Foggia Prostate Cancer Risk Calculator 2.0: A Novel Risk Calculator including MRI and Bladder Outlet Obstruction Parameters to Reduce Unnecessary Biopsies
Abstract
:1. Introduction
2. Results
2.1. Study Population
2.2. Multivariable Analysis and Statistical Model Development
2.3. Model Performance and Internal Validation
3. Discussion
4. Materials and Methods
4.1. Study Population
4.2. Mp-MRI of the Prostate
4.3. Bladder Outlet Obstruction Evaluation and Prostate Biopsy
4.4. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Serag, H.; Banerjee, S.; Saeb-Parsy, K.; Irving, S.; Wright, K.; Stearn, S.; Doble, A.; Gnanapragasam, V.J. Risk profiles of prostate cancers identified from UK primary care using national referral guidelines. Br. J. Cancer 2012, 106, 436–439. [Google Scholar] [CrossRef] [Green Version]
- Louie, K.S.; Seigneurin, A.; Cathcart, P.; Sasieni, P. Do prostate cancer risk models improve the predictive accuracy of PSA screening? A meta-analysis. Ann. Oncol. 2015, 26, 848–864. [Google Scholar] [CrossRef]
- Mottet, N.; van den Bergh, R.C.N.; Briers, E.; Cornford, P.; De Santis, M.; Fanti, S.; Gillessen, S.; Grummet, J.; Henry, A.M.; Lam, T.B.; et al. EAU—ESTRO—ESUR—SIOG Guidelines on Prostate Cancer 2020. European Association of Urology Guidelines 2020 Edition. In Proceedings of the EAU Annual Congress Amsterdam 2020, Amsterdam, The Netherlands, 20–24 March 2020; European Association of Urology Guidelines Office: Arnhem, The Netherlands, 2020. [Google Scholar]
- Wagaskar, V.G.; Sobotka, S.; Ratnani, P.; Young, J.; Lantz, A.; Parekh, S.; Falagario, U.G.; Li, L.; Lewis, S.; Haines, K.; et al. A 4K score/MRI-based nomogram for predicting prostate cancer, clinically significant prostate cancer, and unfavorable prostate cancer. Cancer Rep. 2021, 4, e1357. [Google Scholar] [CrossRef] [PubMed]
- Cicione, A.; Cormio, L.; Cantiello, F.; Palumbo, I.M.; De Nunzio, C.; Lima, E.; Ucciero, G.; Carrieri, G.; Damiano, R. Presence and severity of lower urinary tract symptoms are inversely correlated with the risk of prostate cancer on prostate biopsy. Minerva Urol. Nefrol. 2017, 69, 486–492. [Google Scholar] [CrossRef] [PubMed]
- Cormio, L.; Lucarelli, G.; Netti, G.S.; Stallone, G.; Selvaggio, O.; Troiano, F.; Di Fino, G.; Sanguedolce, F.; Bufo, P.; Grandaliano, G.; et al. Post-void residual urinary volume is an independent predictor of biopsy results in men at risk for prostate cancer. Anticancer Res. 2015, 35, 2175–2182. [Google Scholar]
- Cormio, L.; Cindolo, L.; Troiano, F.; Marchioni, M.; Di Fino, G.; Mancini, V.; Falagario, U.; Selvaggio, O.; Sanguedolce, F.; Fortunato, F.; et al. Development and internal validation of novel nomograms based on benign prostatic obstruction-related parameters to predict the risk of prostate cancer at first prostate biopsy. Front. Oncol. 2018, 8, 438. [Google Scholar] [CrossRef]
- Cindolo, L.; Bertolo, R.; Minervini, A.; Sessa, F.; Muto, G.; Bove, P.; Vittori, M.; Bozzini, G.; Castellan, P.; Mugavero, F.; et al. External validation of Cormio nomogram for predicting all prostate cancers and clinically significant prostate cancers. World J. Urol. 2020, 38, 2555–2561. [Google Scholar] [CrossRef]
- van Leeuwen, P.J.; Hayen, A.; Thompson, J.E.; Moses, D.; Shnier, R.; Bohm, M.; Abuodha, M.; Haynes, A.-M.; Ting, F.; Barentsz, J.; et al. A multiparametric magnetic resonance imaging-based risk model to determine the risk of significant prostate cancer prior to biopsy. BJU Int. 2017, 120, 774–781. [Google Scholar] [CrossRef] [Green Version]
- Peters, M.; Eldred-Evans, D.; Kurver, P.; Falagario, U.G.; Connor, M.J.; Shah, T.T.; Verhoeff, J.J.; Taimen, P.; Aronen, H.J.; Knaapila, J.; et al. Predicting the Need for Biopsy to Detect Clinically Significant Prostate Cancer in Patients with a Magnetic Resonance Imaging-detected Prostate Imaging Reporting and Data System/Likert >/=3 Lesion: Development and Multinational External Validation of the Imperial Rapid Access to Prostate Imaging and Diagnosis Risk Score. Eur. Urol. 2022, 82, 559–568. [Google Scholar] [PubMed]
- Parekh, S.; Ratnani, P.; Falagario, U.; Lundon, D.; Kewlani, D.; Nasri, J.; Dovey, Z.; Stroumbakis, D.; Ranti, D.; Grauer, R.; et al. The Mount Sinai Prebiopsy Risk Calculator for Predicting any Prostate Cancer and Clinically Significant Prostate Cancer: Development of a Risk Predictive Tool and Validation with Advanced Neural Networking, Prostate Magnetic Resonance Imaging Outcome Database, and European Randomized Study of Screening for Prostate Cancer Risk Calculator. Eur. Urol. Open Sci. 2022, 41, 45–54. [Google Scholar]
- Mehralivand, S.; Shih, J.H.; Rais-Bahrami, S.; Oto, A.; Bednarova, S.; Nix, J.W.; Thomas, J.V.; Gordetsky, J.B.; Gaur, S.; Harmon, S.A.; et al. A Magnetic Resonance Imaging-Based Prediction Model for Prostate Biopsy Risk Stratification. JAMA Oncol. 2018, 4, 678–685. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Falagario, U.G.; Silecchia, G.; Bruno, S.M.; Di Nauta, M.; Auciello, M.; Sanguedolce, F.; Milillo, P.; Macarini, L.; Selvaggio, O.; Carrieri, G.; et al. Does Multiparametric Magnetic Resonance of Prostate Outperform Risk Calculators in Predicting Prostate Cancer in Biopsy Naïve Patients? Front. Oncol. 2021, 10, 603384. [Google Scholar] [CrossRef] [PubMed]
- Westphalen, A.C.; McCulloch, C.E.; Anaokar, J.M.; Arora, S.; Barashi, N.S.; Barentsz, J.O.; Bathala, T.K.; Bittencourt, L.K.; Booker, M.T.; Braxton, V.G.; et al. Variability of the Positive Predictive Value of PI-RADS for Prostate MRI across 26 Centers: Experience of the Society of Abdominal Radiology Prostate Cancer Disease-focused Panel. Radiology 2020, 296, 76–84. [Google Scholar] [CrossRef] [PubMed]
- Drost, F.H.; Osses, D.; Nieboer, D.; Bangma, C.H.; Steyerberg, E.W.; Roobol, M.J.; Schoots, I.G. Prostate Magnetic Resonance Imaging, with or Without Magnetic Resonance Imaging-targeted Biopsy, and Systematic Biopsy for Detecting Prostate Cancer: A Cochrane Systematic Review and Meta-analysis. Eur. Urol. 2020, 77, 78–94. [Google Scholar] [CrossRef] [PubMed]
- Mazzone, E.; Stabile, A.; Pellegrino, F.; Basile, G.; Cignoli, D.; Cirulli, G.O.; Sorce, G.; Barletta, F.; Scuderi, S.; Bravi, C.A.; et al. Positive Predictive Value of Prostate Imaging Reporting and Data System Version 2 for the Detection of Clinically Significant Prostate Cancer: A Systematic Review and Meta-analysis. Eur. Urol. Oncol. 2021, 4, 697–713. [Google Scholar] [CrossRef]
- Perez, I.M.; Jambor, I.; Kauko, T.; Verho, J.; Ettala, O.; Falagario, U.; Merisaari, H.; Kiviniemi, A.; Taimen, P.; Syvänen, K.T.; et al. Qualitative and Quantitative Reporting of a Unique Biparametric MRI: Towards Biparametric MRI-Based Nomograms for Prediction of Prostate Biopsy Outcome in Men with a Clinical Suspicion of Prostate Cancer (IMPROD and MULTI-IMPROD Trials). J. Magn. Reson. Imaging 2020, 51, 1556–1567. [Google Scholar] [CrossRef]
- Falagario, U.G.; Busetto, G.M.; Netti, G.S.; Sanguedolce, F.; Selvaggio, O.; Infante, B.; Ranieri, E.; Stallone, G.; Carrieri, G.; Cormio, L. Prospective Validation of Pentraxin-3 as a Novel Serum Biomarker to Predict the Risk of Prostate Cancer in Patients Scheduled for Prostate Biopsy. Cancers 2021, 13, 1611. [Google Scholar] [CrossRef]
- Van Poppel, H.; Hogenhout, R.; Albers, P.; van den Bergh, R.C.N.; Barentsz, J.O.; Roobol, M.J. A European Model for an Organised Risk-stratified Early Detection Programme for Prostate Cancer. Eur. Urol. Oncol. 2021, 4, 731–739. [Google Scholar] [CrossRef] [PubMed]
- Cormio, L.; Lucarelli, G.; Selvaggio, O.; Di Fino, G.; Mancini, V.; Massenio, P.; Troiano, F.; Sanguedolce, F.; Bufo, P.; Carrieri, G. Absence of Bladder Outlet Obstruction Is an Independent Risk Factor for Prostate Cancer in Men Undergoing Prostate Biopsy. Medicine 2016, 95, e2551. [Google Scholar] [CrossRef]
- Bruno, S.M.; Falagario, U.G.; d’Altilia, N.; Recchia, M.; Mancini, V.; Selvaggio, O.; Sanguedolce, F.; Del Giudice, F.; Maggi, M.; Ferro, M.; et al. PSA Density Help to Identify Patients with Elevated PSA Due to Prostate Cancer Rather Than Intraprostatic Inflammation: A Prospective Single Center Study. Front. Oncol. 2021, 11, 693684. [Google Scholar] [CrossRef]
- Lepor, H.; Wang, B.; Shapiro, E. Relationship between prostatic epithelial volume and serum prostate-specific antigen levels. Urology 1994, 44, 199–205. [Google Scholar] [CrossRef] [PubMed]
- Cauni, V.M.; Stanescu, D.; Tanase, F.; Mihai, B.; Persu, C. Magnetic resonance/ultrasound fusion targeted biopsy of the prostate can be improved by adding systematic biopsy. Med. Ultrason. 2021, 23, 277–282. [Google Scholar] [CrossRef] [PubMed]
- Falagario, U.G.; Ratnani, P.; Lantz, A.; Jambor, I.; Dovey, Z.; Verma, A.; Treacy, P.-J.; Sobotka, S.; Martini, A.; Bashorun, H.; et al. Staging Accuracy of Multiparametric Magnetic Resonance Imaging in Caucasian and African American Men Undergoing Radical Prostatectomy. J. Urol. 2020, 204, 82–90. [Google Scholar] [CrossRef]
- Cormio, L.; Lorusso, F.; Selvaggio, O.; Perrone, A.; Sanguedolce, F.; Pagliarulo, V.; Bufo, P.; Carrieri, G. Noninfiltrative anesthesia for transrectal prostate biopsy: A randomized prospective study comparing lidocaine-prilocaine cream and lidocaine-ketorolac gel. Urol. Oncol. 2013, 31, 68–73. [Google Scholar] [CrossRef] [PubMed]
- Winoker, J.S.; Wajswol, E.; Falagario, U.; Maritini, A.; Moshier, E.; Voutsinas, N.; Knauer, C.J.; Sfakianos, J.P.; Lewis, S.C.; Taouli, B.A.; et al. Transperineal Versus Transrectal Targeted Biopsy with Use of Electromagnetically-tracked MR/US Fusion Guidance Platform for the Detection of Clinically Significant Prostate Cancer. Urology 2020, 146, 278–286. [Google Scholar] [CrossRef]
- Epstein, J.I.; Egevad, L.; Amin, M.B.; Delahunt, B.; Srigley, J.R.; Humphrey, P.A. The 2014 International Society of Urological Pathology (ISUP) Consensus Conference on Gleason Grading of Prostatic Carcinoma: Definition of Grading Patterns and Proposal for a New Grading System. Am. J. Surg. Pathol. 2016, 40, 244–252. [Google Scholar] [CrossRef] [PubMed]
Overall N = 728 | Negative Bx (N = 395) | Bx ISUP GG 1 PCa (N = 161) | Bx ISUP GG ≥ 2 PCa (N = 172) | p Value | |
---|---|---|---|---|---|
Age, years | 66.5 (60.0, 71.0) | 65.0 (59.0, 70.0) | 66.6 (61.0, 71.0) | 69.0 (64.0, 73.0) | <0.0001 |
5-ARI, n (%) | |||||
No | 659 (90.4%) | 356 (90.1%) | 151 (93.2%) | 152 (88.4%) | 0.3 |
Yes | 70 (9.6%) | 39 (9.9%) | 11 (6.8%) | 20 (11.6%) | |
PVR, n (%) | |||||
0–50 | 512 (70.2%) | 252 (63.8%) | 111 (68.5%) | 149 (86.6%) | <0.0001 |
>50 | 217 (29.8%) | 143 (36.2%) | 51 (31.5%) | 23 (13.4%) | |
PVR, mL | 30.0 (0.0, 50.0) | 30.0 (0.0, 50.0) | 20.0 (0.0, 50.0) | 30.0 (0.0, 40.0) | 0.046 |
Q Max, n (%) | |||||
0–10 | 99 (13.6%) | 63 (15.9%) | 20 (12.3%) | 16 (9.3%) | 0.092 |
>10 | 630 (86.4%) | 332 (84.1%) | 142 (87.7%) | 156 (90.7%) | |
Q Max, mL/s | 14.9 (10.8, 20.7) | 14.2 (10.2, 20.0) | 15.0 (11.0, 20.3) | 15.8 (11.5, 28.0) | 0.037 |
IPSS | 9.0 (5.0, 15.0) | 10.0 (5.0, 16.0) | 7.0 (3.0, 12.0) | 9.0 (5.0, 15.0) | 0.001 |
Biopsy History, n (%) | |||||
Biopsy naive | 481 (66.0%) | 230 (58.2%) | 122 (75.3%) | 129 (75.0%) | <0.0001 |
Previous Negative | 248 (34.0%) | 165 (41.8%) | 40 (24.7%) | 43 (25.0%) | |
DRE, n (%) | |||||
Negative | 469 (64.3%) | 281 (71.1%) | 111 (68.5%) | 77 (44.8%) | <0.0001 |
Suspicious | 260 (35.7%) | 114 (28.9%) | 51 (31.5%) | 95 (55.2%) | |
PSA, ng/mL | 6.1 (4.5, 9.0) | 6.0 (4.4, 8.9) | 6.0 (4.6, 8.1) | 6.6 (4.6, 11.2) | 0.032 |
PSA density | 0.1 (0.1, 0.2) | 0.1 (0.1, 0.2) | 0.1 (0.1, 0.2) | 0.2 (0.1, 0.3) | <0.0001 |
Prostate volume, cc | 52.7 (39.6, 70.0) | 60.0 (47.0, 79.0) | 47.0 (38.0, 64.0) | 40.0 (32.0, 53.7) | <0.0001 |
PIRADS | |||||
1–2 | 140 (19.2%) | 117 (29.6%) | 19 (11.7%) | 4 (2.3%) | <0.0001 |
3 | 185 (25.4%) | 118 (29.9%) | 40 (24.7%) | 27 (15.7%) | |
4 | 297 (40.7%) | 122 (30.9%) | 86 (53.1%) | 89 (51.7%) | |
5 | 107 (14.7%) | 38 (9.6%) | 17 (10.5%) | 52 (30.2%) |
Multivariable Model Predicting Any PCa AUC = 0.80 | Multivariable Model Predicting ISUP GG ≥ 2 AUC = 0.84 | |||||
---|---|---|---|---|---|---|
Covariate | OR | 95% CI | p > |z| | OR | 95% CI | p > |z| |
Age | 1.05 | 1.03, 1.08 | <0.001 | 1.07 | 1.04, 1.10 | <0.001 |
Biopsy History | ||||||
Biopsy naive | Ref. | Ref. | ||||
Previous Negative | 0.40 | 0.27, 0.58 | <0.001 | 0.40 | 0.25, 0.65 | <0.001 |
DRE | ||||||
Negative | Ref. | Ref. | ||||
Suspicious | 1.35 | 0.95, 1.94 | 0.099 | 2.02 | 1.34, 3.06 | 0.001 |
PIRADS | ||||||
1–2 | Ref. | Ref. | ||||
3 | 3.12 | 1.76, 5.52 | <0.001 | 5.43 | 1.78, 16.58 | 0.003 |
4 | 6.13 | 3.60, 10.46 | <0.001 | 10.32 | 3.58, 29.76 | <0.001 |
5 | 5.01 | 2.60, 9.67 | <0.001 | 14.61 | 4.76, 44.81 | <0.001 |
PSA | 1.05 | 1.01, 1.08 | 0.005 | 1.09 | 1.05, 1.13 | <0.001 |
Prostate Volume | 0.98 | 0.97, 0.98 | <0.001 | 0.98 | 0.97, 0.99 | <0.001 |
PVR | ||||||
0–50 | Ref. | Ref. | ||||
>50 | 0.57 | 0.39, 0.84 | 0.004 | 0.27 | 0.15, 0.47 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Falagario, U.G.; Busetto, G.M.; Recchia, M.; Tocci, E.; Selvaggio, O.; Ninivaggi, A.; Milillo, P.; Macarini, L.; Sanguedolce, F.; Mancini, V.; et al. Foggia Prostate Cancer Risk Calculator 2.0: A Novel Risk Calculator including MRI and Bladder Outlet Obstruction Parameters to Reduce Unnecessary Biopsies. Int. J. Mol. Sci. 2023, 24, 2449. https://doi.org/10.3390/ijms24032449
Falagario UG, Busetto GM, Recchia M, Tocci E, Selvaggio O, Ninivaggi A, Milillo P, Macarini L, Sanguedolce F, Mancini V, et al. Foggia Prostate Cancer Risk Calculator 2.0: A Novel Risk Calculator including MRI and Bladder Outlet Obstruction Parameters to Reduce Unnecessary Biopsies. International Journal of Molecular Sciences. 2023; 24(3):2449. https://doi.org/10.3390/ijms24032449
Chicago/Turabian StyleFalagario, Ugo Giovanni, Gian Maria Busetto, Marco Recchia, Edoardo Tocci, Oscar Selvaggio, Antonella Ninivaggi, Paola Milillo, Luca Macarini, Francesca Sanguedolce, Vito Mancini, and et al. 2023. "Foggia Prostate Cancer Risk Calculator 2.0: A Novel Risk Calculator including MRI and Bladder Outlet Obstruction Parameters to Reduce Unnecessary Biopsies" International Journal of Molecular Sciences 24, no. 3: 2449. https://doi.org/10.3390/ijms24032449
APA StyleFalagario, U. G., Busetto, G. M., Recchia, M., Tocci, E., Selvaggio, O., Ninivaggi, A., Milillo, P., Macarini, L., Sanguedolce, F., Mancini, V., Annese, P., Bettocchi, C., Carrieri, G., & Cormio, L. (2023). Foggia Prostate Cancer Risk Calculator 2.0: A Novel Risk Calculator including MRI and Bladder Outlet Obstruction Parameters to Reduce Unnecessary Biopsies. International Journal of Molecular Sciences, 24(3), 2449. https://doi.org/10.3390/ijms24032449