
- Beaudet, G.; Jozet-Alves, C.; Asselot, R.; Schumann-Bard, P.; Freret, T.; Boulouard, M.; Paizanis, E. Deletion of the serotonin receptor type 7 disrupts the acquisition of allocentric but not egocentric navigation strategies in mice. Behav. Brain Res. 2017, 320, 179–185. [Google Scholar] [CrossRef] [PubMed]
- Vasefi, M.S.; Yang, K.; Li, J.; Kruk, J.S.; Heikkila, J.J.; Jackson, M.F.; MacDonald, J.F.; Beazely, M.A. Acute 5-ht7 receptor activation increases nmda-evoked currents and differentially alters nmda receptor subunit phosphorylation and trafficking in hippocampal neurons. Mol. Brain 2013, 6, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bacon, W.L.; Beck, S.G. 5-hydroxytryptamine(7) receptor activation decreases slow afterhyperpolarization amplitude in ca3 hippocampal pyramidal cells. J. Pharmacol. Exp. Ther. 2000, 294, 672–679. [Google Scholar] [PubMed]
- Tokarski, K.; Zahorodna, A.; Bobula, B.; Hess, G. 5-ht7 receptors increase the excitability of rat hippocampal ca1 pyramidal neurons. Brain Res 2003, 993, 230–234. [Google Scholar] [CrossRef]
- Costa, L.; Trovato, C.; Musumeci, S.A.; Catania, M.V.; Ciranna, L. 5-ht(1a) and 5-ht(7) receptors differently modulate ampa receptor-mediated hippocampal synaptic transmission. Hippocampus 2012, 22, 790–801. [Google Scholar] [CrossRef] [PubMed]
- Andreetta, F.; Carboni, L.; Grafton, G.; Jeggo, R.; Whyment, A.D.; van den Top, M.; Hoyer, D.; Spanswick, D.; Barnes, N.M. Hippocampal 5-ht7 receptors signal phosphorylation of the glua1 subunit to facilitate ampa receptor mediated-neurotransmission in vitro and in vivo. Br. J. Pharmacol. 2016, 173, 1438–1451. [Google Scholar] [CrossRef] [Green Version]
- Leo, D.; Adriani, W.; Cavaliere, C.; Cirillo, G.; Marco, E.; Romano, E.; Di Porzio, U.; Papa, M.; Perrone-Capano, C.; Laviola, G. Methylphenidate to adolescent rats drives enduring changes of accumbal htr7 expression: Implications for impulsive behavior and neuronal morphology. Genes Brain Behav. 2009, 8, 356–368. [Google Scholar] [CrossRef] [PubMed]
- Ansorge, M.S.; Morelli, E.; Gingrich, J.A. Inhibition of serotonin but not norepinephrine transport during development produces delayed, persistent perturbations of emotional behaviors in mice. J. Neurosci. 2008, 28, 199–207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beaudet, G.; Bouet, V.; Jozet-Alves, C.; Schumann-Bard, P.; Dauphin, F.; Paizanis, E.; Boulouard, M.; Freret, T. Spatial memory deficit across aging: Current insights of the role of 5-ht7 receptors. Front. Behav. Neurosci. 2014, 8, 448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lai, K.-O.; Ip, N.Y. Structural plasticity of dendritic spines: The underlying mechanisms and its dysregulation in brain disorders. Biochim. Biophys. Acta (BBA)-Mol. Basis Dis. 2013, 1832, 2257–2263. [Google Scholar] [CrossRef] [Green Version]
- Chang, J.-Y.; Parra-Bueno, P.; Laviv, T.; Szatmari, E.M.; Lee, S.-J.R.; Yasuda, R. Camkii autophosphorylation is necessary for optimal integration of Ca2+ signals during ltp induction, but not maintenance. Neuron 2017, 94, 800–808.e804. [Google Scholar] [CrossRef] [Green Version]
- Bosch, M.; Hayashi, Y. Structural plasticity of dendritic spines. Curr. Opin. Neurobiol. 2012, 22, 383–388. [Google Scholar] [CrossRef] [Green Version]
- Rusheen, A.E.; Gee, T.A.; Jang, D.P.; Blaha, C.D.; Bennet, K.E.; Lee, K.H.; Heien, M.L.; Oh, Y. Evaluation of electrochemical methods for tonic dopamine detection in vivo. Trends Analyt. Chem. 2020, 132, 116049. [Google Scholar] [CrossRef]
- Fukuyama, K.; Fukuzawa, M.; Shiroyama, T.; Okada, M. Pathomechanism of nocturnal paroxysmal dystonia in autosomal dominant sleep-related hypermotor epilepsy with s284l-mutant alpha4 subunit of nicotinic ach receptor. Biomed. Pharmacother. 2020, 126, 110070. [Google Scholar] [CrossRef]
- Fukuyama, K.; Nakano, T.; Shiroyama, T.; Okada, M. Chronic administrations of guanfacine on mesocortical catecholaminergic and thalamocortical glutamatergic transmissions. Int. J. Mol. Sci. 2021, 22, 4122. [Google Scholar] [CrossRef]
- Meltzer, H.Y. Serotonergic mechanisms as targets for existing and novel antipsychotics. In Handbook of Experimental Pharmacology; Springer: New York, NY, USA, 2012; pp. 87–124. [Google Scholar]
- Yamamura, S.; Ohoyama, K.; Hamaguchi, T.; Kashimoto, K.; Nakagawa, M.; Kanehara, S.; Suzuki, D.; Matsumoto, T.; Motomura, E.; Shiroyama, T.; et al. Effects of quetiapine on monoamine, gaba, and glutamate release in rat prefrontal cortex. Psychopharmacology 2009, 206, 243–258. [Google Scholar] [CrossRef]
- Yamamura, S.; Ohoyama, K.; Hamaguchi, T.; Nakagawa, M.; Suzuki, D.; Matsumoto, T.; Motomura, E.; Tanii, H.; Shiroyama, T.; Okada, M. Effects of zotepine on extracellular levels of monoamine, gaba and glutamate in rat prefrontal cortex. Br. J. Pharmacol. 2009, 157, 656–665. [Google Scholar] [CrossRef] [PubMed]
- Ohoyama, K.; Yamamura, S.; Hamaguchi, T.; Nakagawa, M.; Motomura, E.; Shiroyama, T.; Tanii, H.; Okada, M. Effect of novel atypical antipsychotic, blonanserin, on extracellular neurotransmitter level in rat prefrontal cortex. Eur. J. Pharmacol. 2011, 653, 47–57. [Google Scholar] [CrossRef] [PubMed]
- Tanahashi, S.; Yamamura, S.; Nakagawa, M.; Motomura, E.; Okada, M. Dopamine d2 and serotonin 5-ht1a receptors mediate the actions of aripiprazole in mesocortical and mesoaccumbens transmission. Neuropharmacology 2012, 62, 765–774. [Google Scholar] [CrossRef] [PubMed]
- Bourdelais, A.J.; Deutch, A.Y. The effects of haloperidol and clozapine on extracellular gaba levels in the prefrontal cortex of the rat: An in vivo microdialysis study. Cereb. Cortex 1994, 4, 69–77. [Google Scholar] [CrossRef]
- Fukuyama, K.; Hasegawa, T.; Okada, M. Cystine/glutamate antiporter and aripiprazole compensate nmda antagonist-induced dysfunction of thalamocortical l-glutamatergic transmission. Int. J. Mol. Sci. 2018, 19, 3645. [Google Scholar] [CrossRef] [Green Version]
- Fukuyama, K.; Kato, R.; Murata, M.; Shiroyama, T.; Okada, M. Clozapine normalizes a glutamatergic transmission abnormality induced by an impaired nmda receptor in the thalamocortical pathway via the activation of a group iii metabotropic glutamate receptor. Biomolecules 2019, 9, 234. [Google Scholar] [CrossRef] [Green Version]
- Nakano, T.; Hasegawa, T.; Suzuki, D.; Motomura, E.; Okada, M. Amantadine combines astroglial system xc(-) activation with glutamate/nmda receptor inhibition. Biomolecules 2019, 9, 191. [Google Scholar] [CrossRef] [Green Version]
- Okada, M.; Fukuyama, K.; Kawano, Y.; Shiroyama, T.; Ueda, Y. Memantine protects thalamocortical hyper-glutamatergic transmission induced by nmda receptor antagonism via activation of system xc(). Pharmacol. Res. Perspect. 2019, 7, e00457. [Google Scholar] [CrossRef] [Green Version]
- Okada, M.; Fukuyama, K.; Nakano, T.; Ueda, Y. Pharmacological discrimination of effects of mk801 on thalamocortical, mesothalamic, and mesocortical transmissions. Biomolecules 2019, 9, 746. [Google Scholar] [CrossRef] [Green Version]
- Fukuyama, K.; Fukuzawa, M.; Okada, M. Upregulated and hyperactivated thalamic connexin 43 plays important roles in pathomechanisms of cognitive impairment and seizure of autosomal dominant sleep-related hypermotor epilepsy with s284l-mutant alpha4 subunit of nicotinic ach receptor. Pharmaceuticals 2020, 13, 99. [Google Scholar] [CrossRef]
- Fukuyama, K.; Fukuzawa, M.; Okubo, R.; Okada, M. Upregulated connexin 43 induced by loss-of-functional s284l-mutant alpha4 subunit of nicotinic ach receptor contributes to pathomechanisms of autosomal dominant sleep-related hypermotor epilepsy. Pharmaceuticals 2020, 13, 58. [Google Scholar] [CrossRef] [PubMed]
- Fukuyama, K.; Fukuzawa, M.; Shiroyama, T.; Okada, M. Pathogenesis and pathophysiology of autosomal dominant sleep-related hypermotor epilepsy with s284l-mutant alpha4 subunit of nicotinic ach receptor. Br. J. Pharmacol. 2020, 177, 2143–2162. [Google Scholar] [CrossRef] [PubMed]
- Okada, M.; Fukuyama, K.; Kawano, Y.; Shiroyama, T.; Suzuki, D.; Ueda, Y. Effects of acute and sub-chronic administrations of guanfacine on catecholaminergic transmissions in the orbitofrontal cortex. Neuropharmacology 2019, 156, 107547. [Google Scholar] [CrossRef] [PubMed]
- Okada, M.; Fukuyama, K. Interaction between mesocortical and mesothalamic catecholaminergic transmissions associated with nmda receptor in the locus coeruleus. Biomolecules 2020, 10, 990. [Google Scholar] [CrossRef]
- Hwang, K.; Shine, J.M.; Bruss, J.; Tranel, D.; Boes, A. Neuropsychological evidence of multi-domain network hubs in the human thalamus. eLife 2021, 10, e69480. [Google Scholar] [CrossRef]
- Hwang, K.; Shine, J.M.; Cole, M.W.; Sorenson, E. Thalamocortical contributions to cognitive task activity. eLife 2022, 11, e81282. [Google Scholar] [CrossRef] [PubMed]
- Reber, J.; Hwang, K.; Bowren, M.; Bruss, J.; Mukherjee, P.; Tranel, D.; Boes, A.D. Cognitive impairment after focal brain lesions is better predicted by damage to structural than functional network hubs. Proc. Natl. Acad. Sci. USA 2021, 118, e2018784118. [Google Scholar] [CrossRef]
- Fukuyama, K.; Okada, M. High frequency oscillations play important roles in development of epileptogenesis/ictogenesis via activation of astroglial signallings. Biomed. Pharmacother. 2022, 149, 112846. [Google Scholar] [CrossRef]
- Fernandez, L.M.J.; Luthi, A. Sleep spindles: Mechanisms and functions. Physiol. Rev. 2020, 100, 805–868. [Google Scholar] [CrossRef]
- Fukuyama, K.; Okada, M. Brivaracetam and levetiracetam suppress astroglial l-glutamate release through hemichannel via inhibition of synaptic vesicle protein. Int. J. Mol. Sci. 2022, 23, 4473. [Google Scholar] [CrossRef]
- Yang, M.; Logothetis, N.K.; Eschenko, O. Occurrence of hippocampal ripples is associated with activity suppression in the mediodorsal thalamic nucleus. J. Neurosci. 2019, 39, 434–444. [Google Scholar] [CrossRef] [PubMed]
- Okada, M. Can rodent models elucidate the pathomechanisms of genetic epilepsy? Br. J. Pharmacol. 2022, 179, 1620–1639. [Google Scholar] [CrossRef] [PubMed]
- Okada, M.; Kawano, Y.; Fukuyama, K.; Motomura, E.; Shiroyama, T. Candidate strategies for development of a rapid-acting antidepressant class without neuropsychiatric adverse effects: Prevention of ketamine-induced neuropsychiatric adverse reactions. Int. J. Mol. Sci. 2020, 21, 7951. [Google Scholar] [CrossRef] [PubMed]
- Okada, M.; Fukuyama, K.; Shiroyama, T.; Murata, M. A working hypothesis regarding identical pathomechanisms between clinical efficacy and adverse reaction of clozapine via the activation of connexin43. Int. J. Mol. Sci. 2020, 21, 7019. [Google Scholar] [CrossRef]
- Maurin, T.; Zongaro, S.; Bardoni, B. Fragile x syndrome: From molecular pathology to therapy. Neurosci. Biobehav. Rev. 2014, 46 Pt 2, 242–255. [Google Scholar] [CrossRef]
- Osterweil, E.K.; Krueger, D.D.; Reinhold, K.; Bear, M.F. Hypersensitivity to mglur5 and erk1/2 leads to excessive protein synthesis in the hippocampus of a mouse model of fragile x syndrome. J. Neurosci. 2010, 30, 15616–15627. [Google Scholar] [CrossRef] [Green Version]
- Huber, K.M.; Gallagher, S.M.; Warren, S.T.; Bear, M.F. Altered synaptic plasticity in a mouse model of fragile x mental retardation. Proc. Natl. Acad. Sci. USA 2002, 99, 7746–7750. [Google Scholar] [CrossRef] [Green Version]
- Kelley, D.J.; Davidson, R.J.; Elliott, J.L.; Lahvis, G.P.; Yin, J.C.; Bhattacharyya, A. The cyclic amp cascade is altered in the fragile x nervous system. PLoS ONE 2007, 2, e931. [Google Scholar] [CrossRef]
- Fu, C.; Armstrong, D.; Marsh, E.; Lieberman, D.; Motil, K.; Witt, R.; Standridge, S.; Nues, P.; Lane, J.; Dinkel, T.; et al. Consensus guidelines on managing rett syndrome across the lifespan. BMJ Paediatr. Open 2020, 4, e000717. [Google Scholar] [CrossRef]
- Neul, J.L.; Fang, P.; Barrish, J.; Lane, J.; Caeg, E.B.; Smith, E.O.; Zoghbi, H.; Percy, A.; Glaze, D.G. Specific mutations in methyl-cpg-binding protein 2 confer different severity in rett syndrome. Neurology 2008, 70, 1313–1321. [Google Scholar] [CrossRef] [Green Version]
- Kulikovskaja, L.; Sarajlija, A.; Savic-Pavicevic, D.; Dobricic, V.; Klein, C.; Westenberger, A. Wdr45 mutations may cause a mecp2 mutation-negative rett syndrome phenotype. Neurol. Genet. 2018, 4, e227. [Google Scholar] [CrossRef] [PubMed]
- Collins, A.L.; Levenson, J.M.; Vilaythong, A.P.; Richman, R.; Armstrong, D.L.; Noebels, J.L.; David Sweatt, J.; Zoghbi, H.Y. Mild overexpression of mecp2 causes a progressive neurological disorder in mice. Hum. Mol. Genet. 2004, 13, 2679–2689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Filippis, B.; Nativio, P.; Fabbri, A.; Ricceri, L.; Adriani, W.; Lacivita, E.; Leopoldo, M.; Passarelli, F.; Fuso, A.; Laviola, G. Pharmacological stimulation of the brain serotonin receptor 7 as a novel therapeutic approach for rett syndrome. Neuropsychopharmacology 2014, 39, 2506–2518. [Google Scholar] [CrossRef]
- De Filippis, B.; Chiodi, V.; Adriani, W.; Lacivita, E.; Mallozzi, C.; Leopoldo, M.; Domenici, M.R.; Fuso, A.; Laviola, G. Long-lasting beneficial effects of central serotonin receptor 7 stimulation in female mice modeling rett syndrome. Front. Behav. Neurosci. 2015, 9, 86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lassig, J.P.; Vachirasomtoon, K.; Hartzell, K.; Leventhal, M.; Courchesne, E.; Courchesne, R.; Lord, C.; Leventhal, B.L.; Cook, E.H., Jr. Physical mapping of the serotonin 5-ht(7) receptor gene (htr7) to chromosome 10 and pseudogene (htr7p) to chromosome 12, and testing of linkage disequilibrium between htr7 and autistic disorder. Am. J. Med. Genet. 1999, 88, 472–475. [Google Scholar] [CrossRef]
- Blankenship, K.; Erickson, C.A.; Stigler, K.A.; Posey, D.J.; McDougle, C.J. Aripiprazole for irritability associated with autistic disorder in children and adolescents aged 6-17 years. Ped Health 2010, 4, 375–381. [Google Scholar] [CrossRef]
- Knight, J.A.; Smith, C.; Toohey, N.; Klein, M.T.; Teitler, M. Pharmacological analysis of the novel, rapid, and potent inactivation of the human 5-hydroxytryptamine7 receptor by risperidone, 9-oh-risperidone, and other inactivating antagonists. Mol. Pharmacol. 2009, 75, 374–380. [Google Scholar] [CrossRef]
- Loebel, A.; Brams, M.; Goldman, R.S.; Silva, R.; Hernandez, D.; Deng, L.; Mankoski, R.; Findling, R.L. Lurasidone for the treatment of irritability associated with autistic disorder. J. Autism. Dev. Disord. 2016, 46, 1153–1163. [Google Scholar] [CrossRef] [Green Version]
- Hull, M.; Berger, M.; Heneka, M. Disease-modifying therapies in alzheimer’s disease: How far have we come? Drugs 2006, 66, 2075–2093. [Google Scholar]
- Lalut, J.; Karila, D.; Dallemagne, P.; Rochais, C. Modulating 5-ht(4) and 5-ht(6) receptors in alzheimer’s disease treatment. Future Med. Chem. 2017, 9, 781–795. [Google Scholar] [CrossRef]
- Hashemi-Firouzi, N.; Komaki, A.; Soleimani Asl, S.; Shahidi, S. The effects of the 5-ht7 receptor on hippocampal long-term potentiation and apoptosis in a rat model of alzheimer’s disease. Brain Res. Bull. 2017, 135, 85–91. [Google Scholar] [CrossRef] [PubMed]
- Querfurth, H.W.; LaFerla, F.M. Alzheimer’s disease. N. Engl. J. Med. 2010, 362, 329–344. [Google Scholar] [CrossRef] [PubMed]
- Villegas, A.Q.; Manzo, H.S.A.; Almada, M.O.V.; Modragon, C.B.; Guzman, R.G. Procognitive and neuroprotective effect of 5-ht7 agonist in an animal model by icv amyloid-b injection (p1.1-005). Neurology 2019, 92, P1.1-005. [Google Scholar]
- Miller-Thomas, M.M.; Sipe, A.L.; Benzinger, T.L.; McConathy, J.; Connolly, S.; Schwetye, K.E. Multimodality review of amyloid-related diseases of the central nervous system. Radiographics 2016, 36, 1147–1163. [Google Scholar] [CrossRef] [Green Version]
- Meneses, A. Neural activity, memory, and dementias: Serotonergic markers. Behav. Pharmacol. 2017, 28, 132–141. [Google Scholar] [CrossRef] [PubMed]
- Werner, F.M.; Covenas, R. Serotonergic drugs: Agonists/antagonists at specific serotonergic subreceptors for the treatment of cognitive, depressant and psychotic symptoms in alzheimer’s disease. Curr. Pharm. Des. 2016, 22, 2064–2071. [Google Scholar] [CrossRef]
- Bourson, A.; Kapps, V.; Zwingelstein, C.; Rudler, A.; Boess, F.G.; Sleight, A.J. Correlation between 5-ht7 receptor affinity and protection against sound-induced seizures in dba/2j mice. Naunyn Schmiedebergs Arch. Pharmacol. 1997, 356, 820–826. [Google Scholar] [CrossRef]
- Graf, M.; Jakus, R.; Kantor, S.; Levay, G.; Bagdy, G. Selective 5-ht1a and 5-ht7 antagonists decrease epileptic activity in the wag/rij rat model of absence epilepsy. Neurosci. Lett. 2004, 359, 45–48. [Google Scholar] [CrossRef]
- Yang, Z.; Liu, X.; Yin, Y.; Sun, S.; Deng, X. Involvement of 5-ht(7) receptors in the pathogenesis of temporal lobe epilepsy. Eur. J. Pharmacol. 2012, 685, 52–58. [Google Scholar] [CrossRef]
- Witkin, J.M.; Baez, M.; Yu, J.; Barton, M.E.; Shannon, H.E. Constitutive deletion of the serotonin-7 (5-ht(7)) receptor decreases electrical and chemical seizure thresholds. Epilepsy Res. 2007, 75, 39–45. [Google Scholar] [CrossRef]
- Pai, V.P.; Marshall, A.M.; Hernandez, L.L.; Buckley, A.R.; Horseman, N.D. Altered serotonin physiology in human breast cancers favors paradoxical growth and cell survival. Breast Cancer Res. 2009, 11, R81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lawrence, D.; Hancock, K.J.; Kisely, S. The gap in life expectancy from preventable physical illness in psychiatric patients in western australia: Retrospective analysis of population based registers. BMJ 2013, 346, f2539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Hert, M.; Correll, C.U.; Bobes, J.; Cetkovich-Bakmas, M.; Cohen, D.A.N.; Asai, I.; Detraux, J.; Gautam, S.; MÖLler, H.-J.; Ndetei, D.M.; et al. Physical illness in patients with severe mental disorders. I. Prevalence, impact of medications and disparities in health care. World Psychiatry 2011, 10, 52–77. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.F.; Huang, A.S.; Snowman, A.M.; Teuscher, C.; Snyder, S.H. From the cover: Antipsychotic drug-induced weight gain mediated by histamine h1 receptor-linked activation of hypothalamic amp-kinase. Proc. Natl. Acad. Sci. USA 2007, 104, 3456–3459. [Google Scholar] [CrossRef] [Green Version]
- Lopez, M. Hypothalamic ampk as a possible target for energy balance-related diseases. Trends Pharmacol. Sci. 2022, 43, 546–556. [Google Scholar] [CrossRef]
- Foretz, M.; Guigas, B.; Bertrand, L.; Pollak, M.; Viollet, B. Metformin: From mechanisms of action to therapies. Cell Metab. 2014, 20, 953–966. [Google Scholar] [CrossRef] [Green Version]
- Okada, M.; Yoshida, S.; Zhu, G.; Hirose, S.; Kaneko, S. Biphasic actions of topiramate on monoamine exocytosis associated with both soluble n-ethylmaleimide-sensitive factor attachment protein receptors and ca(2+)-induced ca(2+)-releasing systems. Neuroscience 2005, 134, 233–246. [Google Scholar] [CrossRef]
- Yoshida, S.; Okada, M.; Zhu, G.; Kaneko, S. Carbamazepine prevents breakdown of neurotransmitter release induced by hyperactivation of ryanodine receptor. Neuropharmacology 2007, 52, 1538–1546. [Google Scholar] [CrossRef]
- Fukuyama, K.; Tanahashi, S.; Nakagawa, M.; Yamamura, S.; Motomura, E.; Shiroyama, T.; Tanii, H.; Okada, M. Levetiracetam inhibits neurotransmitter release associated with cicr. Neurosci. Lett. 2012, 518, 69–74. [Google Scholar] [CrossRef]
- de Brito, O.M.; Scorrano, L. An intimate liaison: Spatial organization of the endoplasmic reticulum-mitochondria relationship. EMBO J. 2010, 29, 2715–2723. [Google Scholar] [CrossRef] [Green Version]
- Lian, J.; Huang, X.F.; Pai, N.; Deng, C. Betahistine ameliorates olanzapine-induced weight gain through modulation of histaminergic, npy and ampk pathways. Psychoneuroendocrinology 2014, 48, 77–86. [Google Scholar] [CrossRef] [PubMed]
- Fukuyama, K.; Okada, M. Effects of an atypical antipsychotic, zotepine, on astroglial l-glutamate release through hemichannels: Exploring the mechanism of mood-stabilising antipsychotic actions and antipsychotic-induced convulsion. Pharmaceuticals 2021, 14, 1116. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fukuyama, K.; Motomura, E.; Okada, M. Therapeutic Potential and Limitation of Serotonin Type 7 Receptor Modulation. Int. J. Mol. Sci. 2023, 24, 2070. https://doi.org/10.3390/ijms24032070
Fukuyama K, Motomura E, Okada M. Therapeutic Potential and Limitation of Serotonin Type 7 Receptor Modulation. International Journal of Molecular Sciences. 2023; 24(3):2070. https://doi.org/10.3390/ijms24032070
Chicago/Turabian StyleFukuyama, Kouji, Eishi Motomura, and Motohiro Okada. 2023. "Therapeutic Potential and Limitation of Serotonin Type 7 Receptor Modulation" International Journal of Molecular Sciences 24, no. 3: 2070. https://doi.org/10.3390/ijms24032070
APA StyleFukuyama, K., Motomura, E., & Okada, M. (2023). Therapeutic Potential and Limitation of Serotonin Type 7 Receptor Modulation. International Journal of Molecular Sciences, 24(3), 2070. https://doi.org/10.3390/ijms24032070