Mechanisms of Interaction between Enhancers and Promoters in Three Drosophila Model Systems
Abstract
:1. Introduction
2. Models of Distance Interactions between Regulatory Elements
3. Current Models of Enhancer—Promoter Communication
4. Interacting Insulators form an Autonomous Regulatory Domain of the eve Gene
5. Insulators and Tethering Elements Provide Independent Regulation of Genes in the Antennapedia Gene Complex
6. Boundaries Organize the Enhancer—Promoter Interactions in the Abd-B Gene of the Bithorax Complex
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
TF | Transcription factor |
CBP | CREB-binding protein |
Mll3/4 | Mixed lineage leukemia 3/4 |
PcG | Polycomb group |
PRC1(2) | Polycomb repressive complexes 1(2) |
PS | Parasegment |
CTCF | CTC binding factor |
ZNF143 | Zinc finger protein 143 |
MAZ | Myc-associated zinc finger protein |
WIZ | Widely interspaced zinc-finger-containing protein |
LDB1 | LIM domain-binding factor 1 |
CP190 | Centrosomal protein 190kD |
Mod(mdg4) | Modifier of mdg4 |
CRISPR | Clustered regularly interspaced short palindromic repeats |
TE | Tethering element |
Fub | Front–ultra-abdominal boundary |
Mcp | Miscadestral pigmentation boundary |
Fab-6 | Frontadominal-6 boundary |
Fab-7 | Frontadominal-7 boundary |
Fab-8 | Frontadominal-8 boundary |
HS | Nuclease-hypersensitive region |
References
- Andersson, R.; Sandelin, A. Determinants of Enhancer and Promoter Activities of Regulatory Elements. Nat. Rev. Genet. 2020, 21, 71–87. [Google Scholar] [CrossRef]
- Furlong, E.E.M.; Levine, M. Developmental Enhancers and Chromosome Topology. Science 2018, 361, 1341–1345. [Google Scholar] [CrossRef]
- Hafner, A.; Boettiger, A. The Spatial Organization of Transcriptional Control. Nat. Rev. Genet. 2022, 24, 53–68. [Google Scholar] [CrossRef]
- Jerkovic, I.; Cavalli, G. Understanding 3D Genome Organization by Multidisciplinary Methods. Nat. Rev. Mol. Cell Biol. 2021, 22, 511–528. [Google Scholar] [CrossRef]
- Wang, H.; La Russa, M.; Qi, L.S. CRISPR/Cas9 in Genome Editing and Beyond. Annu. Rev. Biochem. 2016, 85, 227–264. [Google Scholar] [CrossRef]
- Housden, B.E.; Perrimon, N. Cas9-Mediated Genome Engineering in Drosophila Melanogaster. Cold Spring Harb. Protoc. 2016, 2016, pdb-top086843. [Google Scholar] [CrossRef]
- Sexton, T.; Yaffe, E.; Kenigsberg, E.; Bantignies, F.; Leblanc, B.; Hoichman, M.; Parrinello, H.; Tanay, A.; Cavalli, G. Three-Dimensional Folding and Functional Organization Principles of the Drosophila Genome. Cell 2012, 148, 458–472. [Google Scholar] [CrossRef]
- Dixon, J.R.; Selvaraj, S.; Yue, F.; Kim, A.; Li, Y.; Shen, Y.; Hu, M.; Liu, J.S.; Ren, B. Topological Domains in Mammalian Genomes Identified by Analysis of Chromatin Interactions. Nature 2012, 485, 376–380. [Google Scholar] [CrossRef]
- Rao, S.S.P.; Huntley, M.H.; Durand, N.C.; Stamenova, E.K.; Bochkov, I.D.; Robinson, J.T.; Sanborn, A.L.; Machol, I.; Omer, A.D.; Lander, E.S.; et al. A 3D Map of the Human Genome at Kilobase Resolution Reveals Principles of Chromatin Looping. Cell 2014, 159, 1665–1680. [Google Scholar] [CrossRef]
- Ulianov, S.V.; Khrameeva, E.E.; Gavrilov, A.A.; Flyamer, I.M.; Kos, P.; Mikhaleva, E.A.; Penin, A.A.; Logacheva, M.D.; Imakaev, M.V.; Chertovich, A.; et al. Active Chromatin and Transcription Play a Key Role in Chromosome Partitioning into Topologically Associating Domains. Genome Res. 2016, 26, 70–84. [Google Scholar] [CrossRef] [Green Version]
- Nora, E.P.; Goloborodko, A.; Valton, A.-L.; Gibcus, J.H.; Uebersohn, A.; Abdennur, N.; Dekker, J.; Mirny, L.A.; Bruneau, B.G. Targeted Degradation of CTCF Decouples Local Insulation of Chromosome Domains from Genomic Compartmentalization. Cell 2017, 169, 930–944.e22. [Google Scholar] [CrossRef] [PubMed]
- Rao, S.S.P.; Huang, S.-C.; Glenn St Hilaire, B.; Engreitz, J.M.; Perez, E.M.; Kieffer-Kwon, K.-R.; Sanborn, A.L.; Johnstone, S.E.; Bascom, G.D.; Bochkov, I.D.; et al. Cohesin Loss Eliminates All Loop Domains. Cell 2017, 171, 305–320.e24. [Google Scholar] [CrossRef]
- Schwarzer, W.; Abdennur, N.; Goloborodko, A.; Pekowska, A.; Fudenberg, G.; Loe-Mie, Y.; Fonseca, N.A.; Huber, W.; Haering, C.H.; Mirny, L.; et al. Two Independent Modes of Chromatin Organization Revealed by Cohesin Removal. Nature 2017, 551, 51–56. [Google Scholar] [CrossRef] [PubMed]
- Dorsett, D. The Many Roles of Cohesin in Drosophila Gene Transcription. Trends Genet. 2019, 35, 542–551. [Google Scholar] [CrossRef] [PubMed]
- Davidson, I.F.; Peters, J.-M. Genome Folding through Loop Extrusion by SMC Complexes. Nat. Rev. Mol. Cell Biol. 2021, 22, 445–464. [Google Scholar] [CrossRef]
- Arzate-Mejía, R.G.; Recillas-Targa, F.; Corces, V.G. Developing in 3D: The Role of CTCF in Cell Differentiation. Development 2018, 145, dev137729. [Google Scholar] [CrossRef]
- Maksimenko, O.G.; Fursenko, D.V.; Belova, E.V.; Georgiev, P.G. CTCF As an Example of DNA-Binding Transcription Factors Containing Clusters of C2H2-Type Zinc Fingers. Acta Nat. 2021, 13, 31–46. [Google Scholar] [CrossRef]
- Ohlsson, R.; Renkawitz, R.; Lobanenkov, V. CTCF Is a Uniquely Versatile Transcription Regulator Linked to Epigenetics and Disease. Trends Genet. 2001, 17, 520–527. [Google Scholar] [CrossRef]
- Hashimoto, H.; Wang, D.; Horton, J.R.; Zhang, X.; Corces, V.G.; Cheng, X. Structural Basis for the Versatile and Methylation-Dependent Binding of CTCF to DNA. Mol. Cell 2017, 66, 711–720.e3. [Google Scholar] [CrossRef]
- Li, Y.; Haarhuis, J.H.I.; Sedeño Cacciatore, Á.; Oldenkamp, R.; van Ruiten, M.S.; Willems, L.; Teunissen, H.; Muir, K.W.; de Wit, E.; Rowland, B.D.; et al. The Structural Basis for Cohesin-CTCF-Anchored Loops. Nature 2020, 578, 472–476. [Google Scholar] [CrossRef]
- Oldenkamp, R.; Rowland, B.D. A Walk through the SMC Cycle: From Catching DNAs to Shaping the Genome. Mol. Cell 2022, 82, 1616–1630. [Google Scholar] [CrossRef] [PubMed]
- Fudenberg, G.; Imakaev, M.; Lu, C.; Goloborodko, A.; Abdennur, N.; Mirny, L.A. Formation of Chromosomal Domains by Loop Extrusion. Cell Rep. 2016, 15, 2038–2049. [Google Scholar] [CrossRef] [PubMed]
- Krivega, I.; Dean, A. Chromatin Looping as a Target for Altering Erythroid Gene Expression. Ann. N. Y. Acad. Sci. 2016, 1368, 31–39. [Google Scholar] [CrossRef]
- Kyrchanova, O.; Georgiev, P. Mechanisms of Enhancer-Promoter Interactions in Higher Eukaryotes. Int. J. Mol. Sci. 2021, 22, 671. [Google Scholar] [CrossRef] [PubMed]
- Maksimenko, O.; Kyrchanova, O.; Klimenko, N.; Zolotarev, N.; Elizarova, A.; Bonchuk, A.; Georgiev, P. Small Drosophila Zinc Finger C2H2 Protein with an N-Terminal Zinc Finger-Associated Domain Demonstrates the Architecture Functions. Biochim. Biophys. Acta Gene Regul. Mech. 2020, 1863, 194446. [Google Scholar] [CrossRef]
- Ramírez, F.; Bhardwaj, V.; Arrigoni, L.; Lam, K.C.; Grüning, B.A.; Villaveces, J.; Habermann, B.; Akhtar, A.; Manke, T. High-Resolution TADs Reveal DNA Sequences Underlying Genome Organization in Flies. Nat. Commun. 2018, 9, 189. [Google Scholar] [CrossRef]
- Wang, Q.; Sun, Q.; Czajkowsky, D.M.; Shao, Z. Sub-Kb Hi-C in D. Melanogaster Reveals Conserved Characteristics of TADs between Insect and Mammalian Cells. Nat. Commun. 2018, 9, 188. [Google Scholar] [CrossRef]
- Wang, H.; Kim, J.; Wang, Z.; Yan, X.-X.; Dean, A.; Xu, W. Crystal Structure of Human LDB1 in Complex with SSBP2. Proc. Natl. Acad. Sci. USA 2020, 117, 1042–1048. [Google Scholar] [CrossRef]
- Krivega, I.; Dale, R.K.; Dean, A. Role of LDB1 in the Transition from Chromatin Looping to Transcription Activation. Genes Dev. 2014, 28, 1278–1290. [Google Scholar] [CrossRef]
- Deng, W.; Lee, J.; Wang, H.; Miller, J.; Reik, A.; Gregory, P.D.; Dean, A.; Blobel, G.A. Controlling Long-Range Genomic Interactions at a Native Locus by Targeted Tethering of a Looping Factor. Cell 2012, 149, 1233–1244. [Google Scholar] [CrossRef] [Green Version]
- Bonchuk, A.N.; Boyko, K.M.; Nikolaeva, A.Y.; Burtseva, A.D.; Popov, V.O.; Georgiev, P.G. Structural Insights into Highly Similar Spatial Organization of Zinc-Finger Associated Domains with a Very Low Sequence Similarity. Structure 2022, 30, 1004–1015.e4. [Google Scholar] [CrossRef] [PubMed]
- Bonchuk, A.; Boyko, K.; Fedotova, A.; Nikolaeva, A.; Lushchekina, S.; Khrustaleva, A.; Popov, V.; Georgiev, P. Structural Basis of Diversity and Homodimerization Specificity of Zinc-Finger-Associated Domains in Drosophila. Nucleic Acids Res. 2021, 49, 2375–2389. [Google Scholar] [CrossRef] [PubMed]
- Zolotarev, N.; Fedotova, A.; Kyrchanova, O.; Bonchuk, A.; Penin, A.A.; Lando, A.S.; Eliseeva, I.A.; Kulakovskiy, I.V.; Maksimenko, O.; Georgiev, P. Architectural Proteins Pita, Zw5,and ZIPIC Contain Homodimerization Domain and Support Specific Long-Range Interactions in Drosophila. Nucleic Acids Res. 2016, 44, 7228–7241. [Google Scholar] [CrossRef]
- Bonchuk, A.; Kamalyan, S.; Mariasina, S.; Boyko, K.; Popov, V.; Maksimenko, O.; Georgiev, P. N-Terminal Domain of the Architectural Protein CTCF Has Similar Structural Organization and Ability to Self-Association in Bilaterian Organisms. Sci. Rep. 2020, 10, 2677. [Google Scholar] [CrossRef] [PubMed]
- Bonchuk, A.; Maksimenko, O.; Kyrchanova, O.; Ivlieva, T.; Mogila, V.; Deshpande, G.; Wolle, D.; Schedl, P.; Georgiev, P. Functional Role of Dimerization and CP190 Interacting Domains of CTCF Protein in Drosophila Melanogaster. BMC Biol. 2015, 13, 63. [Google Scholar] [CrossRef]
- Melnikova, L.S.; Georgiev, P.G.; Golovnin, A.K. The Functions and Mechanisms of Action of Insulators in the Genomes of Higher Eukaryotes. Acta Nat. 2020, 12, 15–33. [Google Scholar] [CrossRef] [PubMed]
- Matthews, N.E.; White, R. Chromatin Architecture in the Fly: Living without CTCF/Cohesin Loop Extrusion?: Alternating Chromatin States Provide a Basis for Domain Architecture in Drosophila. Bioessays 2019, 41, e1900048. [Google Scholar] [CrossRef]
- Chen, D.; Lei, E.P. Function and Regulation of Chromatin Insulators in Dynamic Genome Organization. Curr. Opin. Cell Biol. 2019, 58, 61–68. [Google Scholar] [CrossRef]
- Kyrchanova, O.; Chetverina, D.; Maksimenko, O.; Kullyev, A.; Georgiev, P. Orientation-Dependent Interaction between Drosophila Insulators Is a Property of This Class of Regulatory Elements. Nucleic Acids Res. 2008, 36, 7019–7028. [Google Scholar] [CrossRef]
- Kyrchanova, O.; Maksimenko, O.; Stakhov, V.; Ivlieva, T.; Parshikov, A.; Studitsky, V.M.; Georgiev, P. Effective Blocking of the White Enhancer Requires Cooperation between Two Main Mechanisms Suggested for the Insulator Function. PLoS Genet. 2013, 9, e1003606. [Google Scholar] [CrossRef] [Green Version]
- Cubeñas-Potts, C.; Rowley, M.J.; Lyu, X.; Li, G.; Lei, E.P.; Corces, V.G. Different Enhancer Classes in Drosophila Bind Distinct Architectural Proteins and Mediate Unique Chromatin Interactions and 3D Architecture. Nucleic Acids Res. 2017, 45, 1714–1730. [Google Scholar] [CrossRef] [PubMed]
- Pal, K.; Forcato, M.; Jost, D.; Sexton, T.; Vaillant, C.; Salviato, E.; Mazza, E.M.C.; Lugli, E.; Cavalli, G.; Ferrari, F. Global Chromatin Conformation Differences in the Drosophila Dosage Compensated Chromosome X. Nat. Commun. 2019, 10, 5355. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Avva, S.V.S.P.; Maharjan, M.; Jacobi, J.; Hart, C.M. Promoter-Proximal Chromatin Domain Insulator Protein BEAF Mediates Local and Long-Range Communication with a Transcription Factor and Directly Activates a Housekeeping Promoter in Drosophila. Genetics 2020, 215, 89–101. [Google Scholar] [CrossRef] [PubMed]
- Bonchuk, A.; Denisov, S.; Georgiev, P.; Maksimenko, O. Drosophila BTB/POZ Domains of “Ttk Group” Can Form Multimers and Selectively Interact with Each Other. J. Mol. Biol. 2011, 412, 423–436. [Google Scholar] [CrossRef] [PubMed]
- Gan, M.; Moebus, S.; Eggert, H.; Saumweber, H. The Chriz-Z4 Complex Recruits JIL-1 to Polytene Chromosomes, a Requirement for Interband-Specific Phosphorylation of H3S10. J. Biosci. 2011, 36, 425–438. [Google Scholar] [CrossRef]
- Vogelmann, J.; Le Gall, A.; Dejardin, S.; Allemand, F.; Gamot, A.; Labesse, G.; Cuvier, O.; Nègre, N.; Cohen-Gonsaud, M.; Margeat, E.; et al. Chromatin Insulator Factors Involved in Long-Range DNA Interactions and Their Role in the Folding of the Drosophila Genome. PLoS Genet. 2014, 10, e1004544. [Google Scholar] [CrossRef]
- Melnikova, L.S.; Kostyuchenko, M.V.; Georgiev, P.G.; Golovnin, A.K. The Chriz Protein Promotes the Recruitment of the Z4 Protein to the STAT-Dependent Promoters. Dokl. Biochem. Biophys. 2020, 490, 29–33. [Google Scholar] [CrossRef]
- Melnikova, L.S.; Molodina, V.V.; Kostyuchenko, M.V.; Georgiev, P.G.; Golovnin, A.K. The BEAF-32 Protein Directly Interacts with Z4/Putzig and Chriz/Chromator Proteins in Drosophila Melanogaster. Dokl. Biochem. Biophys. 2021, 498, 184–189. [Google Scholar] [CrossRef]
- Sabirov, M.; Popovich, A.; Boyko, K.; Nikolaeva, A.; Kyrchanova, O.; Maksimenko, O.; Popov, V.; Georgiev, P.; Bonchuk, A. Mechanisms of CP190 Interaction with Architectural Proteins in Drosophila Melanogaster. Int. J. Mol. Sci. 2021, 22, 12400. [Google Scholar] [CrossRef]
- Hsieh, T.-H.S.; Cattoglio, C.; Slobodyanyuk, E.; Hansen, A.S.; Darzacq, X.; Tjian, R. Enhancer-Promoter Interactions and Transcription Are Largely Maintained upon Acute Loss of CTCF, Cohesin, WAPL or YY1. Nat. Genet. 2022, 54, 1919–1932. [Google Scholar] [CrossRef]
- Kyrchanova, O.; Maksimenko, O.; Ibragimov, A.; Sokolov, V.; Postika, N.; Lukyanova, M.; Schedl, P.; Georgiev, P. The Insulator Functions of the Drosophila Polydactyl C2H2 Zinc Finger Protein CTCF: Necessity versus Sufficiency. Sci. Adv. 2020, 6, eaaz3152. [Google Scholar] [CrossRef] [PubMed]
- Sabirov, M.; Kyrchanova, O.; Pokholkova, G.V.; Bonchuk, A.; Klimenko, N.; Belova, E.; Zhimulev, I.F.; Maksimenko, O.; Georgiev, P. Mechanism and Functional Role of the Interaction between CP190 and the Architectural Protein Pita in Drosophila Melanogaster. Epigenetics Chromatin 2021, 14, 16. [Google Scholar] [CrossRef] [PubMed]
- Ortabozkoyun, H.; Huang, P.-Y.; Cho, H.; Narendra, V.; LeRoy, G.; Gonzalez-Buendia, E.; Skok, J.A.; Tsirigos, A.; Mazzoni, E.O.; Reinberg, D. CRISPR and Biochemical Screens Identify MAZ as a Cofactor in CTCF-Mediated Insulation at Hox Clusters. Nat. Genet. 2022, 54, 202–212. [Google Scholar] [CrossRef]
- Xiao, T.; Li, X.; Felsenfeld, G. The Myc-Associated Zinc Finger Protein (MAZ) Works Together with CTCF to Control Cohesin Positioning and Genome Organization. Proc. Natl. Acad. Sci. USA 2021, 118, e2023127118. [Google Scholar] [CrossRef] [PubMed]
- Justice, M.; Carico, Z.M.; Stefan, H.C.; Dowen, J.M. A WIZ/Cohesin/CTCF Complex Anchors DNA Loops to Define Gene Expression and Cell Identity. Cell Rep. 2020, 31, 107503. [Google Scholar] [CrossRef]
- Zhou, Q.; Yu, M.; Tirado-Magallanes, R.; Li, B.; Kong, L.; Guo, M.; Tan, Z.H.; Lee, S.; Chai, L.; Numata, A.; et al. ZNF143 Mediates CTCF-Bound Promoter-Enhancer Loops Required for Murine Hematopoietic Stem and Progenitor Cell Function. Nat. Commun. 2021, 12, 43. [Google Scholar] [CrossRef] [PubMed]
- Kyrchanova, O.; Georgiev, P. Chromatin Insulators and Long-Distance Interactions in Drosophila. FEBS Lett. 2014, 588, 8–14. [Google Scholar] [CrossRef]
- Spitz, F.; Furlong, E.E.M. Transcription Factors: From Enhancer Binding to Developmental Control. Nat. Rev. Genet. 2012, 13, 613–626. [Google Scholar] [CrossRef]
- Blobel, G.A.; Higgs, D.R.; Mitchell, J.A.; Notani, D.; Young, R.A. Testing the Super-Enhancer Concept. Nat. Rev. Genet. 2021, 22, 749–755. [Google Scholar] [CrossRef]
- Luyties, O.; Taatjes, D.J. The Mediator Kinase Module: An Interface between Cell Signaling and Transcription. Trends Biochem. Sci. 2022, 47, 314–327. [Google Scholar] [CrossRef]
- Richter, W.F.; Nayak, S.; Iwasa, J.; Taatjes, D.J. The Mediator Complex as a Master Regulator of Transcription by RNA Polymerase II. Nat. Rev. Mol. Cell Biol. 2022, 23, 732–749. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; McManus, C.E.; Radmanesh, B.; Matzat, L.H.; Lei, E.P. Temporal Inhibition of Chromatin Looping and Enhancer Accessibility during Neuronal Remodeling. Nat. Commun. 2021, 12, 6366. [Google Scholar] [CrossRef] [PubMed]
- Robinson, P.J.; Trnka, M.J.; Bushnell, D.A.; Davis, R.E.; Mattei, P.-J.; Burlingame, A.L.; Kornberg, R.D. Structure of a Complete Mediator-RNA Polymerase II Pre-Initiation Complex. Cell 2016, 166, 1411–1422e16. [Google Scholar] [CrossRef]
- Cenik, B.K.; Shilatifard, A. COMPASS and SWI/SNF Complexes in Development and Disease. Nat. Rev. Genet. 2021, 22, 38–58. [Google Scholar] [CrossRef] [PubMed]
- Tessarz, P.; Kouzarides, T. Histone Core Modifications Regulating Nucleosome Structure and Dynamics. Nat. Rev. Mol. Cell Biol. 2014, 15, 703–708. [Google Scholar] [CrossRef] [PubMed]
- Boija, A.; Mahat, D.B.; Zare, A.; Holmqvist, P.-H.; Philip, P.; Meyers, D.J.; Cole, P.A.; Lis, J.T.; Stenberg, P.; Mannervik, M. CBP Regulates Recruitment and Release of Promoter-Proximal RNA Polymerase II. Mol. Cell 2017, 68, 491–503.e5. [Google Scholar] [CrossRef] [PubMed]
- Levy, D. Lysine Methylation Signaling of Non-Histone Proteins in the Nucleus. Cell Mol. Life Sci. 2019, 76, 2873–2883. [Google Scholar] [CrossRef]
- Nagasaka, M.; Miyajima, C.; Aoki, H.; Aoyama, M.; Morishita, D.; Inoue, Y.; Hayashi, H. Insights into Regulators of P53 Acetylation. Cells 2022, 11, 3825. [Google Scholar] [CrossRef]
- Chuikov, S.; Kurash, J.K.; Wilson, J.R.; Xiao, B.; Justin, N.; Ivanov, G.S.; McKinney, K.; Tempst, P.; Prives, C.; Gamblin, S.J.; et al. Regulation of P53 Activity through Lysine Methylation. Nature 2004, 432, 353–360. [Google Scholar] [CrossRef]
- Mannervik, M. Control of Drosophila Embryo Patterning by Transcriptional Co-Regulators. Exp. Cell Res. 2014, 321, 47–57. [Google Scholar] [CrossRef]
- Kim, J.J.; Kingston, R.E. Context-Specific Polycomb Mechanisms in Development. Nat. Rev. Genet. 2022, 23, 680–695. [Google Scholar] [CrossRef] [PubMed]
- Schuettengruber, B.; Chourrout, D.; Vervoort, M.; Leblanc, B.; Cavalli, G. Genome Regulation by Polycomb and Trithorax Proteins. Cell 2007, 128, 735–745. [Google Scholar] [CrossRef] [PubMed]
- Kassis, J.A.; Kennison, J.A.; Tamkun, J.W. Polycomb and Trithorax Group Genes in Drosophila. Genetics 2017, 206, 1699–1725. [Google Scholar] [CrossRef] [PubMed]
- Blackledge, N.P.; Klose, R.J. The Molecular Principles of Gene Regulation by Polycomb Repressive Complexes. Nat. Rev. Mol. Cell Biol. 2021, 22, 815–833. [Google Scholar] [CrossRef] [PubMed]
- Vershinin, Z.; Feldman, M.; Werner, T.; Weil, L.E.; Kublanovsky, M.; Abaev-Schneiderman, E.; Sklarz, M.; Lam, E.Y.N.; Alasad, K.; Picaud, S.; et al. BRD4 Methylation by the Methyltransferase SETD6 Regulates Selective Transcription to Control MRNA Translation. Sci. Adv. 2021, 7, eabf5374. [Google Scholar] [CrossRef] [PubMed]
- Erceg, J.; Pakozdi, T.; Marco-Ferreres, R.; Ghavi-Helm, Y.; Girardot, C.; Bracken, A.P.; Furlong, E.E.M. Dual Functionality of Cis-Regulatory Elements as Developmental Enhancers and Polycomb Response Elements. Genes Dev. 2017, 31, 590–602. [Google Scholar] [CrossRef] [PubMed]
- Gisselbrecht, S.S.; Palagi, A.; Kurland, J.V.; Rogers, J.M.; Ozadam, H.; Zhan, Y.; Dekker, J.; Bulyk, M.L. Transcriptional Silencers in Drosophila Serve a Dual Role as Transcriptional Enhancers in Alternate Cellular Contexts. Mol. Cell 2020, 77, 324–337.e8. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.; Ovcharenko, I. Enhancer-Silencer Transitions in the Human Genome. Genome Res. 2022, 32, 437–448. [Google Scholar] [CrossRef] [PubMed]
- Kuroda, M.I.; Kang, H.; De, S.; Kassis, J.A. Dynamic Competition of Polycomb and Trithorax in Transcriptional Programming. Annu. Rev. Biochem. 2020, 89, 235–253. [Google Scholar] [CrossRef]
- De, S.; Cheng, Y.; Sun, M.-A.; Gehred, N.D.; Kassis, J.A. Structure and Function of an Ectopic Polycomb Chromatin Domain. Sci. Adv. 2019, 5, eaau9739. [Google Scholar] [CrossRef] [Green Version]
- De, S.; Gehred, N.D.; Fujioka, M.; Chan, F.W.; Jaynes, J.B.; Kassis, J.A. Defining the Boundaries of Polycomb Domains in Drosophila. Genetics 2020, 216, 689–700. [Google Scholar] [CrossRef] [PubMed]
- Bergman, D.T.; Jones, T.R.; Liu, V.; Ray, J.; Jagoda, E.; Siraj, L.; Kang, H.Y.; Nasser, J.; Kane, M.; Rios, A.; et al. Compatibility Rules of Human Enhancer and Promoter Sequences. Nature 2022, 607, 176–184. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Ara, M.; Comoglio, F.; van Arensbergen, J.; van Steensel, B. Systematic Analysis of Intrinsic Enhancer-Promoter Compatibility in the Mouse Genome. Mol. Cell 2022, 82, 2519–2531.e6. [Google Scholar] [CrossRef] [PubMed]
- Maksimenko, O.; Golovnin, A.; Georgiev, P. Enhancer-Promoter Communication Is Regulated by Insulator Pairing in a Drosophila Model Bigenic Locus. Mol. Cell Biol. 2008, 28, 5469–5477. [Google Scholar] [CrossRef] [PubMed]
- Savitskaya, E.; Melnikova, L.; Kostuchenko, M.; Kravchenko, E.; Pomerantseva, E.; Boikova, T.; Chetverina, D.; Parshikov, A.; Zobacheva, P.; Gracheva, E.; et al. Study of Long-Distance Functional Interactions between Su(Hw) Insulators That Can Regulate Enhancer-Promoter Communication in Drosophila Melanogaster. Mol. Cell Biol. 2006, 26, 754–761. [Google Scholar] [CrossRef]
- Batut, P.J.; Bing, X.Y.; Sisco, Z.; Raimundo, J.; Levo, M.; Levine, M.S. Genome Organization Controls Transcriptional Dynamics during Development. Science 2022, 375, 566–570. [Google Scholar] [CrossRef]
- Levo, M.; Raimundo, J.; Bing, X.Y.; Sisco, Z.; Batut, P.J.; Ryabichko, S.; Gregor, T.; Levine, M.S. Transcriptional Coupling of Distant Regulatory Genes in Living Embryos. Nature 2022, 605, 754–760. [Google Scholar] [CrossRef] [PubMed]
- Aljahani, A.; Hua, P.; Karpinska, M.A.; Quililan, K.; Davies, J.O.J.; Oudelaar, A.M. Analysis of Sub-Kilobase Chromatin Topology Reveals Nano-Scale Regulatory Interactions with Variable Dependence on Cohesin and CTCF. Nat. Commun. 2022, 13, 2139. [Google Scholar] [CrossRef] [PubMed]
- Lim, B.; Levine, M.S. Enhancer-Promoter Communication: Hubs or Loops? Curr. Opin. Genet. Dev. 2021, 67, 5–9. [Google Scholar] [CrossRef]
- Karr, J.P.; Ferrie, J.J.; Tjian, R.; Darzacq, X. The Transcription Factor Activity Gradient (TAG) Model: Contemplating a Contact-Independent Mechanism for Enhancer-Promoter Communication. Genes Dev. 2022, 36, 7–16. [Google Scholar] [CrossRef]
- Fujioka, M.; Jaynes, J.B.; Goto, T. Early Even-Skipped Stripes Act as Morphogenetic Gradients at the Single Cell Level to Establish Engrailed Expression. Development 1995, 121, 4371–4382. [Google Scholar] [CrossRef] [PubMed]
- Fujioka, M.; Emi-Sarker, Y.; Yusibova, G.L.; Goto, T.; Jaynes, J.B. Analysis of an Even-Skipped Rescue Transgene Reveals Both Composite and Discrete Neuronal and Early Blastoderm Enhancers, and Multi-Stripe Positioning by Gap Gene Repressor Gradients. Development 1999, 126, 2527–2538. [Google Scholar] [CrossRef] [PubMed]
- Sackerson, C.; Fujioka, M.; Goto, T. The Even-Skipped Locus Is Contained in a 16-Kb Chromatin Domain. Dev. Biol. 1999, 211, 39–52. [Google Scholar] [CrossRef]
- Small, S.; Blair, A.; Levine, M. Regulation of Two Pair-Rule Stripes by a Single Enhancer in the Drosophila Embryo. Dev. Biol. 1996, 175, 314–324. [Google Scholar] [CrossRef] [PubMed]
- Frasch, M.; Hoey, T.; Rushlow, C.; Doyle, H.; Levine, M. Characterization and Localization of the Even-Skipped Protein of Drosophila. EMBO J. 1987, 6, 749–759. [Google Scholar] [CrossRef]
- Macdonald, P.M.; Ingham, P.; Struhl, G. Isolation, Structure, and Expression of Even-Skipped: A Second Pair-Rule Gene of Drosophila Containing a Homeo Box. Cell 1986, 47, 721–734. [Google Scholar] [CrossRef]
- Peel, A.D.; Chipman, A.D.; Akam, M. Arthropod Segmentation: Beyond the Drosophila Paradigm. Nat. Rev. Genet. 2005, 6, 905–916. [Google Scholar] [CrossRef]
- Clyde, D.E.; Corado, M.S.G.; Wu, X.; Paré, A.; Papatsenko, D.; Small, S. A Self-Organizing System of Repressor Gradients Establishes Segmental Complexity in Drosophila. Nature 2003, 426, 849–853. [Google Scholar] [CrossRef]
- Pankratz, M.J.; Jäckle, H. Making Stripes in the Drosophila Embryo. Trends Genet. 1990, 6, 287–292. [Google Scholar] [CrossRef]
- Pankratz, M.J.; Seifert, E.; Gerwin, N.; Billi, B.; Nauber, U.; Jäckle, H. Gradients of Krüppel and Knirps Gene Products Direct Pair-Rule Gene Stripe Patterning in the Posterior Region of the Drosophila Embryo. Cell 1990, 61, 309–317. [Google Scholar] [CrossRef]
- Struhl, G.; Johnston, P.; Lawrence, P.A. Control of Drosophila Body Pattern by the Hunchback Morphogen Gradient. Cell 1992, 69, 237–249. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Arias, A.; Lawrence, P.A. Parasegments and Compartments in the Drosophila Embryo. Nature 1985, 313, 639–642. [Google Scholar] [CrossRef] [PubMed]
- Small, S.; Kraut, R.; Hoey, T.; Warrior, R.; Levine, M. Transcriptional Regulation of a Pair-Rule Stripe in Drosophila. Genes Dev. 1991, 5, 827–839. [Google Scholar] [CrossRef] [PubMed]
- Lim, B.; Fukaya, T.; Heist, T.; Levine, M. Temporal Dynamics of Pair-Rule Stripes in Living Drosophila Embryos. Proc. Natl. Acad. Sci. USA 2018, 115, 8376–8381. [Google Scholar] [CrossRef]
- Small, S.; Arnosti, D.N. Transcriptional Enhancers in Drosophila. Genetics 2020, 216, 1–26. [Google Scholar] [CrossRef]
- Liang, H.-L.; Nien, C.-Y.; Liu, H.-Y.; Metzstein, M.M.; Kirov, N.; Rushlow, C. The Zinc-Finger Protein Zelda Is a Key Activator of the Early Zygotic Genome in Drosophila. Nature 2008, 456, 400–403. [Google Scholar] [CrossRef]
- Tsurumi, A.; Xia, F.; Li, J.; Larson, K.; LaFrance, R.; Li, W.X. STAT Is an Essential Activator of the Zygotic Genome in the Early Drosophila Embryo. PLoS Genet. 2011, 7, e1002086. [Google Scholar] [CrossRef]
- Struffi, P.; Corado, M.; Kaplan, L.; Yu, D.; Rushlow, C.; Small, S. Combinatorial Activation and Concentration-Dependent Repression of the Drosophila Even Skipped Stripe 3 + 7 Enhancer. Development 2011, 138, 4291–4299. [Google Scholar] [CrossRef] [PubMed]
- Vincent, B.J.; Staller, M.V.; Lopez-Rivera, F.; Bragdon, M.D.J.; Pym, E.C.G.; Biette, K.M.; Wunderlich, Z.; Harden, T.T.; Estrada, J.; DePace, A.H. Hunchback Is Counter-Repressed to Regulate Even-Skipped Stripe 2 Expression in Drosophila Embryos. PLoS Genet. 2018, 14, e1007644. [Google Scholar] [CrossRef]
- Mir, M.; Stadler, M.R.; Ortiz, S.A.; Hannon, C.E.; Harrison, M.M.; Darzacq, X.; Eisen, M.B. Dynamic Multifactor Hubs Interact Transiently with Sites of Active Transcription in Drosophila Embryos. eLife 2018, 7, e40497. [Google Scholar] [CrossRef]
- Fujioka, M.; Sun, G.; Jaynes, J.B. The Drosophila Eve Insulator Homie Promotes Eve Expression and Protects the Adjacent Gene from Repression by Polycomb Spreading. PLoS Genet. 2013, 9, e1003883. [Google Scholar] [CrossRef] [PubMed]
- Fujioka, M.; Wu, X.; Jaynes, J.B. A Chromatin Insulator Mediates Transgene Homing and Very Long-Range Enhancer-Promoter Communication. Development 2009, 136, 3077–3087. [Google Scholar] [CrossRef] [PubMed]
- Fujioka, M.; Mistry, H.; Schedl, P.; Jaynes, J.B. Determinants of Chromosome Architecture: Insulator Pairing in Cis and in Trans. PLoS Genet. 2016, 12, e1005889. [Google Scholar] [CrossRef] [PubMed]
- Baxley, R.M.; Bullard, J.D.; Klein, M.W.; Fell, A.G.; Morales-Rosado, J.A.; Duan, T.; Geyer, P.K. Deciphering the DNA Code for the Function of the Drosophila Polydactyl Zinc Finger Protein Suppressor of Hairy-Wing. Nucleic Acids Res. 2017, 45, 4463–4478. [Google Scholar] [CrossRef]
- Cuartero, S.; Fresán, U.; Reina, O.; Planet, E.; Espinàs, M.L. Ibf1 and Ibf2 Are Novel CP190-Interacting Proteins Required for Insulator Function. EMBO J. 2014, 33, 637–647. [Google Scholar] [CrossRef]
- Melnikova, L.; Kostyuchenko, M.; Molodina, V.; Parshikov, A.; Georgiev, P.; Golovnin, A. Multiple Interactions Are Involved in a Highly Specific Association of the Mod(Mdg4)-67.2 Isoform with the Su(Hw) Sites in Drosophila. Open Biol. 2017, 7, 170150. [Google Scholar] [CrossRef]
- Maksimenko, O.; Bartkuhn, M.; Stakhov, V.; Herold, M.; Zolotarev, N.; Jox, T.; Buxa, M.K.; Kirsch, R.; Bonchuk, A.; Fedotova, A.; et al. Two New Insulator Proteins, Pita and ZIPIC, Target CP190 to Chromatin. Genome Res. 2015, 25, 89–99. [Google Scholar] [CrossRef]
- Fujioka, M.; Nezdyur, A.; Jaynes, J.B. An Insulator Blocks Access to Enhancers by an Illegitimate Promoter, Preventing Repression by Transcriptional Interference. PLoS Genet. 2021, 17, e1009536. [Google Scholar] [CrossRef]
- Chen, H.; Levo, M.; Barinov, L.; Fujioka, M.; Jaynes, J.B.; Gregor, T. Dynamic Interplay between Enhancer-Promoter Topology and Gene Activity. Nat. Genet. 2018, 50, 1296–1303. [Google Scholar] [CrossRef]
- Hughes, C.L.; Kaufman, T.C. Hox Genes and the Evolution of the Arthropod Body Plan. Evol. Dev. 2002, 4, 459–499. [Google Scholar] [CrossRef]
- Kaufman, T.C.; Seeger, M.A.; Olsen, G. Molecular and Genetic Organization of the Antennapedia Gene Complex of Drosophila Melanogaster. Adv. Genet. 1990, 27, 309–362. [Google Scholar] [CrossRef] [PubMed]
- Gindhart, J.G.; King, A.N.; Kaufman, T.C. Characterization of the Cis-Regulatory Region of the Drosophila Homeotic Gene Sex Combs Reduced. Genetics 1995, 139, 781–795. [Google Scholar] [CrossRef] [PubMed]
- Gorman, M.J.; Kaufman, T.C. Genetic Analysis of Embryonic Cis-Acting Regulatory Elements of the Drosophila Homeotic Gene Sex Combs Reduced. Genetics 1995, 140, 557–572. [Google Scholar] [CrossRef] [PubMed]
- Kennison, J.A.; Vázquez, M.; Brizuela, B.J. Regulation of the Sex Combs Reduced Gene in Drosophila. Ann. N. Y. Acad. Sci. 1998, 842, 28–35. [Google Scholar] [CrossRef] [PubMed]
- Schier, A.F.; Gehring, W.J. Analysis of a Fushi Tarazu Autoregulatory Element: Multiple Sequence Elements Contribute to Enhancer Activity. EMBO J. 1993, 12, 1111–1119. [Google Scholar] [CrossRef]
- Schroeder, M.D.; Greer, C.; Gaul, U. How to Make Stripes: Deciphering the Transition from Non-Periodic to Periodic Patterns in Drosophila Segmentation. Development 2011, 138, 3067–3078. [Google Scholar] [CrossRef]
- Calhoun, V.C.; Levine, M. Long-Range Enhancer-Promoter Interactions in the Scr-Antp Interval of the Drosophila Antennapedia Complex. Proc. Natl. Acad. Sci. USA 2003, 100, 9878–9883. [Google Scholar] [CrossRef]
- Dearolf, C.R.; Topol, J.; Parker, C.S. Transcriptional Control of Drosophila Fushi Tarazu Zebra Stripe Expression. Genes Dev. 1989, 3, 384–398. [Google Scholar] [CrossRef]
- Hiromi, Y.; Gehring, W.J. Regulation and Function of the Drosophila Segmentation Gene Fushi Tarazu. Cell 1987, 50, 963–974. [Google Scholar] [CrossRef]
- Li, M.; Ma, Z.; Liu, J.K.; Roy, S.; Patel, S.K.; Lane, D.C.; Cai, H.N. An Organizational Hub of Developmentally Regulated Chromatin Loops in the Drosophila Antennapedia Complex. Mol. Cell Biol. 2015, 35, 4018–4029. [Google Scholar] [CrossRef] [Green Version]
- Belozerov, V.E.; Majumder, P.; Shen, P.; Cai, H.N. A Novel Boundary Element May Facilitate Independent Gene Regulation in the Antennapedia Complex of Drosophila. EMBO J. 2003, 22, 3113–3121. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Lacroix, L.; Gamot, A.; Cuddapah, S.; Queille, S.; Lhoumaud, P.; Lepetit, P.; Martin, P.G.P.; Vogelmann, J.; Court, F.; et al. Chromatin Immunoprecipitation Indirect Peaks Highlight Long-Range Interactions of Insulator Proteins and Pol II Pausing. Mol. Cell 2014, 53, 672–681. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, Y.B.; Linder-Basso, D.; Kharchenko, P.V.; Tolstorukov, M.Y.; Kim, M.; Li, H.-B.; Gorchakov, A.A.; Minoda, A.; Shanower, G.; Alekseyenko, A.A.; et al. Nature and Function of Insulator Protein Binding Sites in the Drosophila Genome. Genome Res. 2012, 22, 2188–2198. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Ma, Z.; Roy, S.; Patel, S.K.; Lane, D.C.; Duffy, C.R.; Cai, H.N. Selective Interactions between Diverse STEs Organize the ANT-C Hox Cluster. Sci. Rep. 2018, 8, 15158. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Zhao, Q.; Belloli, R.; Duffy, C.R.; Cai, H.N. Insulator Foci Distance Correlates with Cellular and Nuclear Morphology in Early Drosophila Embryos. Dev. Biol. 2021, 476, 189–199. [Google Scholar] [CrossRef]
- Ma, Z.; Li, M.; Roy, S.; Liu, K.J.; Romine, M.L.; Lane, D.C.; Patel, S.K.; Cai, H.N. Chromatin Boundary Elements Organize Genomic Architecture and Developmental Gene Regulation in Drosophila Hox Clusters. World J. Biol. Chem. 2016, 7, 223–230. [Google Scholar] [CrossRef]
- Calhoun, V.C.; Stathopoulos, A.; Levine, M. Promoter-Proximal Tethering Elements Regulate Enhancer-Promoter Specificity in the Drosophila Antennapedia Complex. Proc. Natl. Acad. Sci. USA 2002, 99, 9243–9247. [Google Scholar] [CrossRef]
- Duan, J.; Rieder, L.; Colonnetta, M.M.; Huang, A.; Mckenney, M.; Watters, S.; Deshpande, G.; Jordan, W.; Fawzi, N.; Larschan, E. CLAMP and Zelda Function Together to Promote Drosophila Zygotic Genome Activation. eLife 2021, 10, e69937. [Google Scholar] [CrossRef]
- Colonnetta, M.M.; Abrahante, J.E.; Schedl, P.; Gohl, D.M.; Deshpande, G. CLAMP Regulates Zygotic Genome Activation in Drosophila Embryos. Genetics 2021, 219, iyab107. [Google Scholar] [CrossRef]
- Harrison, M.M.; Li, X.-Y.; Kaplan, T.; Botchan, M.R.; Eisen, M.B. Zelda Binding in the Early Drosophila Melanogaster Embryo Marks Regions Subsequently Activated at the Maternal-to-Zygotic Transition. PLoS Genet. 2011, 7, e1002266. [Google Scholar] [CrossRef] [Green Version]
- Nien, C.-Y.; Liang, H.-L.; Butcher, S.; Sun, Y.; Fu, S.; Gocha, T.; Kirov, N.; Manak, J.R.; Rushlow, C. Temporal Coordination of Gene Networks by Zelda in the Early Drosophila Embryo. PLoS Genet. 2011, 7, e1002339. [Google Scholar] [CrossRef] [PubMed]
- Gaskill, M.M.; Gibson, T.J.; Larson, E.D.; Harrison, M.M. GAF Is Essential for Zygotic Genome Activation and Chromatin Accessibility in the Early Drosophila Embryo. eLife 2021, 10, e66668. [Google Scholar] [CrossRef] [PubMed]
- Ghavi-Helm, Y.; Klein, F.A.; Pakozdi, T.; Ciglar, L.; Noordermeer, D.; Huber, W.; Furlong, E.E.M. Enhancer Loops Appear Stable during Development and Are Associated with Paused Polymerase. Nature 2014, 512, 96–100. [Google Scholar] [CrossRef] [PubMed]
- Maeda, R.K.; Karch, F. The Open for Business Model of the Bithorax Complex in Drosophila. Chromosoma 2015, 124, 293–307. [Google Scholar] [CrossRef] [PubMed]
- Mihaly, J.; Hogga, I.; Barges, S.; Galloni, M.; Mishra, R.K.; Hagstrom, K.; Müller, M.; Schedl, P.; Sipos, L.; Gausz, J.; et al. Chromatin Domain Boundaries in the Bithorax Complex. Cell. Mol. Life Sci. (CMLS) 1998, 54, 60–70. [Google Scholar] [CrossRef] [PubMed]
- Lewis, E.B. A Gene Complex Controlling Segmentation in Drosophila. Nature 1978, 276, 565–570. [Google Scholar] [CrossRef] [PubMed]
- Duncan, I. The Bithorax Complex. Annu. Rev. Genet. 1987, 21, 285–319. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Herrero, E. Control of the Expression of the Bithorax Complex Genes Abdominal-A and Abdominal-B by Cis-Regulatory Regions in Drosophila Embryos. Development 1991, 111, 437–449. [Google Scholar] [CrossRef]
- Barges, S.; Mihaly, J.; Galloni, M.; Hagstrom, K.; Müller, M.; Shanower, G.; Schedl, P.; Gyurkovics, H.; Karch, F. The Fab-8 Boundary Defines the Distal Limit of the Bithorax Complex Iab-7 Domain and Insulates Iab-7 from Initiation Elements and a PRE in the Adjacent Iab-8 Domain. Development 2000, 127, 779–790. [Google Scholar] [CrossRef] [PubMed]
- Bender, W.; Lucas, M. The Border between the Ultrabithorax and Abdominal-A Regulatory Domains in the Drosophila Bithorax Complex. Genetics 2013, 193, 1135–1147. [Google Scholar] [CrossRef] [Green Version]
- Karch, F.; Galloni, M.; Sipos, L.; Gausz, J.; Gyurkovics, H.; Schedl, P. Mcp and Fab-7: Molecular Analysis of Putative Boundaries of Cis-Regulatory Domains in the Bithorax Complex of Drosophila Melanogaster. Nucleic Acids Res. 1994, 22, 3138–3146. [Google Scholar] [CrossRef] [PubMed]
- Hagstrom, K.; Muller, M.; Schedl, P. Fab-7 Functions as a Chromatin Domain Boundary to Ensure Proper Segment Specification by the Drosophila Bithorax Complex. Genes Dev. 1996, 10, 3202–3215. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Lluch, S.; Cuartero, S.; Azorín, F.; Espinàs, M.L. Characterization of New Regulatory Elements within the Drosophila Bithorax Complex. Nucleic Acids Res. 2008, 36, 6926–6933. [Google Scholar] [CrossRef]
- Bowman, S.K.; Deaton, A.M.; Domingues, H.; Wang, P.I.; Sadreyev, R.I.; Kingston, R.E.; Bender, W. H3K27 Modifications Define Segmental Regulatory Domains in the Drosophila Bithorax Complex. eLife 2014, 3, e02833. [Google Scholar] [CrossRef]
- Savitsky, M.; Kim, M.; Kravchuk, O.; Schwartz, Y.B. Distinct Roles of Chromatin Insulator Proteins in Control of the Drosophila Bithorax Complex. Genetics 2016, 202, 601–617. [Google Scholar] [CrossRef]
- Rodin, S.; Kyrchanova, O.; Pomerantseva, E.; Parshikov, A.; Georgiev, P. New Properties of Drosophila Fab-7 Insulator. Genetics 2007, 177, 113–121. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Ashe, H.; Burks, C.; Levine, M. Characterization of the Transvection Mediating Region of the Abdominal-B Locus in Drosophila. Development 1999, 126, 3057–3065. [Google Scholar] [CrossRef]
- Gruzdeva, N.; Kyrchanova, O.; Parshikov, A.; Kullyev, A.; Georgiev, P. The Mcp Element from the Bithorax Complex Contains an Insulator That Is Capable of Pairwise Interactions and Can Facilitate Enhancer-Promoter Communication. Mol. Cell Biol. 2005, 25, 3682–3689. [Google Scholar] [CrossRef]
- Kyrchanova, O.; Mogila, V.; Wolle, D.; Magbanua, J.P.; White, R.; Georgiev, P.; Schedl, P. The Boundary Paradox in the Bithorax Complex. Mech. Dev. 2015, 138 Pt 2, 122–132. [Google Scholar] [CrossRef] [PubMed]
- Maeda, R.K.; Karch, F. The ABC of the BX-C: The Bithorax Complex Explained. Development 2006, 133, 1413–1422. [Google Scholar] [CrossRef] [Green Version]
- Mihaly, J.; Barges, S.; Sipos, L.; Maeda, R.; Cléard, F.; Hogga, I.; Bender, W.; Gyurkovics, H.; Karch, F. Dissecting the Regulatory Landscape of the Abd-B Gene of the Bithorax Complex. Development 2006, 133, 2983–2993. [Google Scholar] [CrossRef] [PubMed]
- Casares, F.; Sánchez-Herrero, E. Regulation of the Infraabdominal Regions of the Bithorax Complex of Drosophila by Gap Genes. Development 1995, 121, 1855–1866. [Google Scholar] [CrossRef] [PubMed]
- Peifer, M.; Bender, W. The Anterobithorax and Bithorax Mutations of the Bithorax Complex. EMBO J. 1986, 5, 2293–2303. [Google Scholar] [CrossRef]
- Iampietro, C.; Gummalla, M.; Mutero, A.; Karch, F.; Maeda, R.K. Initiator Elements Function to Determine the Activity State of BX-C Enhancers. PLoS Genet. 2010, 6, e1001260. [Google Scholar] [CrossRef]
- Drewell, R.A.; Nevarez, M.J.; Kurata, J.S.; Winkler, L.N.; Li, L.; Dresch, J.M. Deciphering the Combinatorial Architecture of a Drosophila Homeotic Gene Enhancer. Mech. Dev. 2014, 131, 68–77. [Google Scholar] [CrossRef]
- Ho, M.C.W.; Johnsen, H.; Goetz, S.E.; Schiller, B.J.; Bae, E.; Tran, D.A.; Shur, A.S.; Allen, J.M.; Rau, C.; Bender, W.; et al. Functional Evolution of Cis-Regulatory Modules at a Homeotic Gene in Drosophila. PLoS Genet. 2009, 5, e1000709. [Google Scholar] [CrossRef]
- Postika, N.; Schedl, P.; Georgiev, P.; Kyrchanova, O. Redundant Enhancers in the Iab-5 Domain Cooperatively Activate Abd-B in the A5 and A6 Abdominal Segments of Drosophila. Development 2021, 148, dev199827. [Google Scholar] [CrossRef]
- Kyrchanova, O.; Zolotarev, N.; Mogila, V.; Maksimenko, O.; Schedl, P.; Georgiev, P. Architectural Protein Pita Cooperates with DCTCF in Organization of Functional Boundaries in Bithorax Complex. Development 2017, 144, 2663–2672. [Google Scholar] [CrossRef]
- Kyrchanova, O.; Toshchakov, S.; Parshikov, A.; Georgiev, P. Study of the Functional Interaction between Mcp Insulators from the Drosophila Bithorax Complex: Effects of Insulator Pairing on Enhancer-Promoter Communication. Mol. Cell Biol. 2007, 27, 3035–3043. [Google Scholar] [CrossRef]
- Li, H.-B.; Müller, M.; Bahechar, I.A.; Kyrchanova, O.; Ohno, K.; Georgiev, P.; Pirrotta, V. Insulators, Not Polycomb Response Elements, Are Required for Long-Range Interactions between Polycomb Targets in Drosophila Melanogaster. Mol. Cell Biol. 2011, 31, 616–625. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Busturia, A.; Lloyd, A.; Bejarano, F.; Zavortink, M.; Xin, H.; Sakonju, S. The MCP Silencer of the Drosophila Abd-B Gene Requires Both Pleiohomeotic and GAGA Factor for the Maintenance of Repression. Development 2001, 128, 2163–2173. [Google Scholar] [CrossRef]
- Postika, N.; Schedl, P.; Georgiev, P.; Kyrchanova, O. Mapping of Functional Elements of the Fab-6 Boundary Involved in the Regulation of the Abd-B Hox Gene in Drosophila Melanogaster. Sci. Rep. 2021, 11, 4156. [Google Scholar] [CrossRef]
- Wolle, D.; Cleard, F.; Aoki, T.; Deshpande, G.; Schedl, P.; Karch, F. Functional Requirements for Fab-7 Boundary Activity in the Bithorax Complex. Mol. Cell Biol. 2015, 35, 3739–3752. [Google Scholar] [CrossRef]
- Mihaly, J.; Hogga, I.; Gausz, J.; Gyurkovics, H.; Karch, F. In Situ Dissection of the Fab-7 Region of the Bithorax Complex into a Chromatin Domain Boundary and a Polycomb-Response Element. Development 1997, 124, 1809–1820. [Google Scholar] [CrossRef]
- Kyrchanova, O.; Toshchakov, S.; Podstreshnaya, Y.; Parshikov, A.; Georgiev, P. Functional Interaction between the Fab-7 and Fab-8 Boundaries and the Upstream Promoter Region in the Drosophila Abd-B Gene. Mol. Cell Biol. 2008, 28, 4188–4195. [Google Scholar] [CrossRef]
- Grimaud, C.; Bantignies, F.; Pal-Bhadra, M.; Ghana, P.; Bhadra, U.; Cavalli, G. RNAi Components Are Required for Nuclear Clustering of Polycomb Group Response Elements. Cell 2006, 124, 957–971. [Google Scholar] [CrossRef]
- Kyrchanova, O.; Kurbidaeva, A.; Sabirov, M.; Postika, N.; Wolle, D.; Aoki, T.; Maksimenko, O.; Mogila, V.; Schedl, P.; Georgiev, P. The Bithorax Complex Iab-7 Polycomb Response Element Has a Novel Role in the Functioning of the Fab-7 Chromatin Boundary. PLoS Genet. 2018, 14, e1007442. [Google Scholar] [CrossRef] [PubMed]
- Kyrchanova, O.; Mogila, V.; Wolle, D.; Deshpande, G.; Parshikov, A.; Cléard, F.; Karch, F.; Schedl, P.; Georgiev, P. Functional Dissection of the Blocking and Bypass Activities of the Fab-8 Boundary in the Drosophila Bithorax Complex. PLoS Genet. 2016, 12, e1006188. [Google Scholar] [CrossRef]
- Kyrchanova, O.; Sabirov, M.; Mogila, V.; Kurbidaeva, A.; Postika, N.; Maksimenko, O.; Schedl, P.; Georgiev, P. Complete Reconstitution of Bypass and Blocking Functions in a Minimal Artificial Fab-7 Insulator from Drosophila Bithorax Complex. Proc. Natl. Acad. Sci. USA 2019, 116, 13462–13467. [Google Scholar] [CrossRef]
- Kyrchanova, O.; Wolle, D.; Sabirov, M.; Kurbidaeva, A.; Aoki, T.; Maksimenko, O.; Kyrchanova, M.; Georgiev, P.; Schedl, P. Distinct Elements Confer the Blocking and Bypass Functions of the Bithorax Fab-8 Boundary. Genetics 2019, 213, 865–876. [Google Scholar] [CrossRef]
- Postika, N.; Metzler, M.; Affolter, M.; Müller, M.; Schedl, P.; Georgiev, P.; Kyrchanova, O. Boundaries Mediate Long-Distance Interactions between Enhancers and Promoters in the Drosophila Bithorax Complex. PLoS Genet. 2018, 14, e1007702. [Google Scholar] [CrossRef] [PubMed]
- Cleard, F.; Wolle, D.; Taverner, A.M.; Aoki, T.; Deshpande, G.; Andolfatto, P.; Karch, F.; Schedl, P. Different Evolutionary Strategies To Conserve Chromatin Boundary Function in the Bithorax Complex. Genetics 2017, 205, 589–603. [Google Scholar] [CrossRef]
- Kaye, E.G.; Kurbidaeva, A.; Wolle, D.; Aoki, T.; Schedl, P.; Larschan, E. Drosophila Dosage Compensation Loci Associate with a Boundary-Forming Insulator Complex. Mol. Cell Biol. 2017, 37, e00253-17. [Google Scholar] [CrossRef] [PubMed]
- Bonchuk, A.; Balagurov, K.; Georgiev, P. BTB Domains: A Structural View of Evolution, Multimerization, and Protein-Protein Interactions. Bioessays 2022, 45, e2200179. [Google Scholar] [CrossRef]
- Tikhonova, E.; Mariasina, S.; Arkova, O.; Maksimenko, O.; Georgiev, P.; Bonchuk, A. Dimerization Activity of a Disordered N-Terminal Domain from Drosophila CLAMP Protein. Int. J. Mol. Sci. 2022, 23, 3862. [Google Scholar] [CrossRef]
- Chen, D.; Brovkina, M.; Matzat, L.H.; Lei, E.P. Shep RNA-Binding Capacity Is Required for Antagonism of Gypsy Chromatin Insulator Activity. G3 (Bethesda) 2019, 9, 749–754. [Google Scholar] [CrossRef]
- Matzat, L.H.; Dale, R.K.; Moshkovich, N.; Lei, E.P. Tissue-Specific Regulation of Chromatin Insulator Function. PLoS Genet. 2012, 8, e1003069. [Google Scholar] [CrossRef] [PubMed]
- Kyrchanova, O.V.; Bylino, O.V.; Georgiev, P.G. Mechanisms of Enhancer-Promoter Communication and Chromosomal Architecture in Mammals and Drosophila. Front. Genet. 2022, 13, 1081088. [Google Scholar] [CrossRef]
- Chakraborty, A.; Ay, F. The Role of 3D Genome Organization in Disease: From Compartments to Single Nucleotides. Semin. Cell Dev. Biol. 2019, 90, 104–113. [Google Scholar] [CrossRef]
- Krumm, A.; Duan, Z. Understanding the 3D Genome: Emerging Impacts on Human Disease. Semin. Cell Dev. Biol. 2019, 90, 62–77. [Google Scholar] [CrossRef]
- Wang, M.; Sunkel, B.D.; Ray, W.C.; Stanton, B.Z. Chromatin Structure in Cancer. BMC Mol. Cell Biol. 2022, 23, 35. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kyrchanova, O.; Sokolov, V.; Georgiev, P. Mechanisms of Interaction between Enhancers and Promoters in Three Drosophila Model Systems. Int. J. Mol. Sci. 2023, 24, 2855. https://doi.org/10.3390/ijms24032855
Kyrchanova O, Sokolov V, Georgiev P. Mechanisms of Interaction between Enhancers and Promoters in Three Drosophila Model Systems. International Journal of Molecular Sciences. 2023; 24(3):2855. https://doi.org/10.3390/ijms24032855
Chicago/Turabian StyleKyrchanova, Olga, Vladimir Sokolov, and Pavel Georgiev. 2023. "Mechanisms of Interaction between Enhancers and Promoters in Three Drosophila Model Systems" International Journal of Molecular Sciences 24, no. 3: 2855. https://doi.org/10.3390/ijms24032855
APA StyleKyrchanova, O., Sokolov, V., & Georgiev, P. (2023). Mechanisms of Interaction between Enhancers and Promoters in Three Drosophila Model Systems. International Journal of Molecular Sciences, 24(3), 2855. https://doi.org/10.3390/ijms24032855