Genomic and Epigenomic Mechanisms of the Interaction between Parasitic and Host Plants
Abstract
:1. Introduction
2. Genomics of Parasitic Plants
2.1. Striga
2.2. Orobanche/Phelipanche
2.3. Cuscuta
Parasite | Common Parasitism Pathways | Common Parasitism Genes | References |
---|---|---|---|
Striga asiatica | SL recognition, cell wall modification, auxin signaling, lateral root development | peroxidase, hydrolase, protease, auxin related, lateral organ boundaries domain (LBD), lateral root development (LRD) | [10] |
Striga hermonthica | proteolysis, auxin signaling, oxidation–reduction processes, protein phosphorylation, transport, cell wall modification, serine-type peptidase | SLR, ARFs, LAX3, LBD18, oxidase, aspartyl protease, serine carboxypeptidase, peroxidase, LRR N-terminal domains, kinase, receptor protein, transporter, pectate lyase, pectin methylesterase inhibitor, cellulase | [10,11] |
Triphysaria versicolor | cell wall modification, proteolysis, oxidation–reduction processes, protein phosphorylation, transport, serine-type peptidase | β-expansin, AP2-ERF, PR proteins, pectate lyase, aspartyl protease, peroxidase, LRR N-terminal domains, serine carboxypeptidase, serine-type peptidase, subtilase, kinase, receptor protein, transporter, pectin methylesterase inhibitor, cellulose | [11,17] |
Phelipanche aegyptiaca | proteolysis, oxidation–reduction processes, protein phosphorylation, transport, cell wall modification, serine-type peptidase | aspartyl protease, LRR N-terminal domains, serine carboxypeptidase, peroxidase, kinase, receptor protein, transporter, pectate lyase, pectin methylesterase inhibitor, cellulase | [11] |
Phtheirospermum japonicum | ethylene and auxin signaling | EIN2, ETR, GH9B3, LRR receptor-like kinase, oxidase, protease | [13,19,21] |
Cuscuta campestris * | carbohydrate metabolism, cell wall, solute transport, phytohormones, protein degradation, RNA biosynthesis, protein modification, polyamine metabolism, cell cycle, chromatin, cytoskeleton | pectin lyase, pectin methylesterase, xyloglucan endotransglucosylase, polygalacturonase, cellulase, ARFs, expansins; LRR kinases, receptor-like kinases, SAUR, peptidase, SL biosynthetic enzymes, nutrient transporters, KNATs, WRKY, YABBY, AUX | [14,24,30,31] |
Cuscuta reflexa | cell wall remodeling | pectin acetylesterase, glycoside hydrolase, xyloglucan endotransglucosylase/hydrolase, peroxidase | [28] |
Cuscuta australis | terpenoid biosynthetic process, nitrate assimilation, regulation of signal transduction, response to auxin, DNA methylation | pectin esterase, receptor-like kinases, transport proteins, subtilisin-like proteases, ABC transporter, α/ß-hydrolase (SL receptor?) | [15] |
Santalum album | cell wall, mitochondria, ribosome, protein turnover, auxin, cytokinin, GA, ABA, JA, ethylene, brassinosteroids | pectinesterase, polygalacturonase, pectin lyase, xyloglucan endotransglucosylase/hydrolase, expansin, β-D-xylosidase, pectin lyase, and glycosyl hydrolase | [32] |
Thesium chinense | cell wall, oxidation, reduction, proteolysis, terpene synthesis, fatty acid metabolism, flavonoid synthesis, carbohydrate and sugar transport, auxin signaling, very long chain fatty acid biosynthesis | pectin methylesterase, phenylalanine ammonia-lyase, SHORT INTERNODES/STYLISH (SHI/STY), PIN-LIKES7 (PILS7), SUPPRESSOR OF G2 ALLELE SKP1 (SGT1), LATERAL ORGAN BOUNDARIES DOMAINs (LBDs), ACYL-COA OXIDASE 2 (ACX2), ACYL-COA SYNTHETASE5 (ACOS5), ACOS7, KNAT6, SCARECROW-LIKE (SCL), WUSCHEL-RELATED HOMEOBOX (WOX), PILS6, ARF9 | [33] |
Taxillus chinensis | metabolism and environmental adaptation, amino sugar and nucleotide sugar metabolism, mineral absorption, defense response, proteolysis | MYB TFs, WRKY TFs, bHLH TFs, ribosomal proteins, ubiquitin, E3 ubiquitin-protein ligase, disease resistance proteins | [34] |
2.4. Santalaceae
2.5. Loranthaceae
2.6. Scrophulariaceae
2.7. Rafflesiaceae
3. Genetic Basis of Susceptibility and Resistance in the Host–Parasite Plant Interaction Revealed by Genomic Studies
3.1. Rice–Striga hermonthica
3.2. Cowpea–Striga gesnerioides
3.3. Sunflower–Orobanche cumana
3.4. Host Plants–Cuscuta
4. Epigenomics of the Parasite–Host Plant Interaction
4.1. DNA Methylation
4.2. Chromosome Organisation
4.3. Small Non-Coding RNAs
4.4. Exchange of Informational Molecules between the Host and Parasitic Plants
4.5. Interplant Signaling
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Westwood, J.H.; Yoder, J.I.; Timko, M.P.; Depamphilis, C.W. The evolution of parasitism in plants. Trends Plant Sci. 2010, 15, 227–235. [Google Scholar] [CrossRef] [PubMed]
- Clarke, C.R.; Timko, M.P.; Yoder, J.I.; Axtell, M.J.; Westwood, J.H. Molecular dialog between parasitic plants and their hosts. Annu. Rev. Phytopathol. 2019, 57, 279–299. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Aparicio, M.; Delavault, P.; Timko, M.P. Management of infection by parasitic weeds: A review. Plants 2020, 9, 1184. [Google Scholar] [CrossRef]
- Jhu, M.Y.; Sinha, N.R. Parasitic plants: An overview of mechanisms by which plants perceive and respond to parasites. Annu. Rev. Plant Biol. 2022, 73, 433–455. [Google Scholar] [CrossRef] [PubMed]
- Zagorchev, L.; Stoeggl, W.; Teofanova, D.; Li, J.; Kranner, I. Plant parasites under pressure: Effects of abiotic stress on the interactions between parasitic plants and their hosts. Int. J. Mol. Sci. 2021, 22, 7418. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, S.; Cui, S.; Ichihashi, Y.; Shirasu, K. The haustorium, a specialized invasive organ in parasitic plants. Annu. Rev. Plant Biol. 2016, 67, 643–667. [Google Scholar] [CrossRef] [Green Version]
- Albert, M.; Belastegui-Macadam, X.; Kaldenhoff, R. An attack of the plant parasite Cuscuta reflexa induces the expression of attAGP, an attachment protein of the host tomato. Plant J. 2006, 48, 548–556. [Google Scholar] [CrossRef]
- Zagorchev, L.; Petrova, V.; Albanova, I.; Georgieva, K.; Sarić-Krsmanović, M.; Muscolo, A.; Teofanova, D. Salinity modulates crop plants suitability as hosts for Cuscuta campestris parasitism. J. Saudi Soc. Agric. Sci. 2022, 21, 324–330. [Google Scholar] [CrossRef]
- Yoshida, S.; Kee, Y.J. Large-scale sequencing paves the way for genomic and genetic analyses in parasitic plants. Curr. Opin. Biotechnol. 2021, 70, 248–254. [Google Scholar] [CrossRef]
- Yoshida, S.; Kim, S.; Wafula, E.K.; Tanskanen, J.; Kim, Y.M.; Honaas, L.; Yang, Z.; Spallek, T.; Conn, C.E.; Ichihashi, Y.; et al. Genome sequence of Striga asiatica provides insight into the evolution of plant parasitism. Curr. Biol. 2019, 29, 3041–3052. [Google Scholar] [CrossRef]
- Yang, Z.; Wafula, E.K.; Honaas, L.A.; Zhang, H.; Das, M.; Fernandez-Aparicio, M.; Huang, K.; Bandaranayake, P.C.; Wu, B.; Der, J.P.; et al. Comparative transcriptome analyses reveal core parasitism genes and suggest gene duplication and repurposing as sources of structural novelty. Mol. Biol. Evol. 2015, 32, 767–790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Conn, C.E.; Bythell-Douglas, R.; Neumann, D.; Yoshida, S.; Whittington, B.; Westwood, J.H.; Shirasu, K.; Bond, C.S.; Dyer, K.A.; Nelson, D.C. Convergent evolution of strigolactone perception enabled host detection in parasitic plants. Science 2015, 349, 540–543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cui, S.; Kubota, T.; Nishiyama, T.; Ishida, J.K.; Shigenobu, S.; Shibata, T.F.; Toyoda, A.; Hasebe, M.; Shirasu, K.; Yoshida, S. Ethylene signaling mediates host invasion by parasitic plants. Sci. Adv. 2020, 6, eabc2385. [Google Scholar] [CrossRef] [PubMed]
- Vogel, A.; Schwacke, R.; Denton, A.K.; Usadel, B.; Hollmann, J.; Fischer, K.; Bolger, A.; Schmidt, M.H.; Bolger, M.E.; Gundlach, H.; et al. Footprints of parasitism in the genome of the parasitic flowering plant Cuscuta campestris. Nat. Commun. 2018, 9, 2515. [Google Scholar] [CrossRef] [Green Version]
- Sun, G.; Xu, Y.; Liu, H.; Sun, T.; Zhang, J.; Hettenhausen, C.; Shen, G.; Qi, J.; Qin, Y.; Li, J.; et al. Large-scale gene losses underlie the genome evolution of parasitic plant Cuscuta australis. Nat. Commun. 2018, 9, 2683. [Google Scholar] [CrossRef] [Green Version]
- Cai, L.; Arnold, B.J.; Xi, Z.; Khost, D.E.; Patel, N.; Hartmann, C.B.; Manickam, S.; Sasirat, S.; Nikolov, L.A.; Mathews, S.; et al. Deeply altered genome architecture in the endoparasitic flowering plant Sapria himalayana Griff. (Rafflesiaceae). Curr. Biol. 2021, 31, 1002–1011. [Google Scholar] [CrossRef]
- Honaas, L.A.; Wafula, E.K.; Yang, Z.; Der, J.P.; Wickett, N.J.; Altman, N.S.; Taylor, C.G.; Yoder, J.I.; Timko, M.P.; Westwood, J.H.; et al. Functional genomics of a generalist parasitic plant: Laser microdissection of host-parasite interface reveals host-specific patterns of parasite gene expression. BMC Plant Biol. 2013, 13, 9. [Google Scholar] [CrossRef] [Green Version]
- Ishida, J.K.; Wakatake, T.; Yoshida, S.; Takebayashi, Y.; Kasahara, H.; Wafula, E.; Depamphilis, C.W.; Namba, S.; Shirasu, K. Local auxin biosynthesis mediated by a YUCCA flavin monooxygenase regulates haustorium development in the parasitic plant Phtheirospermum japonicum. Plant Cell 2016, 28, 1795–1814. [Google Scholar] [CrossRef] [Green Version]
- Kurotani, K.I.; Wakatake, T.; Ichihashi, Y.; Okayasu, K.; Sawai, Y.; Ogawa, S.; Cui, S.; Suzuki, T.; Shirasu, K.; Notaguchi, M. Host-parasite tissue adhesion by a secreted type of β-1,4-glucanase in the parasitic plant Phtheirospermum japonicum. Commun. Biol. 2020, 3, 407. [Google Scholar] [CrossRef]
- Goyet, V.; Wada, S.; Cui, S.; Wakatake, T.; Shirasu, K.; Montiel, G.; Simier, P.; Yoshida, S. Haustorium inducing factors for parasitic Orobanchaceae. Front. Plant Sci. 2019, 10, 1056. [Google Scholar] [CrossRef]
- Ogawa, S.; Wakatake, T.; Spallek, T.; Ishida, J.K.; Sano, R.; Kurata, T.; Demura, T.; Yoshida, S.; Ichihashi, Y.; Schaller, A.; et al. Subtilase activity in intrusive cells mediates haustorium maturation in parasitic plants. Plant Physiol. 2021, 185, 1381–1394. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, K.; Aoki, K. Development of parasitic organs of a stem holoparasitic plant in genus Cuscuta. Front. Plant Sci. 2019, 10, 1435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, L.; Wijeratne, A.J.; Wijeratne, S.; Fraga, M.; Meulia, T.; Doohan, D.; Li, Z.; Qu, F. Profiling mRNAs of two Cuscuta species reveals possible candidate transcripts shared by parasitic plants. PLoS ONE 2013, 8, e81389. [Google Scholar] [CrossRef] [Green Version]
- Ranjan, A.; Ichihashi, Y.; Farhi, M.; Zumstein, K.; Townsley, B.; David-Schwartz, R.; Sinha, N.R. De novo assembly and characterization of the transcriptome of the parasitic weed dodder identifies genes associated with plant parasitism. Plant Physiol. 2014, 166, 1186–1199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costea, M.; García, M.A.; Baute, K.; Stefanović, S. Entangled evolutionary history of Cuscuta pentagona clade: A story involving hybridization and Darwin in the Galapagos. Taxon 2015, 64, 1225–1242. [Google Scholar] [CrossRef] [Green Version]
- Shahid, S.; Kim, G.; Johnson, N.R.; Wafula, E.; Wang, F.; Coruh, C.; Bernal-Galeano, V.; Phifer, T.; Depamphilis, C.W.; Westwood, J.H.; et al. MicroRNAs from the parasitic plant Cuscuta campestris target host messenger RNAs. Nature 2018, 553, 82–85. [Google Scholar] [CrossRef]
- Ikeue, D.; Schudoma, C.; Zhang, W.; Ogata, Y.; Sakamoto, T.; Kurata, T.; Furuhashi, T.; Kragler, F.; Aoki, K. A bioinformatics approach to distinguish plant parasite and host transcriptomes in interface tissue by classifying RNA-Seq reads. Plant Methods 2015, 11, 34. [Google Scholar] [CrossRef] [Green Version]
- Olsen, S.; Striberny, B.; Hollmann, J.; Schwacke, R.; Popper, Z.; Krause, K. Getting ready for host invasion: Elevated expression and action of xyloglucan endotransglucosylases/hydrolases in developing haustoria of the holoparasitic angiosperm Cuscuta. J. Exp. Bot. 2016, 67, 695–708. [Google Scholar] [CrossRef] [Green Version]
- Albert, M.; Werner, M.; Proksch, P.; Fry, S.C.; Kaldenhoff, R. The cell wall-modifying xyloglucan endotransglycosylase/hydrolase LeXTH1 is expressed during the defence reaction of tomato against the plant parasite Cuscuta reflexa. Plant Biol. 2004, 6, 402–407. [Google Scholar] [CrossRef]
- Kaga, Y.; Yokoyama, R.; Sano, R.; Ohtani, M.; Demura, T.; Kuroha, T.; Shinohara, N.; Nishitani, K. Interspecific signaling between the parasitic plant and the host plants regulate xylem vessel cell differentiation in haustoria of Cuscuta campestris. Front. Plant Sci. 2020, 11, 193. [Google Scholar] [CrossRef]
- Bawin, T.; Bruckmüller, J.; Olsen, S.; Krause, K. A host-free transcriptome for haustoriogenesis in Cuscuta campestris: Signature gene expression identifies markers of successive development stages. Physiol. Plant. 2022, 174, e13628. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Berkowitz, O.; Teixeira da Silva, J.A.; Zhang, M.; Ma, G.; Whelan, J.; Duan, J. RNA-Seq analysis identifies key genes associated with haustorial development in the root hemiparasite Santalum album. Front. Plant Sci. 2015, 6, 661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ichihashi, Y.; Kusano, M.; Kobayashi, M.; Suetsugu, K.; Yoshida, S.; Wakatake, T.; Kumaishi, K.; Shibata, A.; Saito, K.; Shirasu, K. Transcriptomic and metabolomic reprogramming from roots to haustoria in the parasitic plant, Thesium chinense. Plant Cell Physiol. 2018, 59, 724–733. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, S.; Wan, L.; He, L.; Wei, Y.; Long, H.; Ji, X.; Fu, J.; Pan, L. De novo transcriptome reveals gene changes in the development of the endosperm chalazal haustorium in Taxillus chinensis (DC.) Danser. Biomed. Res. Int. 2020, 2020, 7871918. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Guo, Q.; Zhu, Z.; Wan, H.; Qin, Y.; Zhang, H. Integrated analyses of the transcriptome and small RNA of the hemiparasitic plant Monochasma savatieri before and after establishment of parasite-host association. BMC Plant Biol. 2021, 21, 90. [Google Scholar] [CrossRef]
- Nikolov, L.A.; Davis, C.C. The big, the bad, and the beautiful: Biology of the world’s largest flowers. J. Syst. Evol. 2017, 55, 516–524. [Google Scholar] [CrossRef] [Green Version]
- Leushkin, E.V.; Sutormin, R.A.; Nabieva, E.R.; Penin, A.A.; Kondrashov, A.S.; Logacheva, M.D. The miniature genome of a carnivorous plant Genlisea aurea contains a low number of genes and short non-coding sequences. BMC Genom. 2013, 14, 476. [Google Scholar] [CrossRef] [Green Version]
- Swarbrick, P.J.; Huang, K.; Liu, G.; Slate, J.; Press, M.C.; Scholes, J.D. Global patterns of gene expression in rice cultivars undergoing a susceptible or resistant interaction with the parasitic plant Striga hermonthica. New Phytol. 2008, 179, 515–529. [Google Scholar] [CrossRef]
- Li, J.; Timko, M.P. Gene-for-gene resistance in Striga-cowpea associations. Science 2009, 325, 1094. [Google Scholar] [CrossRef]
- Jubic, L.M.; Saile, S.; Furzer, O.J.; El Kasmi, F.; Dangl, J.L. Help wanted: Helper NLRs and plant immune responses. Curr. Opin. Plant Biol. 2019, 50, 82–94. [Google Scholar] [CrossRef]
- Huang, K.; Mellor, K.E.; Paul, S.N.; Lawson, M.J.; Mackey, A.J.; Timko, M.P. Global changes in gene expression during compatible and incompatible interactions of cowpea (Vigna unguiculata L.) with the root parasitic angiosperm Striga gesnerioides. BMC Genom. 2012, 13, 402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Su, C.; Liu, H.; Wafula, E.K.; Honaas, L.; Depamphilis, C.W.; Timko, M.P. SHR4z, a novel decoy effector from the haustorium of the parasitic weed Striga gesnerioides, suppresses host plant immunity. New Phytol. 2020, 226, 891–908. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hegenauer, V.; Fürst, U.; Kaiser, B.; Smoker, M.; Zipfel, C.; Felix, G.; Stahl, M.; Albert, M. Detection of the plant parasite Cuscuta reflexa by a tomato cell surface receptor. Science 2016, 353, 478–481. [Google Scholar] [CrossRef]
- Duriez, P.; Vautrin, S.; Auriac, M.C.; Bazerque, J.; Boniface, M.C.; Callot, C.; Carrère, S.; Cauet, S.; Chabaud, M.; Gentou, F.; et al. A receptor-like kinase enhances sunflower resistance to Orobanche cumana. Nat. Plants 2019, 5, 1211–1215. [Google Scholar] [CrossRef] [PubMed]
- Sisou, D.; Tadmor, Y.; Plakhine, D.; Ziadna, H.; Hübner, S.; Eizenberg, H. Biological and transcriptomic characterization of pre-haustorial resistance to sunflower broomrape (Orobanche cumana W.) in sunflowers (Helianthus annuus). Plants 2021, 10, 1810. [Google Scholar] [CrossRef]
- Pérez-de-Luque, A.; González-Verdejo, C.I.; Lozano, M.D.; Dita, M.A.; Cubero, J.I.; González-Melendi, P.; Risueño, M.C.; Rubiales, D. Protein cross-linking, peroxidase and beta-1,3-endoglucanase involved in resistance of pea against Orobanche crenata. J. Exp. Bot. 2006, 57, 1461–1469. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.; Xu, L.; Zhang, N.; Islam, F.; Song, W.; Hu, L.; Liu, D.; Xie, X.; Zhou, W. iTRAQ-based proteomics of sunflower cultivars differing in resistance to parasitic weed Orobanche cumana. Proteomics 2017, 17, 1700009. [Google Scholar] [CrossRef]
- McGrath, K.; Dombrecht, B.; Manners, J.M.; Schenk, P.; Edgar, C.I.; Maclean, D.J.; Scheible, W.-R.; Udvardi, M.; Kazan, K. Repressor- and activator-type ethylene response factors functioning in jasmonate signaling and disease resistance identified via a genome-wide screen of Arabidopsis transcription factor gene expression. Plant Physiol. 2005, 139, 949–959. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Wang, P.; Liu, Y.; Wang, P. Identification of candidate gene for resistance to broomrape (Orobanche cumana) in sunflower by BSA-seq. Oil Crop Sci. 2020, 5, 47–51. [Google Scholar] [CrossRef]
- Guo, C.; Qin, L.; Ma, Y.; Qin, J. Integrated metabolomic and transcriptomic analyses of the parasitic plant Cuscuta japonica Choisy on host and non-host plants. BMC Plant Biol. 2022, 22, 393. [Google Scholar] [CrossRef]
- Hegenauer, V.; Slaby, P.; Körner, M.; Bruckmüller, J.A.; Burggraf, R.; Albert, I.; Kaiser, B.; Löffelhardt, B.; Droste-Borel, I.; Sklenar, J.; et al. The tomato receptor CuRe1 senses a cell wall protein to identify Cuscuta as a pathogen. Nat. Commun. 2020, 11, 5299. [Google Scholar] [CrossRef] [PubMed]
- Jhu, M.Y.; Farhi, M.; Wang, L.; Philbrook, R.N.; Belcher, M.S.; Nakayama, H.; Zumstein, K.S.; Rowland, S.D.; Ron, M.; Shih, P.M.; et al. Heinz-resistant tomato cultivars exhibit a lignin-based resistance to field dodder (Cuscuta campestris) parasitism. Plant Physiol. 2022, 189, 129–151. [Google Scholar] [CrossRef] [PubMed]
- Jhu, M.Y.; Farhi, M.; Wang, L.; Zumstein, K.; Sinha, N.R. Investigating host and parasitic plant interaction by tissue-specific gene analyses on tomato and Cuscuta campestris interface at three haustorial developmental stages. Front. Plant Sci. 2022, 12, 764843. [Google Scholar] [CrossRef] [PubMed]
- Jhu, M.Y.; Ichihashi, Y.; Farhi, M.; Wong, C.; Sinha, N.R. LATERAL ORGAN BOUNDARIES DOMAIN 25 functions as a key regulator of haustorium development in dodders. Plant Physiol. 2021, 186, 2093–2110. [Google Scholar] [CrossRef]
- Ashapkin, V.V.; Kutueva, L.I.; Aleksandrushkina, N.I.; Vanyushin, B.F. Epigenetic mechanisms of plant adaptation to biotic and abiotic stresses. Int. J. Mol. Sci. 2020, 21, 7457. [Google Scholar] [CrossRef]
- Van Ghelder, C.; Parent, G.J.; Rigault, P.; Prunier, J.; Giguère, I.; Caron, S.; Stival Sena, J.; Deslauriers, A.; Bousquet, J.; Esmenjaud, D.; et al. The large repertoire of conifer NLR resistance genes includes drought responsive and highly diversified RNLs. Sci. Rep. 2019, 9, 11614. [Google Scholar] [CrossRef] [Green Version]
- Lechat, M.M.; Brun, G.; Montiel, G.; Véronési, C.; Simier, P.; Thoiron, S.; Pouvreau, J.B.; Delavault, P. Seed response to strigolactone is controlled by abscisic acid-independent DNA methylation in the obligate root parasitic plant, Phelipanche ramosa L. Pomel. J. Exp. Bot. 2015, 66, 3129–3140. [Google Scholar] [CrossRef] [Green Version]
- Neumann, P.; Oliveira, L.; Čížková, J.; Jang, T.S.; Klemme, S.; Novák, P.; Stelmach, K.; Koblížková, A.; Doležel, J.; Macas, J. Impact of parasitic lifestyle and different types of centromere organization on chromosome and genome evolution in the plant genus Cuscuta. New Phytol. 2021, 229, 2365–2377. [Google Scholar] [CrossRef]
- McNeal, J.R.; Arumugunathan, K.; Kuehl, J.V.; Boore, J.L.; Depamphilis, C.W. Systematics and plastid genome evolution of the cryptically photosynthetic parasitic plant genus Cuscuta (Convolvulaceae). BMC Biol. 2007, 5, 55. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.; Wafula, E.K.; Kim, G.; Shahid, S.; McNeal, J.R.; Ralph, P.E.; Timilsena, P.R.; Yu, W.B.; Kelly, E.A.; Zhang, H.; et al. Convergent horizontal gene transfer and cross-talk of mobile nucleic acids in parasitic plants. Nat. Plants 2019, 5, 991–1001. [Google Scholar] [CrossRef]
- Zangishei, Z.; Annacondia, M.L.; Gundlach, H.; Didriksen, A.; Bruckmüller, J.; Salari, H.; Krause, K.; Martinez, G. Parasitic plant small RNA analyses unveil parasite-specific signatures of microRNA retention, loss, and gain. Plant Physiol. 2022, 190, 1242–1259. [Google Scholar] [CrossRef] [PubMed]
- Roney, J.K.; Khatibi, P.A.; Westwood, J.H. Cross-species translocation of mRNA from host plants into the parasitic plant dodder. Plant Physiol. 2007, 143, 1037–1043. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tomilov, A.A.; Tomilova, N.B.; Wroblewski, T.; Michelmore, R.; Yoder, J.I. Trans-specific gene silencing between host and parasitic plants. Plant J. 2008, 56, 389–397. [Google Scholar] [CrossRef]
- Alakonya, A.; Kumar, R.; Koenig, D.; Kimura, S.; Townsley, B.; Runo, S.; Garces, H.M.; Kang, J.; Yanez, A.; David-Schwartz, R.; et al. Interspecific RNA interference of SHOOT MERISTEMLESS-Like disrupts Cuscuta pentagona plant parasitism. Plant Cell 2012, 24, 3153–3166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, G.; LeBlanc, M.L.; Wafula, E.K.; Depamphilis, C.W.; Westwood, J.H. Genomic-scale exchange of mRNA between a parasitic plant and its hosts. Science 2014, 345, 808–811. [Google Scholar] [CrossRef]
- Yang, L.; Perrera, V.; Saplaoura, E.; Apelt, F.; Bahin, M.; Kramdi, A.; Olas, J.; Mueller-Roeber, B.; Sokolowska, E.; Zhang, W.; et al. m5C methylation guides systemic transport of messenger RNA over graft junctions in plants. Curr. Biol. 2019, 29, 2465–2476. [Google Scholar] [CrossRef] [Green Version]
- Dubey, N.K.; Eizenberg, H.; Leibman, D.; Wolf, D.; Edelstein, M.; Abu-Nassar, J.; Marzouk, S.; Gal-On, A.; Aly, R. Enhanced host-parasite resistance based on down-regulation of Phelipanche aegyptiaca target genes is likely by mobile small RNA. Front. Plant Sci. 2017, 8, 1574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, N.R.; Depamphilis, C.W.; Axtell, M.J. Compensatory sequence variation between trans-species small RNAs and their target sites. eLife 2019, 8, e49750. [Google Scholar] [CrossRef]
- Subhankar, B.; Yamaguchi, K.; Shigenobu, S.; Aoki, K. Trans-species small RNAs move long distances in a parasitic plant complex. Plant Biotechnol. 2021, 38, 187–196. [Google Scholar] [CrossRef]
- Liu, N.; Shen, G.; Xu, Y.; Liu, H.; Zhang, J.; Li, S.; Li, J.; Zhang, C.; Qi, J.; Wang, L.; et al. Extensive inter-plant protein transfer between Cuscuta parasites and their host plants. Mol. Plant 2020, 13, 573–585. [Google Scholar] [CrossRef]
- Wu, Y.; Luo, D.; Fang, L.; Zhou, Q.; Liu, W.; Liu, Z. Bidirectional lncRNA transfer between Cuscuta parasites and their host plant. Int. J. Mol. Sci. 2022, 23, 561. [Google Scholar] [CrossRef] [PubMed]
- Shen, G.; Liu, N.; Zhang, J.; Xu, Y.; Baldwin, I.T.; Wu, J. Cuscuta australis (dodder) parasite eavesdrops on the host plants’ FT signals to flower. Proc. Natl. Acad. Sci. USA 2020, 117, 23125–23130. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Qu, F.; Li, Z.; Doohan, D. Inter-species protein trafficking endows dodder (Cuscuta pentagona) with a host-specific herbicide-tolerant trait. New Phytol. 2013, 198, 1017–1022. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.D.; Woldemariam, M.G.; Mescher, M.C.; Jander, G.; De Moraes, C.M. Glucosinolates from host plants influence growth of the parasitic plant Cuscuta gronovii and its susceptibility to aphid feeding. Plant Physiol. 2016, 172, 181–197. [Google Scholar] [CrossRef] [Green Version]
- Hettenhausen, C.; Li, J.; Zhuang, H.; Sun, H.; Xu, Y.; Qi, J.; Zhang, J.; Lei, Y.; Qin, Y.; Sun, G.; et al. Stem parasitic plant Cuscuta australis (dodder) transfers herbivory-induced signals among plants. Proc. Natl. Acad. Sci. USA 2017, 114, E6703–E6709. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qin, Y.; Zhang, J.; Hettenhausen, C.; Liu, H.; Li, S.; Shen, G.; Cao, G.; Wu, J. The host jasmonic acid pathway regulates the transcriptomic changes of dodder and host plant under the scenario of caterpillar feeding on dodder. BMC Plant Biol. 2019, 19, 540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhuang, H.; Li, J.; Song, J.; Hettenhausen, C.; Schuman, M.C.; Sun, G.; Zhang, C.; Li, J.; Song, D.; Wu, J. Aphid (Myzus persicae) feeding on the parasitic plant dodder (Cuscuta australis) activates defense responses in both the parasite and soybean host. New Phytol. 2018, 218, 1586–1596. [Google Scholar] [CrossRef] [Green Version]
- Song, J.; Bian, J.; Xue, N.; Xu, Y.; Wu, J. Inter-species mRNA transfer among green peach aphids, dodder parasites, and cucumber host plants. Plant Divers. 2021, 44, 1–10. [Google Scholar] [CrossRef]
- Zhang, J.; Xu, Y.; Xie, J.; Zhuang, H.; Liu, H.; Shen, G.; Wu, J. Parasite dodder enables transfer of bidirectional systemic nitrogen signals between host plants. Plant Physiol. 2021, 185, 1395–1410. [Google Scholar] [CrossRef]
- Li, S.; Zhang, J.; Liu, H.; Liu, N.; Shen, G.; Zhuang, H.; Wu, J. Dodder-transmitted mobile signals prime host plants for enhanced salt tolerance. J. Exp. Bot. 2020, 71, 1171–1184. [Google Scholar] [CrossRef]
- Duan, S.; Xu, Z.; Li, X.-Y.; Liao, P.; Qin, H.-K.; Mao, Y.-P.; Dai, W.-S.; Ma, H.-J.; Bao, M.-L. Dodder-transmitted mobile systemic signals activate a salt-stress response characterized by a transcriptome change in Citrus sinensis. Front. Plant Sci. 2022, 13, 986365. [Google Scholar] [CrossRef] [PubMed]
- Vanyushin, B.F.; Singkh, S.S.; Sonvol, G. Changes in DNA methylation in alfalfa plants infected with Cuscuta and tissue differences in DNA methylation of the parasite plants. Biokhimiia 1979, 44, 864–867. [Google Scholar]
- Kado, T.; Innan, H. Horizontal gene transfer in five parasite plant species in Orobanchaceae. Genome Biol. Evol. 2018, 10, 3196–3210. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.; Zhang, Y.; Wafula, E.K.; Honaas, L.A.; Ralph, P.E.; Jones, S.; Clarke, C.R.; Liu, S.; Su, C.; Zhang, H.; et al. Horizontal gene transfer is more frequent with increased heterotrophy and contributes to parasite adaptation. Proc. Natl. Acad. Sci. USA 2016, 113, E7010–E7019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Butt, H.; Jamil, M.; Wang, J.Y.; Al-Babili, S.; Mahfouz, M. Engineering plant architecture via CRISPR/Cas9-mediated alteration of strigolactone biosynthesis. BMC Plant Biol. 2018, 18, 174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bari, V.K.; Nassar, J.A.; Kheredin, S.M.; Gal-On, A.; Ron, M.; Britt, A.; Steele, D.; Yoder, J.; Aly, R. CRISPR/Cas9-mediated mutagenesis of CAROTENOID CLEAVAGE DIOXYGENASE 8 in tomato provides resistance against the parasitic weed Phelipanche aegyptiaca. Sci. Rep. 2019, 9, 11438. [Google Scholar] [CrossRef]
Species | Genome Size, Mbp; Gene Number | Gene Groups Lost | Gene Groups Gained | Reference; Sequencing Platforms; Assembly Metrics |
---|---|---|---|---|
Striga asiatica | 472; 34,577 | photosynthesis; leaf anatomy and function; abiotic and biotic stimuli responses | strigolactone perception | [10]; Ilumina+Sanger; N50 > 1.3 Mbp * |
Phtheirospermum japonicum | 1227; 30,337 | subtilisin-like serine proteases | [13]; Illumina+PacBio; N50 > 1 Mbp | |
Cuscuta campestris | 477; 44,303 | photosynthesis; nutrient uptake from soil; RNA; stress; transport; lipid metabolism | DNA; protein | [14]; Illumina+PacBio; N50 > 1.38 Mbp |
Cuscuta australis | 273; 19,671 | leaf and root development; nutrients uptake from soil; photosynthesis; flowering time; defense against pests and pathogens | response to hormones; DNA methylation; regulation of transcription; cell wall-related metabolism | [15]; Illumina+PacBio; N50 = 5.95 Mbp |
Sapria himalayana | 1280; 55,179 | photosynthesis; defense; stress response; biosynthesis of ABA; protein degradation; purine metabolism; ubiquitin-proteasome-mediated protein degradation; endopeptidase Clp-mediated protein lysis | chromosome organization; DNA metabolism; cell cycle | [16]; Illumina+ONT; N50 = 4.3 Mbp |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ashapkin, V.V.; Kutueva, L.I.; Aleksandrushkina, N.I.; Vanyushin, B.F.; Teofanova, D.R.; Zagorchev, L.I. Genomic and Epigenomic Mechanisms of the Interaction between Parasitic and Host Plants. Int. J. Mol. Sci. 2023, 24, 2647. https://doi.org/10.3390/ijms24032647
Ashapkin VV, Kutueva LI, Aleksandrushkina NI, Vanyushin BF, Teofanova DR, Zagorchev LI. Genomic and Epigenomic Mechanisms of the Interaction between Parasitic and Host Plants. International Journal of Molecular Sciences. 2023; 24(3):2647. https://doi.org/10.3390/ijms24032647
Chicago/Turabian StyleAshapkin, Vasily V., Lyudmila I. Kutueva, Nadezhda I. Aleksandrushkina, Boris F. Vanyushin, Denitsa R. Teofanova, and Lyuben I. Zagorchev. 2023. "Genomic and Epigenomic Mechanisms of the Interaction between Parasitic and Host Plants" International Journal of Molecular Sciences 24, no. 3: 2647. https://doi.org/10.3390/ijms24032647
APA StyleAshapkin, V. V., Kutueva, L. I., Aleksandrushkina, N. I., Vanyushin, B. F., Teofanova, D. R., & Zagorchev, L. I. (2023). Genomic and Epigenomic Mechanisms of the Interaction between Parasitic and Host Plants. International Journal of Molecular Sciences, 24(3), 2647. https://doi.org/10.3390/ijms24032647