Interactions between Bitter Taste Receptor Gene Variants and Dietary Intake Are Associated with the Incidence of Type 2 Diabetes Mellitus in Middle-Aged and Older Korean Adults
Abstract
:1. Introduction
2. Results
2.1. General Characteristics of the Study Population
2.2. Dietary Intake according to TAS2R4 Genotype
2.3. Clinical Parameters Associated with T2DM according to TAS2R4 Genotype
2.4. Associations between TAS2R4 Genotype and T2DM Incidence
2.5. Interactions between TAS2R4 Genotype and Dietary Intake in Relation to T2DM Incidence
3. Discussion
4. Materials and Methods
4.1. Data Source and Study Population
4.2. Genotyping and SNP Selection
4.3. Dietary Assessment
4.4. Definition of T2DM
4.5. Statistical Analyses
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- International Diabetes Federation. IDF Diabetes Atlas, 10th ed.; International Diabetes Federation: Brussels, Belgium, 2021; Available online: https://diabetesatlas.org/atlas/tenth-edition/ (accessed on 3 July 2022).
- Institute for Health Metrics and Evaluation. Available online: https://www.healthdata.org/south-korea (accessed on 3 July 2022).
- Jung, C.H.; Son, J.W.; Kang, S.; Kim, W.J.; Kim, H.-S.; Kim, H.S.; Seo, M.; Shin, H.J.; Lee, S.S.; Jeong, S.J.; et al. Diabetes fact sheets in Korea, 2020: An appraisal of current status. Diabetes Metab. J. 2021, 45, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Sladek, R.; Rocheleau, G.; Rung, J.; Dina, C.; Shen, L.; Serre, D.; Boutin, P.; Vincent, D.; Belisle, A.; Hadjadj, S.; et al. A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature 2007, 445, 881–885. [Google Scholar] [CrossRef] [PubMed]
- Cho, Y.S.; Chen, C.H.; Hu, C.; Long, J.; Hee Ong, R.T.; Sim, X.; Takeuchi, F.; Wu, Y.; Go, M.J.; Yamauchi, T.; et al. Meta-analysis of genome-wide association studies identifies eight new loci for type 2 diabetes in east Asians. Nat. Genet. 2012, 44, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Go, M.J.; Hwang, J.Y.; Park, T.J.; Kim, Y.J.; Oh, J.H.; Kim, Y.J.; Han, B.G.; Kim, B.J. Genome-wide association study identifies two novel Loci with sex-specific effects for type 2 diabetes mellitus and glycemic traits in a Korean population. Diabetes Metab. J. 2014, 38, 375–387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, Y.J.; Go, M.J.; Hu, C.; Hong, C.B.; Kim, Y.K.; Lee, J.Y.; Hwang, J.Y.; Oh, J.H.; Kim, D.J.; Kim, N.H.; et al. Large-scale genome-wide association studies in East Asians identify new genetic loci influencing metabolic traits. Nat. Genet. 2011, 43, 990–995. [Google Scholar] [CrossRef]
- Drewnowski, A. Taste preferences and food intake. Annu. Rev. Nutr. 1997, 17, 237. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Bailo, B.; Toguri, C.; Eny, K.M.; El-Sohemy, A. Genetic variation in taste and its influence on food selection. OMICS J. Integr. Biol. 2009, 13, 69–80. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Carrión, R.; Sorlí, J.V.; Coltell, O.; Pascual, E.C.; Ortega-Azorín, C.; Barragán, R.; Giménez-Alba, I.M.; Alvarez-Sala, A.; Fitó, M.; Ordovas, J.M.; et al. Sweet taste preference: Relationships with other tastes, liking for sugary foods and exploratory genome-wide association analysis in subjects with metabolic syndrome. Biomedicines 2021, 10, 79. [Google Scholar] [CrossRef]
- Ramos-Lopez, O.; Panduro, A.; Martinez-Lopez, E.; Roman, S. Sweet taste receptor TAS1R2 polymorphism (Val191Val) is associated with a higher carbohydrate intake and hypertriglyceridemia among the population of West Mexico. Nutrients 2016, 8, 101. [Google Scholar] [CrossRef] [Green Version]
- Di Bona, D.; Malovini, A.; Accardi, G.; Aiello, A.; Candore, G.; Ferrario, A.; Ligotti, M.E.; Maciag, A.; Puca, A.A.; Caruso, C. Taste receptor polymorphisms and longevity: A systematic review and meta-analysis. Aging Clin. Exp. Res. 2021, 33, 2369–2377. [Google Scholar] [CrossRef]
- Dotson, C.D.; Zhang, L.; Xu, H.; Shin, Y.K.; Vigues, S.; Ott, S.H.; Elson, A.E.; Choi, H.J.; Shaw, H.; Egan, J.M.; et al. Bitter taste receptors influence glucose homeostasis. PLoS ONE 2008, 3, e3974. [Google Scholar] [CrossRef] [Green Version]
- Choi, J.H.; Lee, J.; Choi, I.J.; Kim, Y.W.; Ryu, K.W.; Kim, J. Genetic variation in the TAS2R38 bitter taste receptor and gastric cancer risk in Koreans. Sci. Rep. 2016, 6, 26904. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.H.; Lee, J.; Oh, J.H.; Chang, H.J.; Sohn, D.K.; Shin, A.; Kim, J. Variations in the bitterness perception-related genes TAS2R38 and CA6 modify the risk for colorectal cancer in Koreans. Oncotarget 2017, 8, 21253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baharuddin, A.; Sharifudin, M.S. The impact of geographical location on taste sensitivity and preference. Int. Food Res. J. 2015, 22, 731–738. [Google Scholar]
- Ahrens, W. Sensory taste preferences and taste sensitivity and the association of unhealthy food patterns with overweight and obesity in primary school children in Europe—A synthesis of data from the IDEFICS study. Flavour 2015, 4, 8. [Google Scholar] [CrossRef] [Green Version]
- Cummings, D.E.; Overduin, J. Gastrointestinal regulation of food intake. J. Clin. Investig. 2007, 117, 13–23. [Google Scholar] [CrossRef]
- Keller, M.; Liu, X.; Wohland, T.; Rohde, K.; Gast, M.T.; Stumvoll, M.; Kovacs, P.; Tönjes, A.; Böttcher, Y. TAS2R38 and its influence on smoking behavior and glucose homeostasis in the German Sorbs. PLoS ONE 2013, 8, e80512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, P.; Zhang, C.H.; Lifshitz, L.M.; ZhuGe, R. Extraoral bitter taste receptors in health and disease. J. Gen. Physiol. 2017, 149, 181–197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yarmolinsky, D.A.; Zuker, C.S.; Ryba, N.J.P. Common sense about taste: From mammals to insects. Cell 2009, 139, 234–244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, D.; Jones, G.; Zhang, S. Dynamic evolution of bitter taste receptor genes in vertebrates. BMC Ecol. Evol. 2009, 9, 12. [Google Scholar] [CrossRef] [Green Version]
- Jang, H.J.; Kokrashvili, Z.; Theodorakis, M.J.; Carlson, O.D.; Kim, B.J.; Zhou, J.; Kim, H.H.; Xu, X.; Chan, S.L.; Juhaszova, M.; et al. Gut-expressed gustducin and taste receptors regulate secretion of glucagon-like peptide-1. Proc. Natl. Acad. Sci. USA 2007, 104, 15069–15074. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.S.; Egan, J.M.; Jang, H.J. Denatonium induces secretion of glucagon-like peptide-1 through activation of bitter taste receptor pathways. Diabetologia 2014, 57, 2117–2125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, C.; Wang, X.; Young, R.L.; Horowitz, M.; Rayner, C.K.; Wu, T. Role of intestinal bitter sensing in enteroendocrine hormone secretion and metabolic control. Front. Endocrinol. 2018, 9, 576. [Google Scholar] [CrossRef] [PubMed]
- Batterham, R.L.; Cowley, M.A.; Small, C.J.; Herzog, H.; Cohen, M.A.; Dakin, C.L.; Wren, A.M.; Brynes, A.E.; Low, M.J.; Ghatei, M.A.; et al. Gut hormone PYY3-36 physiologically inhibits food intake. Nature 2002, 418, 650–654. [Google Scholar] [CrossRef]
- Hosseini, F.; Jayedi, A.; Khan, T.A.; Shab-Bidar, S. Dietary carbohydrate and the risk of type 2 diabetes: An updated systematic review and dose–response meta-analysis of prospective cohort studies. Sci. Rep. 2022, 12, 2491. [Google Scholar] [CrossRef]
- Barouti, A.A.; Tynelius, P.; Lager, A.; Björklund, A. Fruit and vegetable intake and risk of prediabetes and type 2 diabetes: Results from a 20-year long prospective cohort study in Swedish men and women. Eur. J. Nutr. 2022, 61, 3175–3187. [Google Scholar] [CrossRef]
- Wang, P.Y.; Fang, J.C.; Gao, Z.H.; Zhang, C.; Xie, S.Y. Higher intake of fruits, vegetables or their fiber reduces the risk of type 2 diabetes: A meta-analysis. J. Diabetes Investig. 2016, 7, 56–69. [Google Scholar] [CrossRef]
- Lee, K.W.; Woo, H.D.; Cho, M.J.; Park, J.K.; Kim, S.S. Identification of dietary patterns associated with incidence of hyperglycemia in middle-aged and older Korean adults. Nutrients 2019, 11, 1801. [Google Scholar] [CrossRef] [Green Version]
- Qin, J.; Li, Y.; Cai, Z.; Li, S.; Zhu, J.; Zhang, F.; Liang, S.; Zhang, W.; Guan, Y.; Shen, D.; et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 2012, 490, 55–60. [Google Scholar] [CrossRef]
- Navarro-Allende, A.; Khataan, N.; El-Sohemy, A. Impact of genetic and environmental determinants of taste with food preferences in older adults. J. Nutr. Elder. 2008, 27, 267–276. [Google Scholar] [CrossRef]
- Hyde, R.J.; Feller, R.P. Age and sex effects on taste of sucrose, NaCl, citric acid and caffeine. Neurobiol. Aging 1981, 2, 315–318. [Google Scholar] [CrossRef] [PubMed]
- Bawajeeh, A.O.; Albar, S.A.; Zhang, H.; Zulyniak, M.A.; Evans, C.E.; Cade, J.E. Impact of taste on food choices in adolescence—Systematic review and meta-analysis. Nutrients 2020, 12, 1985. [Google Scholar] [CrossRef] [PubMed]
- Kumari, B.G.; Kumar, Z.N. Evaluation of sweet taste sensitivity in type-II Diabetes Mellitus patients. Int. J. Clin. Biomed. Res. 2020, 6, 10–12. [Google Scholar] [CrossRef]
- Mather, K.; Kim, C.; Christophi, C.; Aroda, V.; Knowler, W.; Edelstein, S.; Florez, J.; Labrie, F.; Kahn, S.; Goldberg, R.B.; et al. Steroid sex hormones, sex hormone–binding globulin, and diabetes incidence in the diabetes prevention program. J. Clin. Endocrinol. Metab. 2015, 100, 3778–3786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goodman-Gruen, D.; Barrett-Connor, E. Sex differences in the association of endogenous sex hormone levels and glucose tolerance status in older men and women. Diabetes Care 2000, 23, 912–918. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.; Han, B.; KoGES Group. Cohort profile: The Korean genome and epidemiology study (KoGES) Consortium. Int. J. Epidemiol. 2016, 46, e20. [Google Scholar] [CrossRef]
- Moon, S.; Kim, Y.J.; Han, S.; Hwang, M.Y.; Shin, D.M.; Park, M.Y.; Lu, Y.; Yoon, K.; Jang, H.M.; Kim, Y.K.; et al. The Korea Biobank Array: Design and identification of coding variants associated with blood biochemical traits. Sci. Rep. 2019, 9, 1382. [Google Scholar] [CrossRef] [Green Version]
- Ahn, Y.; Kwon, E.; Shim, J.; Park, M.; Joo, Y.; Kimm, K.; Park, C.; Kim, D.H. Validation and reproducibility of food frequency questionnaire for Korean genome epidemiologic study. Eur. J. Clin. Nutr. 2007, 61, 1435–1441. [Google Scholar] [CrossRef]
- Ahn, Y.; Lee, J.E.; Paik, H.Y.; Lee, H.K.; Jo, I.; Kim, K. Development of a semi-quantitative food frequency questionnaire based on dietary data from the Korea National Health and Nutrition Examination Survey. Nutr. Sci. 2003, 6, 173–184. [Google Scholar]
- National Institute of Agricultural Sciences (KR). Korean Standard Food Composition Table, 9th Revision; National Institute of Agricultural Sciences: Wanju, Republic of Korea, 2017. Available online: http://koreanfood.rda.go.kr/kfi/fct/fctIntro/list?menuId=PS03562 (accessed on 28 April 2022).
- World Health Organization. Definition and Diagnosis of Diabetes Mellitus and Intermediate Hyperglycaemia: Report of a WHO/IDF Consultation. 2006. Available online: https://apps.who.int/iris/bitstream/handle/10665/43588/9241594934_eng.pdf (accessed on 3 July 2022).
- American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 2014, 37, S81–S90. [Google Scholar] [CrossRef]
Men | Women | |||||||
---|---|---|---|---|---|---|---|---|
rs2233998 Genotype | p-Value | rs2233998 Genotype | p-Value | |||||
CC | CT | TT | CC | CT | TT | |||
(n = 1029, 47.18%) | (n = 937, 42.96%) | (n = 215, 9.86%) | (n = 1037, 43.74%) | (n = 1080, 45.55%) | (n = 254, 10.71%) | |||
Age, yr | 50.7 ± 8.2 | 50.5 ± 8.3 | 50.2 ± 8.2 | 0.6193 | 51.9 ± 8.6 | 51.0 ± 8.4 | 52.3 ± 8.7 | 0.0169 |
Area of residence | 0.5071 | 0.6872 | ||||||
Ansung (rural) | 404 (39.3) | 374 (39.9) | 90 (41.9) | 549 (52.9) | 561 (51.9) | 142 (55.9) | ||
Ansan (urban) | 625 (60.7) | 563 (60.1) | 125 (58.1) | 488 (47.1) | 519 (48.1) | 112 (44.1) | ||
Education level | 0.9328 | 0.6399 | ||||||
≤elementary school | 167 (16.2) | 155 (16.5) | 32 (14.9) | 448 (43.2) | 419 (38.8) | 112 (44.1) | ||
middle/high school | 622 (60.5) | 570 (60.8) | 132 (61.4) | 526 (50.7) | 589 (54.5) | 131 (51.6) | ||
≥college | 240 (22.6) | 212 (22.6) | 51 (23.7) | 63 (6.1) | 72 (6.7) | 11 (4.3) | ||
Smoking status | 0.3963 | 0.2090 | ||||||
Never | 218 (21.2) | 193 (20.6) | 37 (17.2) | 1008 (97.2) | 1031 (95.5) | 245 (96.5) | ||
Past | 337 (32.8) | 295 (31.5) | 79 (36.7) | 6 (0.6) | 16 (1.5) | 2 (0.8) | ||
Current | 474 (46.1) | 449 (47.9) | 99 (46.1) | 23 (2.2) | 33 (3.1) | 7 (2.8) | ||
Alcohol consumption, g/d | 17.3 ± 25.2 | 18.8 ± 28.0 | 18.2 ± 29.8 | 0.4719 | 1.0 ± 4.3 | 1.4 ± 5.5 | 1.4 ± 4.6 | 0.1498 |
Body mass index, kg/m2 | 24.3 ± 2.8 | 24.3 ± 3.0 | 24.2 ± 2.8 | 0.7566 | 24.7 ± 3.1 | 24.7 ± 3.1 | 24.5 ± 3.2 | 0.6736 |
Total physical activity, MET-h/wk | 164.2 ± 99.3 | 168.8 ± 104.4 | 169.1 ± 114.9 | 0.5724 | 168.9 ± 106.8 | 162.1 ± 98.5 | 168.2 ± 99.1 | 0.2882 |
Family history of diabetes | 0.6285 | 0.4836 | ||||||
Yes | 97 (9.4) | 90 (9.6) | 23 (10.7) | 123 (11.9) | 123 (11.4) | 26 (10.2) | ||
No | 932 (90.6) | 847 (90.4) | 192 (89.3) | 914 (88.1) | 957 (88.6) | 228 (89.8) |
Men | Women | |||||||
---|---|---|---|---|---|---|---|---|
rs2233998 Genotype | p-Value | rs2233998 Genotype | p-Value | |||||
CC | CT | TT | CC | CT | TT | |||
Energy, kcal/d | 2049 ± 536 | 2027 ± 578 | 2062 ± 563 | 0.3902 | 1815 ± 544 | 1915 ± 636 | 1912 ± 649 | 0.0636 |
Nutrient intake | ||||||||
% Energy from carbohydrates | 72.9 ± 6.7 | 72.4 ± 6.7 | 72.4 ± 6.6 | 0.5604 | 75.5 ± 6.6 | 75.0 ± 6.9 | 74.8 ± 7.2 | 0.3545 |
% Energy from fat | 14.2 ± 5.0 | 14.5 ± 5.0 | 14.5 ± 4.9 | 0.6854 | 11.9 ± 4.8 | 12.3 ± 5.1 | 12.4 ± 5.3 | 0.3275 |
% Energy from total protein | 12.9 ± 2.1 | 13.1 ± 2.3 | 13.1 ± 2.3 | 0.4464 | 12.6 ± 2.3 | 12.7 ± 2.4 | 12.8 ± 2.4 | 0.5907 |
Sugar, g/d | 33.2 ± 15.4 | 35.3 ± 16.4 | 34.7 ± 16.1 | 0.2019 | 40.3 ± 21.8 | 40.6 ± 22.2 | 40.9 ± 21.8 | 0.9178 |
Dietary fiber, g/d | 12.3 ± 4.7 | 12.9 ± 5.2 | 12.9 ± 5.1 | 0.2903 | 15.3 ± 6.1 | 14.9 ± 6.5 | 15.2 ± 6.2 | 0.5290 |
Food-group consumption, g/d | ||||||||
Grains and grain products | 824.9 ± 231.6 | 790.9 ± 226.4 | 806.8 ± 208.1 | 0.0708 | 722.1 ± 216.3 | 748.9 ± 258.0 | 743.6 ± 254.6 | 0.3123 |
Vegetables | 115.4 ± 96.0 | 117.6 ± 103.6 | 118.2 ± 97.5 | 0.9322 | 130.7 ± 128.1 | 129.4 ± 113.6 | 132.0 ± 137.5 | 0.8934 |
Fruits | 192.3 ± 225.7 | 219.2 ± 252.9 | 215.0 ± 249.8 | 0.3582 | 283.4 ± 296.8 | 306.5 ± 350.9 | 305.6 ± 376.4 | 0.6326 |
Meat, eggs, and fish | 121.6 ± 86.9 | 126.0 ± 82.2 | 130.0 ± 89.7 | 0.3445 | 85.8 ± 63.6 | 97.9 ± 79.3 | 97.9 ± 95.2 | 0.1005 |
Milk and dairy products | 100.6 ± 119.2 | 104.2 ± 138.6 | 104.1 ± 134.3 | 0.9341 | 106.8 ± 124.1 | 116.5 ± 134.1 | 121.1 ± 150.3 | 0.3302 |
Soft drinks | 29.5 ± 49.7 | 32.9 ± 56.9 | 31.6 ± 57.3 | 0.7030 | 14.5 ± 48.5 | 19.1 ± 56.2 | 17.6 ± 53.2 | 0.4602 |
Sweets and oils | 11.2 ± 10.9 | 11.5 ± 11.4 | 11.4 ± 10.9 | 0.9317 | 7.2 ± 8.2 | 7.3 ± 8.8 | 7.2 ± 8.5 | 0.9932 |
Men | Women | |||||||
---|---|---|---|---|---|---|---|---|
rs2233998 Genotype | p-Value | rs2233998 Genotype | p-Value | |||||
CC | CT | TT | CC | CT | TT | |||
Fasting glucose level (mg/dL) (n = 2175, 2362) | 84.0 ± 9.7 | 85.5 ± 9.3 | 85.1 ± 9.0 | 0.1141 | 82.8 ± 7.4 | 81.3 ± 7.9 | 81.3 ± 7.7 | 0.0151 |
2 h glucose level (mg/dL) (n = 2169, 2356) | 107.6 ± 30.1 | 111.8 ± 32.0 | 113.0 ± 31.3 | 0.0721 | 121.2 ± 29.5 | 117.6 ± 28.2 | 118.4 ± 29.1 | 0.2045 |
Fasting insulin level (uIU/mL) (n = 2175, 2362) | 6.5 ± 3.3 | 6.9 ± 4.0 | 7.1 ± 4.2 | 0.1725 | 8.2 ± 5.6 | 7.9 ± 5.0 | 7.8 ± 4.2 | 0.3746 |
HOMA-IR (n = 2175, 2362) | 1.4 ± 0.8 | 1.5 ± 0.9 | 1.5 ± 0.9 | 0.1579 | 1.7 ± 1.2 | 1.6 ± 1.0 | 1.6 ± 0.9 | 0.1987 |
HbA1c concentration (%) | 5.5 ± 0.3 | 5.6 ± 0.4 | 5.6 ± 0.4 | 0.1126 | 5.6 ± 0.4 | 5.6 ± 0.4 | 5.6 ± 0.4 | 0.5993 |
Impaired fasting glucose level [n (%)] | 62 (6.0) | 70 (7.5) | 18 (8.4) | 0.1226 | 19 (1.8) | 30 (2.8) | 5 (2.0) | 0.4240 |
Insulin resistance [n (%)] | 216 (21.0) | 185 (19.7) | 41 (19.1) | 0.4157 | 223 (21.5) | 239 (22.1) | 75 (29.5) | 0.0292 |
HbA1c 5.7–6.4% [n (%)] | 368 (35.8) | 346 (36.9) | 75 (34.9) | 0.9204 | 351 (33.9) | 352 (32.6) | 90 (35.4) | 0.9537 |
Men | Women | |||||||
---|---|---|---|---|---|---|---|---|
rs2233998 Genotype | p-Value | rs2233998 Genotype | p-Value | |||||
CC | CT | TT | CC | CT | TT | |||
Person-years | 11,962 | 10,891 | 2535 | 12,921 | 13,141 | 3025 | ||
Incident cases (n) | 263 | 248 | 57 | 215 | 229 | 70 | ||
Rate per 1000 person-years | 22.0 | 22.8 | 22.5 | 16.6 | 17.4 | 23.1 | ||
HR (95% CI) | HR (95% CI) | HR (95% CI) | HR (95% CI) | HR (95% CI) | HR (95% CI) | |||
T2DM incidence | Ref. | 1.01 (0.85–1.21) | 1.05 (0.78–1.39) | 0.9536 | Ref. | 1.07 (0.89–1.30) | 1.48 (1.13–1.93) | 0.0182 |
Men | Women | |||||||
---|---|---|---|---|---|---|---|---|
rs2233998 Genotype | p-Value | rs2233998 Genotype | p-Value | |||||
CC | CT | TT | CC | CT | TT | |||
HR (95% CI) | HR (95% CI) | HR (95% CI) | HR (95% CI) | HR (95% CI) | HR (95% CI) | |||
Carbohydrates | 0.6875 | 0.5217 | ||||||
T1 | ref. | 0.99 (0.74–1.33) | 1.25 (0.77–2.01) | ref. | 1.24 (0.89–1.74) | 1.35 (0.79–2.31) | ||
T2 | 0.95 (0.70–1.27) | 0.91 (0.67–1.23) | 0.61 (0.34–1.09) | 1.17 (0.83–1.64) | 1.12 (0.80–1.58) | 1.36 (0.84–2.20) | ||
T3 | 0.90 (0.66–1.22) | 0.99 (0.72–1.35) | 1.19 (0.75–1.90) | 1.07 (0.75–1.52) | 1.12 (0.79–1.58) | 2.08 (1.33–3.27) | ||
Sugars | 0.6258 | 0.0422 | ||||||
T1 | ref. | 1.02 (0.76–1.38) | 0.85 (0.49–1.50) | ref. | 1.15 (0.83–1.59) | 1.45 (0.84–2.51) | ||
T2 | 1.04 (0.78–1.39) | 1.02 (0.75–1.38) | 0.82 (0.49–1.38) | 1.11 (0.80–1.55) | 1.32 (0.96–1.83) | 1.15 (0.70–1.88) | ||
T3 | 0.83 (0.61–1.12) | 0.87 (0.64–1.18) | 1.29 (0.83–2.00) | 1.16 (0.84–1.62) | 1.04 (0.75–1.46) | 2.31 (1.53–3.51) | ||
Vegetables | 0.3644 | 0.1660 | ||||||
T1 | 1.09 (0.81–1.47) | 0.87 (0.63–1.19) | 1.16 (0.70–1.91) | 0.81 (0.57–1.13) | 0.97 (0.70–1.35) | 1.55 (1.02–2.37) | ||
T2 | 1.11 (0.82–1.50) | 1.22 (0.91–1.63) | 1.09 (0.67–1.77) | 1.00 (0.72–1.38) | 0.97 (0.70–1.35) | 1.36 (0.83–2.24) | ||
T3 | ref. | 1.15 (0.85–1.55) | 1.10 (0.66–1.82) | ref. | 1.06 (0.77–1.46) | 1.17 (0.70–1.94) | ||
Fruits | 0.7229 | 0.6041 | ||||||
T1 | 1.11 (0.83–1.50) | 1.05 (0.78–1.43) | 1.45 (0.92–2.27) | 0.92 (0.66–1.28) | 0.99 (0.72–1.37) | 1.62 (1.06–2.48) | ||
T2 | 1.10 (0.81–1.48) | 1.05 (0.77–1.43) | 1.02 (0.62–1.66) | 0.97 (0.70–1.34) | 1.04 (0.76–1.44) | 1.12 (0.66–1.88) | ||
T3 | ref. | 1.15 (0.85–1.56) | 0.85 (0.47–1.56) | ref. | 1.07 (0.77–1.48) | 1.48 (0.91–2.41) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, K.W.; Shin, D. Interactions between Bitter Taste Receptor Gene Variants and Dietary Intake Are Associated with the Incidence of Type 2 Diabetes Mellitus in Middle-Aged and Older Korean Adults. Int. J. Mol. Sci. 2023, 24, 2199. https://doi.org/10.3390/ijms24032199
Lee KW, Shin D. Interactions between Bitter Taste Receptor Gene Variants and Dietary Intake Are Associated with the Incidence of Type 2 Diabetes Mellitus in Middle-Aged and Older Korean Adults. International Journal of Molecular Sciences. 2023; 24(3):2199. https://doi.org/10.3390/ijms24032199
Chicago/Turabian StyleLee, Kyung Won, and Dayeon Shin. 2023. "Interactions between Bitter Taste Receptor Gene Variants and Dietary Intake Are Associated with the Incidence of Type 2 Diabetes Mellitus in Middle-Aged and Older Korean Adults" International Journal of Molecular Sciences 24, no. 3: 2199. https://doi.org/10.3390/ijms24032199
APA StyleLee, K. W., & Shin, D. (2023). Interactions between Bitter Taste Receptor Gene Variants and Dietary Intake Are Associated with the Incidence of Type 2 Diabetes Mellitus in Middle-Aged and Older Korean Adults. International Journal of Molecular Sciences, 24(3), 2199. https://doi.org/10.3390/ijms24032199