Polymorphisms Affecting the Response to Novel Antiepileptic Drugs
Abstract
:1. Introduction
2. Polymorphisms Affecting AEDs Transporters
3. Polymorphisms Affecting AED Brain-Targets
4. Polymorphisms Affecting AEDs Metabolizing Enzymes
5. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Duncan, J.S.; Sander, J.W.; Sisodiya, S.M.; Walker, M.C. Adult epilepsy. Lancet 2006, 367, 1087–1100. [Google Scholar] [CrossRef]
- Manford, M. Recent advances in epilepsy. J. Neurol. 2017, 264, 1811–1824. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perucca, E.; Brodie, M.J.; Kwan, P.; Tomson, T. 30 years of second-generation antiseizure medications: Impact and future perspectives. Lancet Neurol. 2020, 19, 544–556. [Google Scholar] [CrossRef] [PubMed]
- Guery, D.; Rheims, S. Is the mechanism of action of antiseizure drugs a key element in the choice of treatment? Fundam. Clin. Pharmacol. 2021, 35, 552–563. [Google Scholar] [CrossRef] [PubMed]
- Hakami, T. Neuropharmacology of Antiseizure Drugs. Neuropsychopharmacol. Rep. 2021, 41, 336–351. [Google Scholar] [CrossRef] [PubMed]
- Johannessen, S.I.; Tomson, T. Pharmacokinetic variability of newer antiepileptic drugs: When is monitoring needed? Clin. Pharmacokinet. 2006, 45, 1061–1075. [Google Scholar] [CrossRef]
- Sills, G.J.; Rogawski, M.A. Mechanisms of action of currently used antiseizure drugs. Neuropharmacology 2020, 168, 107966. [Google Scholar] [CrossRef]
- Lynch, B.A.; Lambeng, N.; Nocka, K.; Kensel-Hammes, P.; Bajjalieh, S.M.; Matagne, A.; Fuks, B. The synaptic vesicle protein SV2A is the binding site for the antiepileptic drug levetiracetam. Proc. Natl. Acad. Sci. USA 2004, 101, 9861–9866. [Google Scholar] [CrossRef] [Green Version]
- Klitgaard, H.; Matagne, A.; Nicolas, J.M.; Gillard, M.; Lamberty, Y.; De Ryck, M.; Kaminski, R.M.; Leclercq, K.; Niespodziany, I.; Wolff, C.; et al. Brivaracetam: Rationale for discovery and preclinical profile of a selective SV2A ligand for epilepsy treatment. Epilepsia 2016, 57, 538–548. [Google Scholar] [CrossRef] [Green Version]
- Mendoza-Torreblanca, J.G.; Vanoye-Carlo, A.; Phillips-Farfan, B.V.; Carmona-Aparicio, L.; Gomez-Lira, G. Synaptic vesicle protein 2A: Basic facts and role in synaptic function. Eur. J. Neurosci. 2013, 38, 3529–3539. [Google Scholar] [CrossRef]
- Rheims, S.; Ryvlin, P. Profile of perampanel and its potential in the treatment of partial onset seizures. Neuropsychiatr. Dis. Treat. 2013, 9, 629–637. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sisodiya, S.M.; Marini, C. Genetics of antiepileptic drug resistance. Curr. Opin. Neurol. 2009, 22, 150–156. [Google Scholar] [CrossRef]
- MacDonald, B.K.; Johnson, A.L.; Goodridge, D.M.; Cockerell, O.C.; Sander, J.W.; Shorvon, S.D. Factors predicting prognosis of epilepsy after presentation with seizures. Ann. Neurol. 2000, 48, 833–841. [Google Scholar] [CrossRef] [PubMed]
- Franco, V.; Perucca, E. The pharmacogenomics of epilepsy. Expert Rev. Neurother. 2015, 15, 1161–1170. [Google Scholar] [CrossRef] [PubMed]
- Löscher, W.; Klotz, U.; Zimprich, F.; Schmidt, D. The clinical impact of pharmacogenetics on the treatment of epilepsy. Epilepsia 2009, 50, 1–23. [Google Scholar] [CrossRef]
- Loscher, W.; Potschka, H. Role of multidrug transporters in pharmacoresistance to antiepileptic drugs. J. Pharmacol. Exp. Ther. 2002, 301, 7–14. [Google Scholar] [CrossRef] [Green Version]
- Białecka, M.; Hnatyszyn, G.; Bielicka-Cymerman, J.; Droździk, M. Znaczenie polimorfizmu genu MDR-1 w patogenezie i leczeniu padaczki lekoopornej. The effect of MDR1 gene polymorphism in the pathogenesis and the treatment of drug-resistant epilepsy. Neurol. I Neurochir. Pol. 2005, 39, 476–481. [Google Scholar]
- Siddiqui, A.; Kerb, R.; Weale, M.E.; Brinkmann, U.; Smith, A.; Goldstein, D.B.; Wood, N.W.; Sisodiya, S.M. Association of multidrug resistance in epilepsy with a polymorphism in the drug-transporter gene ABCB1. New Engl. J. Med. 2003, 348, 1442–1448. [Google Scholar] [CrossRef] [Green Version]
- Hoffmeyer, S.; Burk, O.; von Richter, O.; Arnold, H.P.; Brockmoller, J.; Johne, A.; Cascorbi, I.; Gerloff, T.; Roots, I.; Eichelbaum, M.; et al. Functional polymorphisms of the human multidrug-resistance gene: Multiple sequence variations and correlation of one allele with P-glycoprotein expression and activity in vivo. Proc. Natl. Acad. Sci. USA 2000, 97, 3473–3478. [Google Scholar] [CrossRef]
- Lazarowski, A.; Czornyj, L. Potential role of multidrug resistant proteins in refractory epilepsy and antiepileptic drugs interactions. Drug Metab. Drug Interact. 2011, 26, 21–26. [Google Scholar] [CrossRef]
- Shen, C.; Zhang, B.; Liu, Z.; Tang, Y.; Zhang, Y.; Wang, S.; Guo, Y.; Ding, Y.; Wang, S.; Ding, M. Effects of ABCB1, ABCC2, UGT2B7 and HNF4α genetic polymorphisms on oxcarbazepine concentrations and therapeutic efficacy in patients with epilepsy. Seizure 2017, 51, 102–106. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.L.; Wu, X.Y.; Jiao, Z.; Hong, Z.; Wu, Z.Y.; Zhong, M.K. SCN1A, ABCC2 and UGT2B7 gene polymorphisms in association with individualized oxcarbazepine therapy. Pharmacogenomics 2015, 16, 347–360. [Google Scholar] [CrossRef]
- Yao, N.; Huang, S.; Huang, A.; Song, H. Analysis of influencing factors on monohydroxylated derivative of oxcarbazepine plasma concentration in children with epilepsy. Eur. J. Clin. Pharmacol. 2022, 78, 1667–1675. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.; Li, H.J.; Feng, J.; Zhang, H.L.; Yu, J.; Sun, Y.; Yu, L.H. Impact of ABCC2 1249G>A and -24C>T polymorphisms on lacosamide efficacy and plasma concentrations in Uygur pediatric epilepsy patients in China. Ther. Drug Monit. 2022, 45, 117–125. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.; Li, H.J.; Feng, J.; Zhang, H.L.; Ting-Ting, W.; Ma, L.; Yu, J.; Zhao, W.B.; Sun, L.; Yu, L.H.; et al. Impact of ABCB1 Polymorphisms on Lacosamide Serum Concentrations in Uygur Pediatric Patients With Epilepsy in China. Ther. Drug Monit. 2022, 44, 455–464. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Wang, X.; Li, H.; Zhang, J.; Chen, Z.; Xie, W.; Zhang, J.; Li, J.; Zhou, L.; Huang, M. Polymorphisms of ABCG2, ABCB1 and HNF4α are associated with Lamotrigine trough concentrations in epilepsy patients. Drug Metab. Pharmacokinet. 2015, 30, 282–287. [Google Scholar] [CrossRef]
- Babeu, J.P.; Boudreau, F. Hepatocyte nuclear factor 4-alpha involvement in liver and intestinal inflammatory networks. World J. Gastroenterol. 2014, 20, 22–30. [Google Scholar] [CrossRef]
- Kamiyama, Y.; Matsubara, T.; Yoshinari, K.; Nagata, K.; Kamimura, H.; Yamazoe, Y. Role of human hepatocyte nuclear factor 4alpha in the expression of drug-metabolizing enzymes and transporters in human hepatocytes assessed by use of small interfering RNA. Drug Metab. Pharmacokinet. 2007, 22, 287–298. [Google Scholar] [CrossRef] [Green Version]
- Shen, C.H.; Zhang, Y.X.; Lu, R.Y.; Jin, B.; Wang, S.; Liu, Z.R.; Tang, Y.L.; Ding, M.P. Specific OCT1 and ABCG2 polymorphisms are associated with Lamotrigine concentrations in Chinese patients with epilepsy. Epilepsy Res. 2016, 127, 186–190. [Google Scholar] [CrossRef]
- Lovrić, M.; Božina, N.; Hajnšek, S.; Kuzman, M.R.; Sporiš, D.; Lalić, Z.; Božina, T.; Granić, P. Association between lamotrigine concentrations and ABCB1 polymorphisms in patients with epilepsy. Ther. Drug Monit. 2012, 34, 518–525. [Google Scholar] [CrossRef]
- Stasiołek, M.; Romanowicz, H.; Połatyńska, K.; Chamielec, M.; Skalski, D.; Makowska, M.; Smolarz, B. Association between C3435T polymorphism of MDR1 gene and the incidence of drug-resistant epilepsy in the population of Polish children. Behav. Brain Funct. BBF 2016, 12, 21. [Google Scholar] [CrossRef] [PubMed]
- Ufer, M.; von Stülpnagel, C.; Muhle, H.; Haenisch, S.; Remmler, C.; Majed, A.; Plischke, H.; Stephani, U.; Kluger, G.; Cascorbi, I. Impact of ABCC2 genotype on antiepileptic drug response in Caucasian patients with childhood epilepsy. Pharm. Genom. 2011, 21, 624–630. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Yin, T.; Ma, H.Y.; Liu, D.Q.; Sheng, Y.A.; Zhou, B.T. First Analysis of the Association Between CYP3A4/5, ABCB1 Genetic Polymorphisms and Oxcarbazepine Metabolism and Transport in Chinese Epileptic Patients with Oxcarbazepine Monotherapy and Bitherapy. J. Pharm. Pharm. Sci. A Publ. Can. Soc. Pharm. Sci. Soc. Can. Des Sci. Pharm. 2015, 18, 256–265. [Google Scholar]
- Lin, W.W.; Li, X.W.; Jiao, Z.; Zhang, J.; Rao, X.; Zeng, D.Y.; Lin, X.H.; Wang, C.L. Population pharmacokinetics of oxcarbazepine active metabolite in Chinese paediatric epilepsy patients and its application in individualised dosage regimens. Eur. J. Clin. Pharmacol. 2019, 75, 381–392. [Google Scholar] [CrossRef] [PubMed]
- Petrenaite, V.; Öhman, I.; Jantzen, F.; Ekström, L. Effect of UGT1A4, UGT2B7, UGT2B15, UGT2B17 and ABC1B polymorphisms on lamotrigine metabolism in Danish patients. Epilepsy Res. 2022, 182, 106897. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.; Yu, J.; Wang, T.T.; Feng, J.; Zhao, W.B.; Sun, L.; Yu, L.H.; Li, H.J.; Sun, Y. Impact of ABCB1 Polymorphism on Levetiracetam Serum Concentrations in Epileptic Uygur Children in China. Ther. Drug Monit. 2020, 42, 886–892. [Google Scholar] [CrossRef]
- Abou-Khalil, B.W. Antiepileptic Drugs. Contin. (Minneap. Minn.) 2016, 22, 132–156. [Google Scholar] [CrossRef] [PubMed]
- Meisler, M.H.; Kearney, J.A. Sodium channel mutations in epilepsy and other neurological disorders. J. Clin. Investig. 2005, 11, 2010–2017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El Fotoh, W.M.M.A.; Habib, M.S.E.D.; ALrefai, A.A.; Kasemy, Z.A. The potential implication of SCN1A and CYP3A5 genetic variants on antiepileptic drug resistance among Egyptian epileptic children. Seizure 2016, 41, 75–80. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.H.; Ho, C.J.; Lu, Y.T.; Tsai, M.H. Response to Sodium Channel blocking Antiseizure medications and coding polymorphisms of Sodium Channel genes in Taiwanese epilepsy patients. BMC Neurol. 2021, 21, 367. [Google Scholar] [CrossRef]
- Angelopoulou, C.; Veletza, S.; Heliopoulos, I.; Vadikolias, K.; Tripsianis, G.; Stathi, C.; Piperidou, C. Association of SCN1A gene polymorphism with antiepileptic drug responsiveness in the population of Thrace, Greece. Arch. Med. Sci. AMS 2017, 13, 138–147. [Google Scholar] [CrossRef] [PubMed]
- Ghazala, E.; Shahin, D.A.; Wahba, Y. Polymorphisms of the sodium voltage-gated channel, alpha subunit 1 (SCN1A -A3184G) gene among children with non-lesional epilepsy: A case-control study. Ital. J. Pediatr. 2022, 48, 157. [Google Scholar] [CrossRef]
- Pejanovic-Skobic, N.; Markovic, I.; Bozina, N.; Basic, S. Lack of association of SCN2A rs17183814 polymorphism with the efficacy of lamotrigine monotherapy in patients with focal epilepsy from Herzegovina area, Bosnia and Herzegovina. Epilepsy Res. 2019, 158, 106221. [Google Scholar] [CrossRef] [PubMed]
- Kumari, R.; Lakhan, R.; Kumar, S.; Garg, R.K.; Misra, U.K.; Kalita, J.; Mittal, B. SCN1AIVS5-91G>A polymorphism is associated with susceptibility to epilepsy but not with drug responsiveness. Biochimie 2013, 95, 1350–1353. [Google Scholar] [CrossRef] [PubMed]
- Markovic, I.; Pejanovic-Skobic, N.; Bozina, N.; Susak Sporis, I.; Sporis, D.; Basic, S. The lack of influence of IVS5-91 G>A polymorphism of the SCN1A gene on efficacy of lamotrigine in patients with focal epilepsy. Neurol. Res. 2019, 41, 930–935. [Google Scholar] [CrossRef]
- Manna, I.; Gambardella, A.; Bianchi, A.; Striano, P.; Tozzi, R.; Aguglia, U.; Beccaria, F.; Benna, P.; Campostrini, R.; Canevini, M.P.; et al. A functional polymorphism in the SCN1A gene does not influence antiepileptic drug responsiveness in Italian patients with focal epilepsy. Epilepsia 2011, 52, 40–44. [Google Scholar] [CrossRef] [PubMed]
- Crowder, K.M.; Gunther, J.M.; Jones, T.A.; Hale, B.D.; Zhang, H.Z.; Peterson, M.R.; Scheller, R.H.; Chavkin, C.; Bajjalieh, S.M. Abnormal neurotransmission in mice lacking synaptic vesicle protein 2A (SV2A). Proc. Natl. Acad. Sci. USA 1999, 96, 15268–15273. [Google Scholar] [CrossRef] [Green Version]
- Lynch, J.M.; Tate, S.K.; Kinirons, P.; Weale, M.E.; Cavalleri, G.L.; Depondt, C.; Murphy, K.; O’Rourke, D.; Doherty, C.P.; Shianna, K.V.; et al. No major role of common SV2A variation for predisposition or levetiracetam response in epilepsy. Epilepsy Res. 2009, 83, 44–51. [Google Scholar] [CrossRef]
- Antunes, N.J.; Wichert-Ana, L.; Coelho, E.B.; Della Pasqua, O.; Junior, V.A.; Takayanagui, O.M.; Marques, M.P.; Lanchote, V.L. Analysis of unbound plasma concentration of oxcarbazepine and the 10-hydroxycarbazepine enantiomers by liquid chromatography with tandem mass spectrometry in healthy volunteers. J. Pharm. Biomed. Anal. 2018, 149, 442–447. [Google Scholar] [CrossRef]
- Argikar, U.A.; Remmel, R.P. Variation in glucuronidation of lamotrigine in human liver microsomes. Xenobiotica Fate Foreign Compd. Biol. Syst. 2009, 39, 355–363. [Google Scholar] [CrossRef]
- Ingelman-Sundberg, M. Pharmacogenetics of cytochrome P450 and its applications in drug therapy: The past, present and future. Trends Pharmacol. Sci. 2004, 25, 193–200. [Google Scholar] [CrossRef]
- Wang, Q.; Liang, M.; Dong, Y.; Yun, W.; Qiu, F.; Zhao, L.; Guo, Y. Effects of UGT1A4 genetic polymorphisms on serum lamotrigine concentrations in Chinese children with epilepsy. Drug Metab. Pharmacokinet. 2015, 30, 209–213. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Garcia, M.A.; Feria-Romero, I.A.; Fernando-Serrano, H.; Escalante-Santiago, D.; Grijalva, I.; Orozco-Suarez, S. Genetic polymorphisms associated with antiepileptic metabolism. Front. Biosci. (Elite Ed.) 2014, 6, 377–386. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Fang, Y.; Wu, X.; Ma, C.; Wang, Y.; Xu, L. Effects of UGT1A9 genetic polymorphisms on monohydroxylated derivative of oxcarbazepine concentrations and oxcarbazepine monotherapeutic efficacy in Chinese patients with epilepsy. Eur. J. Clin. Pharmacol. 2017, 73, 307–315. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.; Yang, L.Y.; Zhang, M.C.; Liu, S.Y. Correlation of the UGT1A4 gene polymorphism with serum concentration and therapeutic efficacy of lamotrigine in Han Chinese of Northern China. Eur. J. Clin. Pharmacol. 2014, 70, 941–946. [Google Scholar] [CrossRef] [PubMed]
- Du, Z.; Jiao, Y.; Shi, L. Association of UGT2B7 and UGT1A4 Polymorphisms with Serum Concentration of Antiepileptic Drugs in Children. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2016, 22, 4107–4113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahn, S.J.; Oh, J.; Kim, D.Y.; Son, H.; Hwang, S.; Shin, H.R.; Kim, E.Y.; Lee, H.S.; Lee, W.J.; Moon, J.; et al. Effects of CYP2C19 genetic polymorphisms on the pharmacokinetics of lacosamide in Korean patients with epilepsy. Epilepsia 2022, 63, 2958–2969. [Google Scholar] [CrossRef]
- Okada, Y.; Seo, T.; Ishitsu, T.; Wanibuchi, A.; Hashimoto, N.; Higa, Y.; Nakagawa, K. Population estimation regarding the effects of cytochrome P450 2C19 and 3A5 polymorphisms on zonisamide clearance. Ther. Drug Monit. 2008, 30, 540–543. [Google Scholar] [CrossRef]
- Ohkubo, S.; Akamine, Y.; Ohkubo, T.; Kikuchi, Y.; Miura, M. Quantification of the Plasma Concentrations of Perampanel Using High-Performance Liquid Chromatography and Effects of the CYP3A4*1G Polymorphism in Japanese Patients. J. Chromatogr. Sci. 2020, 58, 915–921. [Google Scholar] [CrossRef] [PubMed]
- Ortega-Vázquez, A.; Fricke-Galindo, I.; Dorado, P.; Jung-Cook, H.; Martínez-Juárez, I.E.; Monroy-Jaramillo, N.; Rojas-Tomé, I.S.; Peñas-Lledó, E.; Llerena, A.; López-López, M. Influence of genetic variants and antiepileptic drug co-treatment on lamotrigine plasma concentration in Mexican Mestizo patients with epilepsy. Pharm. J. 2020, 20, 845–856. [Google Scholar] [CrossRef]
- Reimers, A.; Sjursen, W.; Helde, G.; Brodtkorb, E. Frequencies of UGT1A4*2 (P24T) and *3 (L48V) and their effects on serum concentrations of lamotrigine. Eur. J. Drug Metab. Pharmacokinet. 2016, 41, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Singkham, N.; Towanabut, S.; Lertkachatarn, S.; Punyawudho, B. Influence of the UGT2B7 -161C>T polymorphism on the population pharmacokinetics of lamotrigine in Thai patients. Eur. J. Clin. Pharmacol. 2013, 69, 1285–1291. [Google Scholar] [CrossRef] [PubMed]
- Inoue, K.; Yamamoto, Y.; Suzuki, E.; Takahashi, T.; Umemura, A.; Takahashi, Y.; Imai, K.; Inoue, Y.; Hirai, K.; Tsuji, D.; et al. Factors that influence the pharmacokinetics of lamotrigine in Japanese patients with epilepsy. Eur. J. Clin. Pharmacol. 2016, 72, 555–562. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.Z.; Zhang, Y.F.; Huang, W.C.; Wang, X.P.; Ni, X.J.; Lu, H.Y.; Hu, J.Q.; Deng, S.H.; Zhu, X.Q.; Xie, H.S.; et al. Effects of Comedication and Genetic Factors on the Population Pharmacokinetics of Lamotrigine: A Prospective Analysis in Chinese Patients With Epilepsy. Front. Pharmacol. 2019, 10, 832. [Google Scholar] [CrossRef] [PubMed]
- Rivas, N.; Buelga, D.S.; Christian, E.; Santos-Borbujo, J.; Otero, M.J.; Domínguez-Gil, A.; García, M.J. Population pharmacokinetics of lamotrigine with data from therapeutic drug monitoring in German and Spanish patients with epilepsy. Ther. Drug Monit. 2008, 30, 483–489. [Google Scholar] [CrossRef] [PubMed]
- Brzaković, B.; Vučićević, K.; Kovačević, S.V.; Miljković, B.; Prostran, M.; Martinović, Ž.; Pokrajac, M. Pharmacokinetics of lamotrigine in paediatric and young adult epileptic patients-nonlinear mixed effects modelling approach. Eur. J. Clin. Pharmacol. 2014, 70, 179–185. [Google Scholar] [CrossRef]
- Balestrini, S.; Sisodiya, S.M. Pharmacogenomics in epilepsy. Neurosci. Lett. 2018, 667, 27–39. [Google Scholar] [CrossRef]
AED | Generation | Mechanism of Action |
---|---|---|
Phenobarbital | First | Positive modulation of GABAA receptors increases the opening time of chloride channels with the migration of ions into neuronal cells and hyperpolarization of the cell membrane. |
Phenytoin | First | Prolongs fast-inactivated VG sodium channel state decreasing the sodium influx across the membrane, and reducing the firing of action potentials and the neuronal overexcitation. |
Primidone | First | GABA receptor agonist that increases the opening time of chloride channels and hyperpolarization of the cell membrane. |
Ethosuximide | First | Blocks T-type calcium currents (low-voltage activated). |
Valproate | First | Blocks T-type calcium or sodium channel and inhibits histone deacetylase. |
Carbamazepine | First | Enhancement of sodium channel inactivation by reducing the high-frequency repetitive firing of the action potentials. |
Clonazepam | First | High-potency GABAA receptor agonist, decreases 5-HT utilization in the brain, and blocks the egress of 5-HIAA from the brain. |
Clobazam | First | Increases the opening time of chloride channels, with the migration of ions into neuronal cells and the hyperpolarization of the cell membrane. |
Vigabatrin | Second | Irreversible inhibitor of the GABA-degrading enzyme, GABA transaminase. |
Oxcarbazepine | Second | Binds to sodium channels and inhibits high-frequency repetitive neuronal firing inhibition as well as the release of glutamate. |
Lamotrigine | Second | Selectively binds and inhibits voltage-gated sodium channels, stabilizing presynaptic neuronal membranes inhibiting presynaptic glutamate and aspartate release |
Gabapentin | Second | Binds to the α2δ subunit of VG calcium channels, thus decreasing the density of pre-synaptic voltage-gated calcium channels and subsequent release of excitatory neurotransmitters. |
Felbamate | Second | Antagonism of the NMDA receptor reducing glutamatergic transmission; inhibition of GABA-receptor binding and of voltage-gated sodium channels as well as calcium channels. |
Topiramate | Second | Antagonism of AMPA/ GluR5 kainate receptors and increases GABA activity. |
Tiagabine | Second | GABA reuptake inhibition, it prolongs inhibitory postsynaptic potentials. |
Levetiracetam | Second | Modulation of synaptic neurotransmitter release through binding to the synaptic vesicle protein SV2A. |
Zonisamide | Second | Altering the fast inactivation threshold of voltage-dependent sodium channels, it reduces sustained high-frequency repetitive firing of action potentials; it also inhibits low-threshold T-type calcium channels in neurons. |
Pregabalin | Third | Binds to the α2δ subunit of VG calcium channels, reducing the synaptic release of several neurotransmitters. |
Fosphenytoin | Third | Modulation of voltage-gated sodium channels by prolonging the inactivation state of these channels. |
Lacosamide | Third | Selectively enhances the slow inactivation of voltage-gated sodium channels and possibly interacts with ollapsing response mediator protein-2. |
Rufinamide | Third | Modulation of activity in sodium channels, particularly prolongation of the inactive state. |
Eslicarbazepine | Third | Inhibiting voltage-gated sodium channels (VGSC), especially in rapidly firing neurons. |
Retigabine | Third | Positive allosteric modulator of the neuronal potassium channels KNCQ (Kv2 to 5). |
Perampanel | Third | Non-competitive selective antagonist at the postsynaptic ionotropic alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) glutamate receptor. |
Brivaracetam | Third | Binds to SV2A, modulating synaptic GABA release. |
Cannabidiol | Third | Enhances GABA activity through allosteric modulation of the GABAA receptor and increase in the currents elicited by low GABA concentrations. |
Stiripentol | Third | Enhancement of inhibitory, γ-aminobutyric acid (GABA)ergic neurotransmission. |
Cenobamate | Third | Modulation of the GABAA channels, sodium currents, inhibition. |
Fenfluramine | Third | Causes the release of serotonin by disrupting vesicular storage of the neurotransmitter, and reversing serotonin transporter function. |
Study | Number of Participants | Drug | Gene | RefSNP | Clinical Effect |
---|---|---|---|---|---|
Shen et al., 2017 | 116 | Oxcarbazepine | ABCB1 | rs1045642 | Higher concentration in the ABCB1 3435C > T CC carriers |
Ma et al., 2015 | 184 | Oxcarbazepine | ABCC2 | rs2273697 | Higher doses in the ABCC2 1249G > A carriers |
Yao et al., 2022 | 125 | Oxcarbazepine | ABCB1 | rs1045642 | Higher MHD CDR in the ABCB1 3435C > T CC carriers |
Zhao et al., 2022 | 231 | Lacosamide | ABCC2 |
rs2273697 rs717620 | Lower lacosamide CDR in the ABCC2 1249G > A GA and AA genotypes and the ABCC2 24C > T CT and TT genotypes |
Zhao et al., 2022 | 131 | Lacosamide | ABCB1 | rs2032582 rs1045642 | Higher frequency of drug-resistance in the ABCB1 G2677T/A GT genotype. Higher CDR in the G2677T/A GG and ABCB1 C3435T CC genotypes. Higher plasma levels in the ABCB1 C3435T CC carriers |
Zhou et al., 2015 | 140 | Lamotrigine | ABCG2 |
rs114020 rs2231142 rs2622628 | Lower CDR in the ABCG2 T > C TT carriers. Higher concentrations in the ABCG2 C > A CA and AA carriers |
Shen et al., 2016 | 112 | Lamotrigine | ABCG2 OCT1 | rs2231142 rs628031 | Higher lamotrigine levels in the OCT1 rs628031 AA and GG and in the ABCG2 rs2231142 AA carriers |
Lovrić et al., 2012 | 222 | Lamotrigine | ABCB1 | rs1045642 | Lower lamotrigine levels and DCR in 1236 CT and TT carriers |
Stasiołek et al., 2016 | 271 | Topiramate Oxcarbazepine Gabapentin Lamotrigine Levetiracetam | ABCB1 | rs1045642 | Higher incidence of drug resistance in the ABCB1 C3435T CC carriers |
Ufer et al., 2011 | 208 | Oxcarbazepine | ABCC2 | rs2273697 | Higher frequency of responders in the ABCC2 1249G > A carriers |
Study | Number of Participants | Drug | Gene | Ref SNP | Clinical Effect |
---|---|---|---|---|---|
In et al., 2021 | 214 | Sodium channel blockers | SCN1B | rs55742440 | Higher frequency of allele C of SCN1B rs55742440 in the no-responders |
Angelopoulou et al., 2017 | 200 | Sodium channel blockers | SCN1A | rs3812718 | SCN1A IVS5-91G > A GG carriers needed lower doses |
Ma et al., 2015 | 184 | Oxcarbazepine | SCN1A | rs3812718 | SCN1A IVS5-91G > A variant allele carriers needed higher doses |
Study | Number of Patients | Drug | Gene | Ref SNP | Clinical Effect |
---|---|---|---|---|---|
Lu et al., 2017 | 124 | Oxcarbazepine | UGT1A9 | rs2741049 | Significantly lower MHD and worse seizure control in the UGT1A9 I399 C > T carriers. |
Shen et al., 2017 | 122 | Oxcarbazepine | UGT2B7 | rs7439366 | Higher doses in the UGT2B7 802T > C CC carriers. |
Ma et al., 2015 | 184 | Oxcarbazepine | UGT2B7 | rs7439366 | Higher doses in the UGT2B7 802T > C variant alleles carriers. |
Petrenaite et al., 2022 | 317 | Lamotrigine |
UGT1A4 UGT2B7 UGT2B15 | rs6755571 rs7439366 rs1902023 | Lower lamotrigine ratios in the wild-type UGT1A4 70C > A C, UGT2B7 802T > C TT and UGT2B15 253G > T TT. 1.3-fold higher lamotrigine ratio in patients devoid of UGT2B17 gene. |
Chang et al., 2014 | 106 | Lamotrigine | UGT1A4 | rs2011425 | Higher drug concentration and better therapeutic efficacy in the UGT1A4 142T > G TT. |
Du et al., 2016 | 102 | Lamotrigine | UGT1A4 | rs2011425 | Higher drug concentration and better therapeutic efficacy in UGT1A4 142T > G TT. |
Ahn et al., 2022 | 111 | Lacosamide | CYP2C9 CYP2C19 | rs1057910 rs4244285 rs4986893 | Higher drug levels and CDR and lowest proportion of lacosamide-resistant patients in the PM group. |
Okada et al., 2008 | 99 | Zonisamide | CYP2C19 | rs4244285 rs4986893 | Lower zonisamide clearance in the heterozygous extensive and poor metabolizers. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Urzì Brancati, V.; Pinto Vraca, T.; Minutoli, L.; Pallio, G. Polymorphisms Affecting the Response to Novel Antiepileptic Drugs. Int. J. Mol. Sci. 2023, 24, 2535. https://doi.org/10.3390/ijms24032535
Urzì Brancati V, Pinto Vraca T, Minutoli L, Pallio G. Polymorphisms Affecting the Response to Novel Antiepileptic Drugs. International Journal of Molecular Sciences. 2023; 24(3):2535. https://doi.org/10.3390/ijms24032535
Chicago/Turabian StyleUrzì Brancati, Valentina, Tiziana Pinto Vraca, Letteria Minutoli, and Giovanni Pallio. 2023. "Polymorphisms Affecting the Response to Novel Antiepileptic Drugs" International Journal of Molecular Sciences 24, no. 3: 2535. https://doi.org/10.3390/ijms24032535
APA StyleUrzì Brancati, V., Pinto Vraca, T., Minutoli, L., & Pallio, G. (2023). Polymorphisms Affecting the Response to Novel Antiepileptic Drugs. International Journal of Molecular Sciences, 24(3), 2535. https://doi.org/10.3390/ijms24032535