Effective or Harmful—Evaluation of Locally Applied Antibiotics on Adipose Tissue during Lipofilling to the Breast—An In Vitro Study
Abstract
:1. Introduction
2. Results
2.1. Stem Cell Characterization
2.2. Gross Morphology
2.3. Hoechst/Propidium Iodide (PI) Fluorescence Staining
2.4. XTT Assay
2.5. G3PDH Assay
2.6. Reactive Oxygen Species (ROS) Assay
2.7. Morphologic Assessment of ADSC
2.8. Analysis of ADSC Differentiation Potential
2.9. Antibiotic Susceptibility Test
3. Discussion
4. Materials and Methods
4.1. Study Design
4.2. Lipoaspirate Harvesting and Sample Processing
4.3. Sample Processing
4.4. Characterization of ADSCs into Osteogenic and Adipogenic Lineages
4.5. Hoechst/Propidium Iodide (PI) Fluorescence Staining
4.6. XTT Assay
4.7. Glycerol 3-Phosphate Dehydrogenase (G3PDH) Assay
4.8. Reactive Oxygen Species (ROS) Assay
4.9. Morphologic Assessment of ADSCs
4.10. Analysis of ADSC Differentiation Potential
4.11. Antibiotic Susceptibility Test
4.12. Statistics
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huang, J.; Chan, P.S.; Lok, V.; Chen, X.; Ding, H.; Jin, Y.; Yuan, J.; Lao, X.-Q.; Zheng, Z.-J.; Wong, M.C. Global incidence and mortality of breast cancer: A trend analysis. Aging 2021, 13, 5748–5803. [Google Scholar] [CrossRef] [PubMed]
- Momenimovahed, Z.; Salehiniya, H. Epidemiological characteristics of and risk factors for breast cancer in the world. Breast Cancer Targets Ther. 2019, 11, 151–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torre, L.A.; Islami, F.; Siegel, R.L.; Ward, E.M.; Jemal, A. Global Cancer in Women: Burden and Trends. Cancer Epidemiol. Biomark. Prev. 2017, 26, 444–457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsang, J.Y.S.; Tse, G.M. Molecular Classification of Breast Cancer. Adv. Anat. Pathol. 2020, 27, 27–35. [Google Scholar] [CrossRef]
- Akram, M.; Iqbal, M.; Daniyal, M.; Khan, A.U. Awareness and current knowledge of breast cancer. Biol. Res. 2017, 50, 33. [Google Scholar] [CrossRef] [Green Version]
- Tukiama, R.; Vieira, R.A.; Moura, E.C.; Oliveira, A.G.; Facina, G.; Zucca-Matthes, G.; Neto, J.N.; de Oliveira, C.M.; Leal, P.D.C. Oncologic safety of breast reconstruction with autologous fat grafting: A systematic review and meta-analysis. Eur. J. Surg. Oncol. (EJSO) 2022, 48, 727–735. [Google Scholar] [CrossRef]
- Gentile, P. Tuberous Breast, Deformities, and Asymmetries: A Retrospective Analysis Comparing Fat Grafting Versus Mastopexy and Breast Implants. Aesthetic Plast Surg. 2022. [Google Scholar] [CrossRef]
- Gentile, P.; Kothari, A.; Casella, D.; Calabrese, C. Fat Graft Enhanced With Adipose-Derived Stem Cells in Aesthetic Breast Augmentation: Clinical, Histological, and Instrumental Evaluation. Aesthet. Surg. J. 2020, 40, 962–977. [Google Scholar] [CrossRef]
- Gentile, P. Breast Silicone Gel Implants versus Autologous Fat Grafting: Biomaterials and Bioactive Materials in Comparison. J. Clin. Med. 2021, 10, 3310. [Google Scholar] [CrossRef]
- Calabrese, S.; Zingaretti, N.; De Francesco, F.; Riccio, M.; De Biasio, F.; Massarut, S.; Almesberger, D.; Parodi, P.C. Long-term impact of lipofilling in hybrid breast reconstruction: Retrospective analysis of two cohorts. Eur. J. Plast. Surg. 2020, 43, 257–268. [Google Scholar] [CrossRef]
- Stillaert, F.B.J.L.; Lannau, B.; Van Landuyt, K.; Blondeel, P.N. The Prepectoral, Hybrid Breast Reconstruction: The Synergy of Lipofilling and Breast Implants. Plast. Reconstr. Surg.-Glob. Open 2020, 8, e2966. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Chen, C. The Efficacy of Cell-Assisted Lipotransfer Versus Conventional Lipotransfer in Breast Augmentation: A Systematic Review and Meta-Analysis. Aesthetic Plast. Surg. 2021, 45, 1478–1486. [Google Scholar] [CrossRef] [PubMed]
- Chopan, M.; White, J.A.; Sayadi, L.R.; Buchanan, P.J.; Katz, A.J. Autogenous Fat Grafting to the Breast and Gluteal Regions: Safety Profile Including Risks and Complications. Plast. Reconstr. Surg. 2019, 143, 1625–1632. [Google Scholar] [CrossRef] [PubMed]
- Gruener, J.S.; Horch, R.E.; Geierlehner, A.; Mueller-Seubert, W.; Cai, A.; Arkudas, A.; Ludolph, I. Is Instillational Topical Negative Pressure Wound Therapy in Peri-Prosthetic Infections of the Breast Effective? A Pilot Study. J. Pers. Med. 2022, 12, 2054. [Google Scholar] [CrossRef]
- Tan, L.-C.; Li, X.-Y.; Lu, Y.-G. Nontuberculous Mycobacteria Infection After Autologous Fat Grafting for Cosmetic Breast Augmentation. Ann. Plast. Surg. 2020, 85, 358–362. [Google Scholar] [CrossRef]
- Gentile, P.; Casella, D.; Palma, E.; Calabrese, C. Engineered Fat Graft Enhanced with Adipose-Derived Stromal Vascular Fraction Cells for Regenerative Medicine: Clinical, Histological and Instrumental Evaluation in Breast Reconstruction. J. Clin. Med. 2019, 8, 504. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Ning, K.; Ling, B.; Chen, X.; Cheng, H.; Lu, B.; Gao, Z.; Xu, J. Multiple Injections of Autologous Adipose-Derived Stem Cells Accelerate the Burn Wound Healing Process and Promote Blood Vessel Regeneration in a Rat Model. Stem Cells Dev. 2019, 28, 1463–1472. [Google Scholar] [CrossRef]
- Brembilla, N.C.; Vuagnat, H.; Boehncke, W.H.; Krause, K.H.; Preynat-Seauve, O. Adipose-Derived Stromal Cells for Chronic Wounds: Scientific Evidence and Roadmap Toward Clinical Practice. Stem Cells Transl. Med. 2022. [Google Scholar] [CrossRef]
- Balouiri, M.; Sadiki, M.; Ibnsouda, S.K. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal. 2016, 6, 71–79. [Google Scholar] [CrossRef] [Green Version]
- Coorevits, L.; Boelens, J.; Claeys, G. Direct susceptibility testing by disk diffusion on clinical samples: A rapid and accurate tool for antibiotic stewardship. Eur. J. Clin. Microbiol. Infect. Dis. 2015, 34, 1207–1212. [Google Scholar] [CrossRef]
- Neopane, P.; Nepal, H.P.; Shrestha, R.; Uehara, O.; Abiko, Y. In vitro biofilm formation by Staphylococcus aureus isolated from wounds of hospital-admitted patients and their association with antimicrobial resistance. Int. J. Gen. Med. 2018, 11, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Duewelhenke, N.; Krut, O.; Eysel, P. Influence on Mitochondria and Cytotoxicity of Different Antibiotics Administered in High Concentrations on Primary Human Osteoblasts and Cell Lines. Antimicrob. Agents Chemother. 2007, 51, 54–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, E.-S.; Maniar, M.; Shah, J.C. Biodegradable polyanhydride devices of cefazolin sodium, bupivacaine, and taxol for local drug delivery: Preparation, and kinetics and mechanism of in vitro release. J. Control. Release 1998, 52, 179–189. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.J.; Gonzalez, D.; Goldman, J.L.; Yogev, R.; Sullivan, J.E.; Reed, M.D.; Anand, R.; Martz, K.; Berezny, K.; Benjamin, D.K.; et al. Pharmacokinetics of Clindamycin in Obese and Nonobese Children. Antimicrob. Agents Chemother. 2017, 61, e02014-16. [Google Scholar] [CrossRef] [Green Version]
- Lillico, R.; Sayre, C.L.; Sitar, D.S.; Davies, N.M.; Baron, C.M.; Lakowski, T.M. Quantification of cefazolin in serum and adipose tissue by ultra high performance liquid chromatography-Tandem mass spectrometry (UHPLC–MS/MS): Application to a pilot study of obese women undergoing cesarean delivery. J. Chromatogr. B 2016, 1031, 94–98. [Google Scholar] [CrossRef]
- Schieber, M.; Chandel, N.S. ROS Function in Redox Signaling and Oxidative Stress. Curr. Biol. 2014, 24, R453–R462. [Google Scholar] [CrossRef] [Green Version]
- Panieri, E.; Santoro, M.M. ROS homeostasis and metabolism: A dangerous liason in cancer cells. Cell Death Dis. 2016, 7, e2253. [Google Scholar] [CrossRef] [Green Version]
- Barré-Sinoussi, F.; Montagutelli, X. Animal models are essential to biological research: Issues and perspectives. Future Sci. OA 2015, 1, FSO63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiu, C.-H.; Lei, K.F.; Chan, Y.-S.; Ueng, S.W.N.; Chen, A.C.-Y. Real-time detection of antibiotics cytotoxicity in rabbit periosteal cells using microfluidic devices with comparison to conventional culture assays. BMC Musculoskelet. Disord. 2019, 20, 339. [Google Scholar] [CrossRef] [Green Version]
- Diehm, Y.F.; Thomé, J.; Will, P.; Kotsougiani-Fischer, D.; Haug, V.F.; Siegwart, L.C.; Kneser, U.; Fischer, S. Stem-cell enriched hybrid breast reconstruction reduces risk for capsular contracture in a hybrid breast reconstruction animal model. Plast. Reconstr. Surg. 2022, accepted. [Google Scholar]
- Reichenberger, M.A.; Mueller, W.; Hartmann, J.; Diehm, Y.; Lass, U.; Koellensperger, E.; Leimer, U.; Germann, G.; Fischer, S. ADSCs in a fibrin matrix enhance nerve regeneration after epineural suturing in a rat model. Microsurgery 2015, 36, 491–500. [Google Scholar] [CrossRef] [PubMed]
- Treangen, T.J.; Maybank, R.A.; Enke, S.; Friss, M.B.; Diviak, L.F.; Karaolis, D.K.R.; Koren, S.; Ondov, B.; Phillippy, A.M.; Bergman, N.H.; et al. Complete Genome Sequence of the Quality Control Strain Staphylococcus aureus subsp. aureus ATCC 25923. Genome Announc. 2014, 2, e01110-14. [Google Scholar] [CrossRef] [PubMed]
- Institute CaLS. 2021. Available online: https://clsi.org/ (accessed on 6 January 2022).
Group | Control | AB1 | AB2 | AB3 | AB4 | AB5 |
---|---|---|---|---|---|---|
Clindamycin phosphate (µg/mL) | 0 | 15 | 90 | 540 | 3240 | 12,000 |
Cefazolin (µg/mL) | 0 | 15 | 90 | 540 | 3240 | 19,440 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Diehm, Y.F.; Gazyakan, E.; Wang, Y.; Siegwart, L.C.; Haug, V.; Kotsougiani-Fischer, D.; Kneser, U.; Fischer, S. Effective or Harmful—Evaluation of Locally Applied Antibiotics on Adipose Tissue during Lipofilling to the Breast—An In Vitro Study. Int. J. Mol. Sci. 2023, 24, 2323. https://doi.org/10.3390/ijms24032323
Diehm YF, Gazyakan E, Wang Y, Siegwart LC, Haug V, Kotsougiani-Fischer D, Kneser U, Fischer S. Effective or Harmful—Evaluation of Locally Applied Antibiotics on Adipose Tissue during Lipofilling to the Breast—An In Vitro Study. International Journal of Molecular Sciences. 2023; 24(3):2323. https://doi.org/10.3390/ijms24032323
Chicago/Turabian StyleDiehm, Yannick F., Emre Gazyakan, Yiping Wang, Laura C. Siegwart, Valentin Haug, Dimitra Kotsougiani-Fischer, Ulrich Kneser, and Sebastian Fischer. 2023. "Effective or Harmful—Evaluation of Locally Applied Antibiotics on Adipose Tissue during Lipofilling to the Breast—An In Vitro Study" International Journal of Molecular Sciences 24, no. 3: 2323. https://doi.org/10.3390/ijms24032323
APA StyleDiehm, Y. F., Gazyakan, E., Wang, Y., Siegwart, L. C., Haug, V., Kotsougiani-Fischer, D., Kneser, U., & Fischer, S. (2023). Effective or Harmful—Evaluation of Locally Applied Antibiotics on Adipose Tissue during Lipofilling to the Breast—An In Vitro Study. International Journal of Molecular Sciences, 24(3), 2323. https://doi.org/10.3390/ijms24032323