Clinical Trials in Prader–Willi Syndrome: A Review
Abstract
:1. Introduction
2. Beloranib Clinical Trial in Prader–Willi Syndrome
3. Oxytocin Clinical Trials in PWS
4. Setmelanotide Clinical Trial in PWS
5. Diazoxide Choline Controlled-Release Clinical Trial in PWS
6. Livoletide Clinical Trial in PWS
7. Cannabinoid Use in PWS
8. Exenatide Use in PWS
9. Transcranial Direct-Current Stimulation (tDCS) Clinical Trial and Startle Response in PWS
10. Surgical Management of Obesity in PWS
11. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Butler, M.G. Prader-Willi Syndrome: Current Understanding of Cause and Diagnosis. Am. J. Med. Genet. 1990, 35, 319–332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Butler, M.G. Prader-Willi Syndrome: Obesity due to Genomic Imprinting. Curr. Genom. 2011, 12, 204–215. [Google Scholar] [CrossRef] [PubMed]
- Butler, M.G.; Manzardo, A.M.; Forster, J.L. Prader-Willi Syndrome: Clinical Genetics and Diagnostic Aspects with Treatment Approaches. Curr. Pediatr. Rev. 2016, 12, 136–166. [Google Scholar] [CrossRef]
- Butler, M.G.; Hartin, S.N.; Hossain, W.A.; Manzardo, A.M.; Kimonis, V.; Dykens, E.; Gold, J.A.; Kim, S.-J.; Weisensel, N.; Tamura, R.; et al. Molecular Genetic Classification in Prader-Willi Syndrome: A Multisite Cohort Study. J. Med. Genet. 2018, 56, 149–153. [Google Scholar] [CrossRef]
- Cassidy, S.B.; Schwartz, S.; Miller, J.L.; Driscoll, D.J. Prader-Willi syndrome. Genet. Med. 2012, 14, 10–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Butler, M.G.; Kimonis, V.; Dykens, E.; Gold, J.A.; Miller, J.; Tamura, R.; Driscoll, D.J. Prader-Willi syndrome and early-onset morbid obesity NIH rare disease consortium: A review of natural history study. Am. J. Med. Genet. A 2018, 176, 368–375. [Google Scholar] [CrossRef] [PubMed]
- Butler, M.G.; Manzardo, A.M.; Heinemann, J.; Loker, C.; Loker, J. Causes of death in Prader-Willi syndrome: Prader-Willi Syndrome Association (USA) 40-year mortality survey. Genet. Med. 2017, 19, 635–642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Butler, M.G.; Thompson, T. Prader-Willi Syndrome. Endocrinologist. 2000, 10 (Suppl. S1), 3S16S. [Google Scholar] [CrossRef] [PubMed]
- Roof, E.; Stone, W.; MacLean, W.; Feurer, I.D.; Thompson, T.; Butler, M.G. Intellectual characteristics of Prader-Willi syndrome: Comparison of genetic subtypes. J. Intellect. Disabil. Res. 2000, 44 Pt 1, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Butler, M.G.; Bittel, D.C.; Kibiryeva, N.; Talebizadeh, Z.; Thompson, T. Behavioral differences among subjects with Prader-Willi syndrome and type I or type II deletion and maternal disomy. Pediatrics 2004, 113 Pt 1, 565–573. [Google Scholar] [CrossRef]
- Zarcone, J.; Napolitano, D.; Peterson, C.; Breidbord, J.; Ferraioli, S.; Caruso-Anderson, M.; Holsen, L.; Butler, M.G.; Thompson, T. The relationship between compulsive behaviour and academic achievement across the three genetic subtypes of Prader-Willi syndrome. J. Intellect. Disabil. Res. 2007, 51 Pt 6, 478–487. [Google Scholar] [CrossRef]
- Hedgeman, E.; Ulrichsen, S.P.; Carter, S.; Kreher, N.C.; Malobisky, K.P.; Braun, M.M.; Fryzek, J.; Olsen, M.S. Long-term health outcomes in patients with Prader-Willi Syndrome: A nationwide cohort study in Denmark. Int. J. Obes. 2017, 41, 1531–1538. [Google Scholar] [CrossRef]
- Manzardo, A.M.; Loker, J.; Heinemann, J.; Loker, C.; Butler, M.G. Survival Trends from the Prader–Willi Syndrome Association (USA) 40-Year Mortality Survey. Genet. Med. 2017, 20, 24–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahmoud, R.; Kimonis, V.; Butler, M.G. Genetics of Obesity in Humans: A Clinical Review. Int. J. Mol. Sci. 2022, 23, 11005. [Google Scholar] [CrossRef] [PubMed]
- McCandless, S.E.; Yanovski, J.A.; Miller, J.; Fu, C.; Bird, L.M.; Salehi, P.; Chan, C.L.; Stafford, D.; Abuzzahab, M.J.; Viskochil, D.; et al. Effects of MetAP2 Inhibition on Hyperphagia and Body Weight in Prader-Willi Syndrome: A Randomized, Double-Blind, Placebo-Controlled Trial. Diabetes Obes. Metab. 2017, 19, 1751–1761. [Google Scholar] [CrossRef] [Green Version]
- Johnson, L.; Manzardo, A.M.; Miller, J.L.; Driscoll, D.J.; Butler, M.G. Elevated Plasma Oxytocin Levels in Children with Prader-Willi Syndrome Compared with Healthy Unrelated Siblings. Am. J. Med. Genet. Part A 2015, 170, 594–601. [Google Scholar] [CrossRef] [PubMed]
- Love, T.M. Oxytocin, Motivation and the Role of Dopamine. Pharmacol. Biochem. Behav. 2014, 119, 49–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swaab, D.F.; Purba, J.S.; Hofman, M.A. Alterations in the hypothalamic paraventricular nucleus and its oxytocin neurons (putative satiety cells) in Prader-Willi syndrome: A study of five cases. J. Clin. Endocrinol. Metab. 1995, 80, 573–579. [Google Scholar] [PubMed] [Green Version]
- Muscatelli, F.; Abrous, D.N.; Massacrier, A.; Boccaccio, I.; Le Moal, M.; Cau, P.; Cremer, H. Disruption of the mouse Necdin gene results in hypothalamic and behavioral alterations reminiscent of the human Prader-Willi syndrome. Hum. Mol. Genet. 2000, 9, 3101–3110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schaller, F.; Watrin, F.; Sturny, R.; Massacrier, A.; Szepetowski, P.; Muscatelli, F. A single postnatal injection of oxytocin rescues the lethal feeding behaviour in mouse newborns deficient for the imprinted Magel2 gene. Hum. Mol. Genet. 2010, 19, 4895–4905. [Google Scholar] [CrossRef] [PubMed]
- Meziane, H.; Schaller, F.; Bauer, S.; Villard, C.; Matarazzo, V.; Riet, F.; Guillon, G.; Lafitte, D.; Desarmenien, M.G.; Tauber, M.; et al. An Early Postnatal Oxytocin Treatment Prevents Social and Learning Deficits in Adult Mice Deficient for Magel2, a Gene Involved in Prader-Willi Syndrome and Autism. Biol. Psychiatry 2015, 78, 85–94. [Google Scholar] [CrossRef]
- Tauber, M.; Mantoulan, C.; Copet, P.; Jauregui, J.; Demeer, G.; Diene, G.; Roge, B.; Laurier, V.; Ehlinger, V.; Arnaud, C.; et al. Oxytocin may be useful to increase trust in others and decrease disruptive behaviours in patients with Prader-Willi syndrome: A randomised placebo-controlled trial in 24 patients. Orphanet J. Rare Dis. 2011, 6, 47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Einfeld, S.L.; Smith, E.; McGregor, I.S.; Steinbeck, K.; Taffe, J.; Rice, L.J.; Horstead, S.K.; Rogers, N.; Hodge, M.A.; Guastella, A.J. A double-blind randomized controlled trial of oxytocin nasal spray in Prader Willi syndrome. Am. J. Med. Genetics. Part A 2014, 164A, 2232–2239. [Google Scholar] [CrossRef] [PubMed]
- Kuppens, R.J.; Donze, S.H.; Hokken-Koelega, A.C. Promising effects of oxytocin on social and food-related behaviour in young children with Prader-Willi syndrome: A randomized, double-blind, controlled crossover trial. Clin. Endocrinol. 2016, 85, 979–987. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, J.L.; Tamura, R.; Butler, M.G.; Kimonis, V.; Sulsona, C.; Gold, J.A.; Driscoll, D.J. Oxytocin treatment in children with Prader-Willi syndrome: A double-blind, placebo-controlled, crossover study. Am. J. Med. Genetics. Part A 2017, 173, 1243–1250. [Google Scholar] [CrossRef] [Green Version]
- Tauber, M.; Boulanouar, K.; Diene, G.; Cabal-Berthoumieu, S.; Ehlinger, V.; Fichaux-Bourin, P.; Molinas, C.; Faye, S.; Valette, M.; Pourrinet, J.; et al. The Use of Oxytocin to Improve Feeding and Social Skills in Infants with Prader-Willi Syndrome. Pediatrics 2017, 139, e20162976. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Damen, L.; Grootjen, L.N.; Juriaans, A.F.; Donze, S.H.; Huisman, T.M.; Visser, J.A.; Delhanty, P.J.D.; Hokken-Koelega, A.C.S. Oxytocin in young children with Prader-Willi syndrome: Results of a randomized, double-blind, placebo-controlled, crossover trial investigating 3 months of oxytocin. Clin. Endocrinol. 2021, 94, 774–785. [Google Scholar] [CrossRef] [PubMed]
- Hollander, E.; Levine, K.G.; Ferretti, C.J.; Freeman, K.; Doernberg, E.; Desilva, N.; Taylor, B.P. Intranasal oxytocin versus placebo for hyperphagia and repetitive behaviors in children with Prader-Willi Syndrome: A randomized controlled pilot trial. J. Psychiatr. Res. 2021, 137, 643–651. [Google Scholar] [CrossRef]
- Rhythm Pharmaceuticals, Inc. A Ph 2, Randomized, Double-Blind, Placebo-Controlled Pilot Study to Assess the Effects of RM-493, a Melanocortin 4 Receptor (MC4R) Agonist, in Obese Subjects with Prader-Willi Syndrome (PWS) on Safety, Weight Reduction, and Food-Related Behaviors. Available online: https://clinicaltrials.gov/ct2/show/NCT02311673 (accessed on 2 November 2022).
- Duis, J.; van Wattum, P.J.; Scheimann, A.; Salehi, P.; Brokamp, E.; Fairbrother, L.; Childers, A.; Shelton, A.R.; Bingham, N.C.; Shoemaker, A.H.; et al. A Multidisciplinary Approach to the Clinical Management of Prader–Willi Syndrome. Mol. Genet. Genom. Med. 2019, 7, e514. [Google Scholar] [CrossRef]
- Miller, J.; Roof, E.; Butler, M.G.; Kimonis, V.; Angulo, M.; Folster, C.; Hylan, M.; Fred, T.; Fiedorek, F.T. Results of a Phase 2 Study of the Melanocortin (MC)-4 Receptor (R) Agonist Setmelanotide (SET) in Prader-Willi Syndrome (PWS). In Proceedings of the 2017 PWSA 34th Scientific Day National Convention, Orlando, FL, USA, 15–18 November 2017. [Google Scholar]
- Markham, A. Setmelanotide: First Approval. Drugs 2021, 81, 397–403. [Google Scholar] [CrossRef]
- Baver, S.B.; Hope, K.; Guyot, S.; Bjorbaek, C.; Kaczorowski, C.; O’Connell, K.M. Leptin modulates the intrinsic excitability of AgRP/NPY neurons in the arcuate nucleus of the hypothalamus. J. Neurosci. 2014, 34, 5486–5496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baquero, A.F.; de Solis, A.J.; Lindsley, S.R.; Kirigiti, M.A.; Smith, M.S.; Cowley, M.A.; Zeltser, L.M.; Grove, K.L. Developmental switch of leptin signaling in arcuate nucleus neurons. J. Neurosci. 2014, 34, 9982–9994. [Google Scholar] [CrossRef] [Green Version]
- Spanswick, D.; Smith, M.A.; Groppi, V.E.; Logan, S.D.; Ashford, M.L. Leptin inhibits hypothalamic neurons by activation of ATP-sensitive potassium channels. Nature 1997, 390, 521–525. [Google Scholar] [CrossRef] [PubMed]
- van den Top, M.; Lee, K.; Whyment, A.D.; Blanks, A.M.; Spanswick, D. Orexigen-sensitive NPY/AgRP pacemaker neurons in the hypothalamic arcuate nucleus. Nat. Neurosci. 2004, 7, 493–494. [Google Scholar] [CrossRef] [PubMed]
- Stricker-Krongrad, A.; Barbanel, G.; Beck, B.; Burlet, A.; Nicolas, J.P.; Burlet, C. K(+)-stimulated neuropeptide Y release into the paraventricular nucleus and relation to feeding behavior in free-moving rats. Neuropeptides 1993, 24, 307–312. [Google Scholar] [CrossRef] [PubMed]
- Ruud, J.; Steculorum, S.M.; Bruning, J.C. Neuronal control of peripheral insulin sensitivity and glucose metabolism. Nat. Commun. 2017, 8, 15259. [Google Scholar] [CrossRef] [Green Version]
- Kishore, P.; Boucai, L.; Zhang, K.; Li, W.; Koppaka, S.; Kehlenbrink, S.; Schiwek, A.; Esterson, Y.B.; Mehta, D.; Bursheh, S.; et al. Activation of K(ATP) channels suppresses glucose production in humans. J. Clin. Investig. 2011, 121, 4916–4920. [Google Scholar] [CrossRef] [PubMed]
- Kimonis, V.; Surampalli, A.; Wencel, M.; Gold, J.-A.; Cowen, N.M. A Randomized Pilot Efficacy and Safety Trial of Diazoxide Choline Controlled-Release in Patients with Prader-Willi Syndrome. PLoS ONE 2019, 14, e0221615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Butler, M.G.; Bittel, D.C. Plasma Obestatin and Ghrelin Levels in Subjects with Prader–Willi Syndrome. Am. J. Med. Genet. Part A 2007, 143A, 415–421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Millendo Therapeutics SAS. A Phase 2b/3 Study to Evaluate the Safety, Tolerability, and Effects of Livoletide (AZP-531), an Unacylated Ghrelin Analogue, on Food-Related Behaviors in Patients with Prader-Willi Syndrome. Available online: https://clinicaltrials.gov/ct2/show/NCT03790865 (accessed on 1 November 2022).
- Thomas, A.; Baillie, G.L.; Phillips, A.M.; Razdan, R.K.; Ross, R.A.; Pertwee, R.G. Cannabidiol Displays Unexpectedly High Potency as an Antagonist of CB1 and CB2 Receptor Agonists in Vitro. Br. J. Pharmacol. 2009, 150, 613–623. [Google Scholar] [CrossRef] [PubMed]
- Van Bloemendaal, L.; ten Kulve, J.S.; la Fleur, S.E.; Ijzerman, R.G.; Diamant, M. Effects of Glucagon-like Peptide 1 on Appetite and Body Weight: Focus on the CNS. J. Endocrinol. 2013, 221, T1–T16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salehi, P.; Hsu, I.; Azen, C.G.; Mittelman, S.D.; Geffner, M.E.; Jeandron, D. Effects of Exenatide on Weight and Appetite in Overweight Adolescents and Young Adults with Prader-Willi Syndrome. Pediatr. Obes. 2016, 12, 221–228. [Google Scholar] [CrossRef]
- Bravo, G.L.; Poje, A.B.; Perissinotti, I.; Marcondes, B.F.; Villamar, M.F.; Manzardo, A.M.; Luque, L.; LePage, J.F.; Stafford, D.; Fregni, F.; et al. Transcranial Direct Current Stimulation Reduces Food-Craving and Measures of Hyperphagia Behavior in Participants with Prader-Willi Syndrome. Am. J. Med. Genet. Part B Neuropsychiatr. Genet. 2015, 171, 266–275. [Google Scholar] [CrossRef] [PubMed]
- Azevedo, C.C.; Trevizol, A.P.; Gomes, J.S.; Akiba, H.; Franco, R.R.; Simurro, P.B.; Ianni, R.M.; Grigolon, R.B.; Blumberger, D.M.; Dias, A.M. Transcranial Direct Current Stimulation for Prader-Willi Syndrome. J. ECT 2020, 37, 58–63. [Google Scholar] [CrossRef]
- Poje, A.B.; Manzardo, A.; Gustafson, K.M.; Liao, K.; Martin, L.E.; Butler, M.G. Effects of Transcranial Direct Current Stimulation (TDCS) on Go/NoGo Performance Using Food and Non-Food Stimuli in Patients with Prader–Willi Syndrome. Brain Sci. 2021, 11, 250. [Google Scholar] [CrossRef] [PubMed]
- Gabrielli, A.; Poje, A.B.; Manzardo, A.; Butler, M.G. Startle response analysis of food-image processing in Prader-Willi Syndrome. J. Rare Disord. 2018, 6, 18–27. [Google Scholar]
- Alqahtani, A.R.; Elahmedi, M.O.; Al Qahtani, A.R.; Lee, J.; Butler, M.G. Laparoscopic Sleeve Gastrectomy in Children and Adolescents with Prader-Willi Syndrome: A Matched-Control Study. Surg. Obes. Relat. Dis. 2016, 12, 100–110. [Google Scholar] [CrossRef] [PubMed]
- Fong, A.K.W.; Wong, S.K.H.; Lam, C.C.H.; Ng, E.K.W. Ghrelin Level and Weight Loss after Laparoscopic Sleeve Gastrectomy and Gastric Mini-Bypass for Prader–Willi Syndrome in Chinese. Obes. Surg. 2012, 22, 1742–1745. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.Y.; Wong, S.K.; Lam, C.C.; Ng, E.K. Bariatric Surgery for Prader-Willi Syndrome Was Ineffective in Producing Sustainable Weight Loss: Long Term Results for up to 10 Years. Pediatr. Obes. 2019, 15, e12575. [Google Scholar] [CrossRef] [PubMed]
- Scheimann, A.; Butler, M.; Gourash, L.; Cuffari, C.; Klish, W. Critical Analysis of Bariatric Procedures in Prader-Willi Syndrome. J. Pediatr. Gastroenterol. Nutr. 2008, 46, 80–83. [Google Scholar] [CrossRef] [PubMed]
- De Peppo, F.; Di Giorgio, G.; Germani, M.; Ceriati, E.; Marchetti, P.; Galli, C.; Ubertini, M.G.; Spera, S.; Ferrante, G.; Cuttini, M.; et al. BioEnterics Intragastric Balloon for Treatment of Morbid Obesity in Prader–Willi Syndrome: Specific Risks and Benefits. Obes. Surg. 2008, 18, 1443–1449. [Google Scholar] [CrossRef] [PubMed]
- Smathers, S.A.; Wilson, J.G.; Nigro, M.A. Topiramate Effectiveness in Prader-Willi Syndrome. Pediatr. Neurol. 2003, 28, 130–133. [Google Scholar] [CrossRef] [PubMed]
- Consoli, A.; Çabal Berthoumieu, S.; Raffin, M.; Thuilleaux, D.; Poitou, C.; Coupaye, M.; Pinto, G.; Lebbah, S.; Zahr, N.; Tauber, M.; et al. Effect of Topiramate on Eating Behaviours in Prader-Willi Syndrome: TOPRADER Double-Blind Randomised Placebo-Controlled Study. Transl. Psychiatry 2019, 9, 274. [Google Scholar] [CrossRef] [Green Version]
- Symons, F.J.; Butler, M.G.; Sanders, M.D.; Feurer, I.D.; Thompson, T. Self-Injurious Behavior and Prader-Willi Syndrome: Behavioral Forms and Body Locations. Am. J. Ment. Retard. 1999, 104, 260–269. [Google Scholar] [CrossRef]
- Holland, A.; Manning, K. T-VNS to Treat Disorders of Behaviour in Prader-Willi Syndrome and in People with Other Neurodevelopmental Conditions. Auton. Neurosci. 2022, 239, 102955. [Google Scholar] [CrossRef] [PubMed]
- Dykens, E.M.; Miller, J.; Angulo, M.; Roof, E.; Reidy, M.; Hatoum, H.T.; Willey, R.; Bolton, G.; Korner, P. Intranasal Carbetocin Reduces Hyperphagia in Individuals with Prader-Willi Syndrome. JCI Insight 2018, 3, e98333. [Google Scholar] [CrossRef]
- Tan, Q.; Orsso, C.E.; Deehan, E.C.; Triador, L.; Field, C.J.; Tun, H.M.; Han, J.C.; Müller, T.D.; Haqq, A.M. Current and Emerging Therapies for Managing Hyperphagia and Obesity in Prader-Willi Syndrome: A Narrative Review. Obes. Rev. 2020, 21, e12992. [Google Scholar] [CrossRef] [PubMed]
- Muscogiuri, G.; Barrea, L.; Faggiano, F.; Maiorino, M.I.; Parrillo, M.; Pugliese, G.; Ruggeri, R.M.; Scarano, E.; Savastano, S.; Colao, A. Obesity in Prader–Willi Syndrome: Physiopathological Mechanisms, Nutritional and Pharmacological Approaches. J. Endocrinol. Investig. 2021, 44, 2057–2070. [Google Scholar] [CrossRef]
- Butler, M.G. Single Gene and Syndromic Causes of Obesity: Illustrative Examples. Prog. Mol. Biol. Transl. Sci. 2016, 140, 1–45. [Google Scholar]
- Duis, J.; Butler, M.G. Syndromic and Nonsyndromic Obesity: Underlying Genetic Causes in Humans. Adv. Biol. 2022, 6, e2101154. [Google Scholar] [CrossRef]
Mechanism of Action | Studies Reviewed | Age Range | Reason Chosen for Treatment |
---|---|---|---|
Beloranib Beloranib inhibits methionine aminopeptidase 2 (MetAP2) by removing methionine residue from proteins, impacting fat metabolism and adipocyte size in animal models. | McCandless et al. [15] | 12–65 years | Inhibitors of MetAP2 were found to reduce food intake, affect adipose tissue, and reduce fat synthesis with weight loss in humans. |
Oxytocin Oxytocin is a neuropeptide hormone produced in the brain that plays an important role in social interactions and skills, food intake, anxiety, energy expenditure, and body-weight regulation. | Tauber et al. [22] Einfeld et al. [23] Kuppens et al. [24] Miller et al. [25] Tauber et al. [26] Damen at al. [27] Hollander et al. [28] | 18.7–43.6 years >12 years 6–14 years 5–11 years <6 months 3–11 years 5–18 years | Patients with PWS have been reported to have decreased oxytocin-producing neurons. This deficiency could be related to their inability to control their emotions, with poor social adjustment and food intake. |
Setmelanotide Setmelanotide is a melanocortin (MC)-4 receptor agonist that impacts satiety and feeding to decrease eating. | Rhythm Pharmaceuticals [29,30,31] | 16–25 years | Patients with PWS begin marked food seeking and hyperphagia during early childhood and develop extreme obesity over time if not externally controlled. |
Diazoxide choline controlled release (DCCR) DCCR is a benzothiadiazine that acts by stimulating ion flux through ATP-sensitive K+ channels used to treat infants, children, and adults with hyperinsulinemia hypoglycemia. | Kimonis et al. [40] | 10–22 years | Hyperphagia in PWS relates to dysregulation of neuropeptide Y/Agouti Related Protein/Gamma-aminobutyric Acid (NAG) neurons, which are regulated by leptin via the reduction of their excitability. This dysregulation results in marked elevations in the synthesis and secretion of NPY, the most potent endogenous neuropeptide. Leptin’s activation of adenosine triphosphate (ATP)-sensitive potassium channels (KATP) via phosphoinositide-3-kinase (PI3-K) serves to hyperpolarize the resting membrane potential, resulting in a limitation of the release of NPY by these neurons, thus blunting the hyperphagia signal. |
Livoletide Livoletide is an inactive ghrelin analogue which works by decreasing the amount of the active form of ghrelin in the brain. Ghrelin is a neuropeptide produced by the stomach which directly stimulates eating behavior in the hypothalamus in humans. | Millendo Therapeutics SAS [42] | 8–65 years | Patients with PWS have elevated ghrelin levels. |
Exenatide Glucagon-like peptide-1 (GLP-1) is a hormone synthesized from L- cells of the ileum and colon and released in response to food intake. GLP-1 receptor agonists such as Exenatide affect weight loss in the form of a delay in gastric emptying and decreased appetite. | Salehi et al. [45] | 13–25 years | Exenatide is a GLP-1 receptor agonist and its use has resulted in persistent weight loss in animals and obese adults. |
Transcranial direct-current stimulation (tDCS) Transcranial direct-current stimulation (tDCS) is a safe, painless, and non-invasive technique to modify neuronal and cognitive function in areas of the brain to help modulate food craving. | Bravo et al. [46] Poje et al. [48] Gabrielli et al. [49] | 18–64 years 19–44 years 16–65 years | The dorsolateral prefrontal cortex (DLPFC) is involved in the regulation and processing of food craving and motivation in humans. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahmoud, R.; Kimonis, V.; Butler, M.G. Clinical Trials in Prader–Willi Syndrome: A Review. Int. J. Mol. Sci. 2023, 24, 2150. https://doi.org/10.3390/ijms24032150
Mahmoud R, Kimonis V, Butler MG. Clinical Trials in Prader–Willi Syndrome: A Review. International Journal of Molecular Sciences. 2023; 24(3):2150. https://doi.org/10.3390/ijms24032150
Chicago/Turabian StyleMahmoud, Ranim, Virginia Kimonis, and Merlin G. Butler. 2023. "Clinical Trials in Prader–Willi Syndrome: A Review" International Journal of Molecular Sciences 24, no. 3: 2150. https://doi.org/10.3390/ijms24032150
APA StyleMahmoud, R., Kimonis, V., & Butler, M. G. (2023). Clinical Trials in Prader–Willi Syndrome: A Review. International Journal of Molecular Sciences, 24(3), 2150. https://doi.org/10.3390/ijms24032150