Drug–Drug Interactions of Cannabidiol with Standard-of-Care Chemotherapeutics
Abstract
:1. Introduction
2. CBD Interactions with Antimetabolites
2.1. 5-Fluorouracil
2.2. Gemcitabine
2.3. Methotrexate
Antimetabolites | |||||||||
---|---|---|---|---|---|---|---|---|---|
CT | Aim | Model | Administration | CBD c | CT c | Evaluation Time | Special Condition | Results of Combined Treatment | References |
5-FU | Attenuation of oral mucositis | CF-1 mouse strain | IP | 3, 10, 30 mg/mL daily between days 4 and 7 | 60 mg/kg/day on days 0 and 2 | Days 8 and 11 | Mechanical trauma | Reduced oral mucositis | Cuba et al. (2020) [33] |
GEM | Chemotherapy efficiency | KPC mice with PDAC | IP | 100 mg/kg daily | 100 mg/kg every 3 days | Until death or pre-assigned endpoints are reached | Extended animal survival | Ferro et al. (2018) [36] | |
Signalling pathway acquiring resistance to GEM | PDAC cell line— HPAFII and PANC1 | 5, 10 µM | 20, 250, 500 nM | 48–72 h | Decreased markers of resistance | ||||
Viability | PANC-1 and MiaPaCa-2 | (6.25), 12.5, 25 µM daily | (25), 50, 100 µM single administration | 72 h | Potentiated GEM toxicity | Luongo et al. (2020) [39] |
3. Interactions of CBD with Alkylating Agents and Platinum-Based Drugs
3.1. Carmustine
3.2. Temozolomide
3.3. Cisplatin
3.4. Oxaliplatin
3.5. Carboplatin
Alkylating Agents and Platinum-Based Drugs | |||||||||
---|---|---|---|---|---|---|---|---|---|
CT | Aim | Model | Administration | CBD c | CT c | Evaluation Time | Special Condition | Results of Combined Treatment | References |
BCNU | Viability | U87MG, MZC, NHA | 10 µM | 10−5–10−3 M/200 µM | 24, 72 h | Increased toxicity, except for NHA | Nabissi et al. (2013) [49] | ||
Colony formation | U87MG, MZC | 10 µM | 200 µM | Day 14 | Decreased colony formation | ||||
Apoptosis | U87MG, MZC | 10 µM | 200 µM | 6 h | Increased annexin | ||||
TRPV2 function | U87MG, MZC | 10 µM | 200 µM | Day 1 | TRPV2 dependent | ||||
Cell viability, differentiation, apoptosis, mitochondrial activity | GCS lines of patients with cancer | 10 µM | 200 µM | 24 h | Medium + EGF and bFGF | Restoration of BCNU sensitivity | Nabissi et al. (2015) [52] | ||
Proliferation, viability | GBM (Hu, Ms), Ms NPCL | 0.3–100 µM | 3 µM to 1 mM | 72 h | Concentration-dependent effect | Deng et al. (2017) [53] | |||
TMZ | Viability | U87MG, MZC, NHA | 10 µM | 10−5–10−2 M/400 µM | 24, 72 h | Increased toxicity except for NHA | Nabissi et al. (2013) [49] | ||
Colony formation | U87MG, MZC | 10 µM | 400 µM | Day 14 | Decreased colony formation | ||||
Apoptosis | U87MG, MZC | 10 µM | 400 µM | 6 h | Increased annexin | ||||
TRPV2 function | U87MG, MZC | 10 µM | 400 µM | Day 1 | TRPV2 dependent | ||||
EV release, miRs, prohibitin | LN18, LN229 | 5 µM | 800 µM | 1 h | Anti-oncogenic effect | Kosgodage et al. (2019) [58] | |||
Proliferation and viability (effect of CBD up to BCNU toxicity) | GBM (Hu, Ms) + Ms NPCL | 0.3–100 µM | 1 µM to 1 mM | 72 h | Concentration-dependent effect | Deng et al. (2017) [53] | |||
Survival | Patients with brain cancer | Capsule (CBD) | 100 mg twice daily, increased up to 200 mg twice daily | Standard therapy | Surgical resection + radiotherapy | Prolonged life | Likar et al. (2019) [61] | ||
Tumour volume | Nude mice with U87 MG | Oral (CBD), IP (TMZ) | 15 mg/kg/day | 5 mg/kg/day | Day 15 | Increased tumour growth | López-Valero et al. (2018) [59] | ||
Viability | Patient-derived GBM cells and four Glioma cell lines (U251, U87 MG, LN18) | 10, 20, 30 µM | 200, 500 µM | 48 h | Synergic effect | Huang et al. (2021) [60] | |||
Growth inhibition | U251, LN18, and GL261 sphere culture | 30 µM | 200 µM | 24, 48 h | Synergic effect | ||||
Colony formation assay | U251, U87 MG | 20 µM | 500 µM | Day 7 | Synergic effect | ||||
Autophagy markers, mitophagy induction (U251) | U251, U87 MG | 30 µM | 500 µM | 24, 48 h | Increased autophagy and mitophagy | ||||
Tumour growth, survival, markers of autophagy, mitophagy, and proliferation | Nude mice with U87 MG-GFP-luc | IP | 15 mg/kg/once daily | 25 mg/kg/once daily | Days 7, 14, 21, and 28 | Decreased tumour growth | |||
CDDP | Renal function | Male C57BL/6J mice | IP | (2.5, 5), 10 mg/kg 1.5 before (or 12 h after) CDDP, daily | 20 mg/kg single administration | 72 (+ 1.5) h | Decreased renal toxicity | Pan et al. (2009) [64] | |
Histopathological damage, ROS production, apoptosis, inflammation response, nitrosative stress | Male C57BL/6J mice | IP | 10 mg/kg/day 1.5 h before CDDP | 20 mg/kg single administration | 72 (+ 1.5) h | Decreased renal toxicity | |||
CDDP-induced vomiting | Shrews | IP | 5 (attenuation), 40 (potentiation) mg/kg 0.5 h before CDDP treatment | 20 mg/kg | 1 h observation | Mealworms 15 min before pre-treatment | Modulation according to the concentration of CBD | Kwiatkowska et al. (2004) [65] | |
CDDP-induced vomiting | Shrews | SC (CBD), IP (CDDP) | 5, 10 mg/kg 30 min before CDDP | 20, (40) mg/kg | 1 h observation | Mealworms 15 min before pre-treatment | Anti-emetic and anti-nausea effect | Rock et al. (2012) [66] | |
CDDP-induced vomiting | Shrews | IP | CBCA: 0.5 mg/kg 45 min before CDDP | 20 mg/kg | 70 min observation | mealworms 15 min before pre-treatment | Attenuation of vomiting | Bolognini et al. (2013) [68] | |
Viability | Ishikawa | 3.92 µg/ml | 0.25, 0.5 µg/ml | 72 h | Increased CDDP toxicity | Marinelli et al. (2020) [69] | |||
Viability | SKOV-3 | 1, 10 µM pre-treatment for 24 h; 10, 15, 20 µM co-treatment | 5–100 µM | (24 +) 48 h | No effect (or antagonistic effect) | Fraguas-Sánchez et al. (2020) [70] | |||
Proliferation, viability | GBM (Hu, Ms) + Ms NPCL | 0.3–100 µM | 0.1–100 µM | 72 h | Concentration-dependent effect | Deng et al. (2017) [53] | |||
L-OHP | Mechanical allodynia | Male C57Bl6 mice | IP | 1.25–10 mg/kg 15 min before L-OHP | 6 mg/kg single administration | Days 2, 4, 7, and 10 | Attenuation of mechanical allodynia | King et al. (2017) [74] | |
Chemotherapy efficiency—viability, cell death, autophagy, ROS, oxygen concentration, mitochondrial function | colo205 R, DLD-1 R | 4 µM | 10 µM | 6, 12, 24 h | Sensitization of resistant cells | Jeong et al. (2019) [76] | |||
Tumour growth, autophagy | Female BALB/c nude mice with colo205 R | IP | 10 mg/kg every 2 days | 5 mg/kg every 2 days | Day 18 | Lower tumour weight | |||
Peripheral sensory neuropathy | Swiss male mice | PO (CBD), IV (L-OHP) | 10 mg/kg, 3 times/week 1 h before L-OHP or in mid-term between L-OHP injections | 2 mg/kg twice a week | Days 28 and 56 | Mechanical hyperalgesia—the tip of a rigid filament 1 week before drug injection, repeated once a week. Cold allodynia—tail immersed in cold water, once a week, 120 s cut-off time | Attenuation of peripheral sensory neuropathy | Pereira et al. (2021) [75] | |
CBDCA | Viability, combination index, apoptosis | AXA, Orig, and SH cell lines | 0.03–300 μM; IC50: 5.77, 5.30, and 5.48 μM (and derived concentration series) | 0.01–1 mM; IC50: 384, 529, and 398 μM (and derived concertation series) | 24 h | 0.1% FBS | Antagonistic effect | Inkol et al. (2021) [81] |
4. Interactions of CBD with Microtubule-Targeting Agents
4.1. Vinblastine
4.2. Paclitaxel
4.3. Docetaxel
4.4. Vincristine
Microtubule-Targeting Agents | |||||||||
---|---|---|---|---|---|---|---|---|---|
CT | Aim | Model | Administration | CBD c | CT c | Evaluation Time | Special Condition | Results of Combined Treatment | References |
VBT | Viability | CCRF-CEM, CEM/ VLB100 | 10 µM | 0.1 nM to 10 µM | 72 h | Increased toxicity | Holland et al. (2006) [25] | ||
Viability, combination index, apoptosis | AXA, Orig, and SH cell lines | 0.03–300 μM; IC50: 5.77; 5.30, and 5.48μM (and derived concentration series) | 0.01–10 μM; IC50: 2.51; 2.23; and 3.09 μM (and derived concertation series) | 24 h | 0.1% FBS | Increased toxicity | Inkol et al. (2021) [81] | ||
PTX | Cold and mechanical allodynia | C57Bl/6 mice female and male | IP | 5 or 10 mg/kg daily on days 1–14 | 1, 2, 4 or 8 mg/kg on days 1, 3, 5, and 7 | Testing every 3–10 day (for 66 days) | Cold allodynia—acetone; mechanical allodynia—von Frey filaments | Attenuation of cold and mechanical allodynia | Ward et al. (2011) [89] |
Mechanical allodynia | female C57Bl/6 mice | IP | 2.5–10 mg/kg 15 min before PTX | 4, 8 mg/kg on days 1, 3, 5 and 7 | Weekly for 10 weeks | von Frey monofilaments | Attenuation of mechanical allodynia | Ward et al. (2014) [90] | |
Viability | LN 231, 4T1 | 1–4 µM | 2,5–35 µM | 48 h | Increased toxicity | ||||
Mechanical allodynia | Male C57Bl/6 mice | IP | 0.625–20 mg/kg 15 min before PTX | 8 mg/kg on days 1, 3, 5, and 7 | Reassessed on days 9, 14, and 21 | attenuation of mechanical allodynia | King et al. (2017) [74] | ||
CBD-mediated protection against PTX | Dissociated DRG from embryonic rats | 10 µM | 3 µM | 5 h | Knockdown of Mncx-1 attenuated CBD-mediated protection against PTX | Brenneman et al. (2019) [92] | |||
Viability, pre-administration strategy | MCF-7, MDA-MB-231 | 2.5, 5 and 10 µM (MCF-7); 1.25, 2.5 and 5 µM (MDA-MB-231) 24 h before PTX | 10–500 nM | 24 + 48 h | Increased toxicity | Fraguas-Sánches et al. (2020) [94] | |||
Viability, co-treatment strategy | MCF-7, MDA-MB-231 | 10, 15 and 20 µM (MCF-7); 5, 7.5 and 10 µM (MDA-MB-231) | 10–500 nM | 48 h | Increased toxicity | ||||
Viability, combination studies | MCF-7, MDA-MB-231 | CBD in solution 5 or 10 µM daily; CBD-Mps (single administration), started 24 h before PTX | 10–500 nM | 24 + 48 h | Increased toxicity with both formulations | ||||
Tumour growth | MDA-MB-231 grafted onto CAM membrane | Topically | CBD in solution 100 µM daily, CBD-Mps ones (single administration) 24 h before PTX | 100 µM | 24 + 48 h | Reduced tumour growth | |||
Viability, pre-administration study | SKOV-3 | 1 and 10 µM for 24 h before PTX | 10–500 nM | 24 + 48 h | Increased toxicity with 10 µM CBD | Fraguas-Sánches et al. (2020) [70] | |||
Viability, coadministration study | SKOV-3 | 10, 15, and 20 µM | 10–500 nM | 48 h | Increased toxicity | ||||
Viability, pre- and coadministration study | SKOV-3 | CBD in solution 10 µM daily; CBD-Mps (single administration), started 24 h before paclitaxel | 10–500 nM | 24 + 48 h | Increased toxicity (Mps are more effective) | ||||
Tumour growth | SKOV-3 | Topically | CBD in solution 100 µM daily, CBD-Mps once (single administration) 24 before PTX | 100 µM | 24 + 36 h | Reduced tumour growth | |||
Viability | PANC-1 and MiaPaCa-2 | 6.25, 12.5, 25 µM | 1.75, 3.5, 7 µM | 72 h | Increased toxicity | Luongo et al. (2020) [39] | |||
Viability and synergy study | MCF7 | CBD:PTX (1:9, 2:8, 3:7, 4:6, 5:5, 6:4, 7:3, 8:2, and 9:1, v/v) | 72 h | Found the most synergistic ration | Alsherbiny et al. (2021) [95] | ||||
Apoptosis and necrosis | MCF7 | 64.6 µM | 0.1 µM | 24 h | Enhanced cell deaths (CBD toxic itself) | ||||
Viability, DNA synthesis | HT29 | 0.5–10 µM | 10 nM | 72 h | No effect | Sainz-Cort et al. (2020) [96] | |||
Viability, DNA synthesis | AGS, SW480 | 0.5–10 µM | 2 and 10 nM | 72 h | No effect at viability, increased inhibition of DNA synthesis | ||||
Viability | Ishikawa | 3.92 µg/ml | 0.0015 and 0.003 µg/ml | 72 h | Increased toxicity | Marinelli et al. (2020) [69] | |||
Mechanical sensitivity | Male C57Bl/6 | IP | 2.5 mg/kg on days 1, 3, 5 and 7; 15 min before PTX | 8 mg/kg on days 1, 3, 5 and 7 | Days −3, −2, −1, and 14 | von Frey monofilaments | Prevention against the development of mechanical sensitivity | Foss et al. (2021) [93] | |
Mechanical sensitivity | Male C57Bl/6 | PO, IP | 0.25, 2.5, 25 mg/kg on days 1, 3, 5 and 7; 15 min before PTX | 8 mg/kg on days 1, 3, 5 and 7 | Days −3, −2, −1, and 14 | von Frey monofilaments | Prevention against the development of mechanical sensitivity | ||
Mechanical sensitivity | Male C57Bl/6 | IP | 20 mg/kg on days 12, 13 and 14 | 8 mg/kg on days 1, 3, 5 and 7 | Days −3, −2, −1, 11, and 14 | von Frey monofilaments | CBD did not reverse mechanical sensitivity | ||
DTX | Xenograft growth | Male MF-1 nude mice | IP+IV | 100 mg/kg CBD-BDS daily | 5 mg/kg once weekly | 4–5 weeks observation | Different results according to xenograft origin | De Petrocellis et al. (2013) [99] | |
Viability and proliferation | LNCaP, DU-145 | 1–25 µM | increasing concentration | 72 h | Effect modulated by CBD concentration and sera presence | ||||
Viability and synergy study | MCF7 | CBD:DTX (1:9, 2:8, 3:7, 4:6, 5:5, 6:4, 7:3, 8:2, and 9:1, v/v) | 72 h | Found the most synergistic ration | Alsherbiny et al. (2021) [95] | ||||
Apoptosis, necrosis | MCF7 | 39.75 µM | 0.5 µM | 24 h | Increased apoptosis and necrosis | ||||
VCT | Mechanical allodynia | Male C57Bl6 mice | IP | 1.25–10 mg/kg 15 min before VCT | 0.1 mg/kg daily for 7 days | Days 5, 10, 15, and 22 | No effect | King et al. (2017) [74] | |
VCT accumulation | Hu ovarian carcinoma cell line 2008/MRP1 | 2–100 µM 30 min before VCT | 100 nM | 30 + 90 min | Absence of serum | Increased VCT intracellular concentration | Holland et al. (2008) [102] | ||
Viability | Canine neoplastic cell lines | 0.34, 0.67, 1.25, 2.5, 5, 10, 20 g/ml | 0.25–6.6 nM | 48 h | Reduced cell proliferation | Henry et al. (2021) [103] | |||
Disease progression | Patients with high-grade glioma | 100–450 mg/day | Standard PCV therapy | Surgical resection + radiotherapy | Improved health condition | Dall’Stella et al. (2018) [104] |
5. CBD Interactions with Anthracyclines
Doxorubicin
Anthracyclines | |||||||||
---|---|---|---|---|---|---|---|---|---|
CT | Aim | Model | Administration | CBD c | CT c | Evaluation Time | Special Condition | Results of Combined Treatment | References |
DOX | Cardiomyopathy | Male Sprague-Dawley rats | IP | 5 mg/kg/day for 4 weeks | 2.5 mg/kg 6x every 48 h for 2 weeks | 4 weeks + 1 day | Attenuation of cardiomyopathy | Fouad et al. (2013) [110] | |
Cardiomyopathy | Male C57BL/6J mice | IP | 10 mg/kg 1.5 h before DOX and daily | 20 mg/kg | 5 days | Attenuation of cardiomyopathy | Hao et al. (2015) [109] | ||
Drug accumulation | Caco-2 cells | 1, 3, 10, 30 µM | 1 µM | 1 h | Increased drug accumulation | Zhu et al. (2006) [26] | |||
Drug accumulation | LLC-PK1 and LLC-PK1/MDR1 | 5, 20, 100 µM | 1 µM | 1 h | Increased drug accumulation | ||||
Viability | U87MG, MZC, NHA | 10 µM | 10–5–10–3 M | 24, 72 h | Increased toxicity except for NHA | Nabissi et al. (2013) [49] | |||
Colony formation | U87MG, MZC | 10 µM | 200 µM | 14 days | Decreased colony formation | ||||
Apoptosis | U87MG, MZC | 10 µM | 200 µM | 6 h | Increased annexin | ||||
DOX uptake | MZC | 10 µM 30 min before DOX | 5 µM | 0.5 + 2 h | TRPV2 dependent | ||||
TRPV2 function | U87MG, MZC | 10 µM | 200 µM | 1 day | TRPV2 dependent | ||||
TRPV2 function | Murine BNL1 ME A.7R.1 cells | 10 µM co- treatment and after DOX washout | 1 µM | Seconds | TRPV2 dependent | Neumann-Raizel et al. (2019) [111] | |||
p-gp inhibition, viability, colony formation | Murine BNL1 ME A.7R.1 cells | 10 µM | 0.1 µM | 24 h | Increased toxicity | ||||
DOX uptake | SUM159 and MDA-MB231 | 5 µM 2 h before DOX | 5 µM | 2 + 0.5 h | Higher DOX uptake | Elbaz et al. (2018) [112] | |||
Viability | SUM159 and MDA-MB232 | 5 µM | 0.025–64 µM | 24 h | Increased toxicity | ||||
Apoptosis | SUM159 | 5 µM | 0.5 µM | 24 h | Increased apoptosis | ||||
Colony formation | SUM159 and MDA-MB232 | 5 µM | 0.5 µM | 6 days | Reduced serum | Decreased colony formation | |||
Tumour growth/apoptosis | Female NU/NU nude mice with SUM159 xenograft | PT CBD; IP DOX | 5 mg/kg once per week 2 h before DOX | 5 mg/kg | 4 weeks | Lower tumour volume, increased pro-apoptotic markers | |||
Viability | Ishikawa | 3.92 µg/ml | 0.015 and 0.03 µg/ml | 72 h | Increased toxicity | Marinelli et al. (2020) [69] | |||
Viability, pre-administration strategy | MCF-7, MDA-MB-231 | 2.5, 5 and 10 µM (MCF-7); 1.25, 2.5 and 5 µM (MDA-MB-231) 24 h before DOX | 0.1–20 µM | 24 + 48 h | Increased toxicity (more in MDA-MB-231) | Fraguas-Sánches et al. (2020) [94] | |||
Viability, co-treatment strategy | MCF-7, MDA-MB-231 | 10, 15 and 20 µM (MCF-7); 5, 7.5 and 10 µM (MDA-MB-231) | 0.1–20 µM | 48 h | Increased toxicity (except 10 µM CBD in MCF7) | ||||
Viability, combination studies | MCF-7, MDA-MB-231 | CBD in solution 5 or 10 µM daily; CBD-Mps (single administration), started 24 h before DOX | 0.1–20 µM | 24 + 48 h | Increased toxicity with both formulations | ||||
Viability, pre-administration study | SKOV-3 | 1 and 10 µM for 24 h before DOX | 1–60 µM | 24 + 48 h | Not statistically significant | Fraguas-Sánches et al. (2020) [70] | |||
Viability, coadministration study | SKOV-3 | 10, 15, and 20 µM | 1–120 µM | 48 h | Not statistically significant | ||||
Viability, pre- and coadministration study | SKOV-3 | CBD in solution 10 µM daily; CBD-Mps (single administration), started 24 h before DOX | 0.1–20 µM | 24 + 48 h | Increased toxicity | ||||
Viability | MDA-MB-231 | CBD and CBD EV 1 µM (24 h before DOX) | 0.156–10 µM | 24 + 48 h | Increased sensitivity | Patel et al. (2021) [113] | |||
Cell cycle, apoptosis, inflammatory, and metastatic markers | MDA-MB-231 | CBD and CBD EV 1 µM (24 h before DOX) | 500 nM | 24 + 48 h | Increased G1 and apoptosis, decreased inflammation and metastasis | ||||
Cell migration | MDA-MB-231 | CBD EV 1 µM | 500 nM | 40 h (reading every 10 min) | Decreased migration | ||||
Tumour volume, apoptosis, inflammatory and metastatic markers | Envigo nude mice (MDA-MB-231) | IP (CBD and CBD EV), IV (DOX) | CBD, CBD EV 5 mg/kg (1 day before DOX; twice weekly) | 2 mg/kg (twice weekly) | Days 1, 4, 10, and 14 | Lower tumour volume, increased apoptosis, decreased inflammation, and metastasis | |||
Viability and synergy study | MCF7 | CBD:DOX (1:9, 2:8, 3:7, 4:6, 5:5, 6:4, 7:3, 8:2, and 9:1, v/v) | 72 h | Found the most synergistic ration | Alsherbiny et al. (2021) [95] | ||||
Apoptosis, necrosis | MCF7 | 38, 42 µM | 0.2 µM | 24 h | Increased apoptosis and necrosis | ||||
Viability | Canine neoplastic cell lines | 0.34, 0.67, 1.25, 2.5, 5, 10, 20 g/ml | 0.033–2 µM | 48 h | Reduced cell proliferation | Henry et al. (2021) [103] | |||
Viability, combinatorial effect | MDA-MB-231, MDA-MB-468 | 1, 2.5 (2D); 5 (3D) µM | 0.39–25 µM (2D); 5–100 µM (3D) | 24 + 48h; 48h | Increased toxicity | Surapaneni et al. (2022) [114] | |||
Cell migration | MDA-MB-231 | 1 µM | 500 nM | 40 h (reading every 10 min) | Anti-migratory effect | ||||
Immunoblotting | MDA-MB-468 | 1 µM | 1 µM | 24 + 48 h | Increased cell sensitivity against DOX |
6. Interactions of CBD with Proteotoxic Stress-Inducing Drugs
6.1. Bortezomib
6.2. Disulfiram
Proteotoxic Stress Inductors | |||||||||
---|---|---|---|---|---|---|---|---|---|
CT | Aim | Model | Administration | CBD c | CT c | Evaluation Time | Special Condition | Results of Combined Treatment | References |
BRT | Cytotoxicity, proliferation, cell cycle, necrosis, cell death | RPMI8226, U266 | 20 µM | 3 ng/ml | 72 h | Synergistic activity | Morelli et al. (2014) [119] | ||
Mitochondrial activity | RPMI8226 | 20 µM | 3 ng/ml | 1 h | Induced mitochondrial-dependent necrosis | ||||
ROS | RPMI8226 | 20 µM | 3 ng/ml | 2 h | Increased ROS | ||||
DSF/CuET | Viability | U2OS, MDA-MB-231 | 10 µM 24 h pre-treatment + 10 µM co-treatment | 62.5–500 nM | 24 + 72 h | Decreased sensitivity | Buchtova et al. (2021) [127] | ||
Proteotoxic stress markers, MTs induction | U2OS, MDA-MB-231, RPE-2 | 10 µM 24 h before CuET | 0.2 µM | 24 + 3 h | Decreased proteotoxic stress, increased MT expression | ||||
Topoisomerase inhibitors | |||||||||
CT | Aim | Model | Administration | CBD c | CT c | Time point | Special condition | Results of combined treatment | References |
TPC | Viability | MEF3.8 | 10 µM 1 h before TPC | 1 nM–10 µM | 1 + 48 h | Increased toxicity | Holland et al. (2007) [24] |
7. CBD Interactions with Topoisomerase Inhibitors
Topotecan
8. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Scripture, C.D.; Figg, W.D. Drug Interactions in Cancer Therapy. Nat. Rev. Cancer 2006, 6, 546–558. [Google Scholar] [CrossRef] [PubMed]
- Pergam, S.A.; Woodfield, M.C.; Lee, C.M.; Cheng, G.-S.; Baker, K.K.; Marquis, S.R.; Fann, J.R. Cannabis Use among Patients at a Comprehensive Cancer Center in a State with Legalized Medicinal and Recreational Use. Cancer 2017, 123, 4488–4497. [Google Scholar] [CrossRef] [PubMed]
- Weiss, M.C.; Hibbs, J.E.; Buckley, M.E.; Danese, S.R.; Leitenberger, A.; Bollmann-Jenkins, M.; Meske, S.W.; Aliano-Ruiz, K.E.; McHugh, T.W.; Larson, S.L.; et al. A Coala-T-Cannabis Survey Study of Breast Cancer Patients’ Use of Cannabis before, during, and after Treatment. Cancer 2022, 128, 160–168. [Google Scholar] [CrossRef] [PubMed]
- Aizpurua-Olaizola, O.; Soydaner, U.; Öztürk, E.; Schibano, D.; Simsir, Y.; Navarro, P.; Etxebarria, N.; Usobiaga, A. Evolution of the Cannabinoid and Terpene Content during the Growth of Cannabis Sativa Plants from Different Chemotypes. J. Nat. Prod. 2016, 79, 324–331. [Google Scholar] [CrossRef]
- ElSohly, M.A.; Radwan, M.M.; Gul, W.; Chandra, S.; Galal, A. Phytochemistry of Cannabis Sativa L. Prog. Chem. Org. Nat. Prod. 2017, 103, 1–36. [Google Scholar] [CrossRef]
- Brown, J.D.; Winterstein, A.G. Potential Adverse Drug Events and Drug-Drug Interactions with Medical and Consumer Cannabidiol (CBD) Use. J. Clin. Med. 2019, 8, 989. [Google Scholar] [CrossRef]
- Devinsky, O.; Patel, A.D.; Cross, J.H.; Villanueva, V.; Wirrell, E.C.; Privitera, M.; Greenwood, S.M.; Roberts, C.; Checketts, D.; VanLandingham, K.E.; et al. Effect of Cannabidiol on Drop Seizures in the Lennox-Gastaut Syndrome. N. Engl. J. Med. 2018, 378, 1888–1897. [Google Scholar] [CrossRef]
- Devinsky, O.; Cross, J.H.; Wright, S. Trial of Cannabidiol for Drug-Resistant Seizures in the Dravet Syndrome. N. Engl. J. Med. 2017, 377, 699–700. [Google Scholar] [CrossRef]
- Hess, E.J.; Moody, K.A.; Geffrey, A.L.; Pollack, S.F.; Skirvin, L.A.; Bruno, P.L.; Paolini, J.L.; Thiele, E.A. Cannabidiol as a New Treatment for Drug-Resistant Epilepsy in Tuberous Sclerosis Complex. Epilepsia 2016, 57, 1617–1624. [Google Scholar] [CrossRef]
- Thiele, E.A.; Marsh, E.D.; French, J.A.; Mazurkiewicz-Beldzinska, M.; Benbadis, S.R.; Joshi, C.; Lyons, P.D.; Taylor, A.; Roberts, C.; Sommerville, K.; et al. Cannabidiol in Patients with Seizures Associated with Lennox-Gastaut Syndrome (GWPCARE4): A Randomised, Double-Blind, Placebo-Controlled Phase 3 Trial. Lancet 2018, 391, 1085–1096. [Google Scholar] [CrossRef]
- Epidiolex: Highlights of Prescribing Information. Available online: https://www.epidiolex.com/sites/default/files/pdfs/0222/0222-epidiolex_(cannabidiol)_uspi.pdf (accessed on 1 February 2023).
- Leweke, F.M.; Piomelli, D.; Pahlisch, F.; Muhl, D.; Gerth, C.W.; Hoyer, C.; Klosterkötter, J.; Hellmich, M.; Koethe, D. Cannabidiol Enhances Anandamide Signaling and Alleviates Psychotic Symptoms of Schizophrenia. Transl. Psychiatry 2012, 2, e94. [Google Scholar] [CrossRef] [PubMed]
- Chagas, M.H.N.; Zuardi, A.W.; Tumas, V.; Pena-Pereira, M.A.; Sobreira, E.T.; Bergamaschi, M.M.; dos Santos, A.C.; Teixeira, A.L.; Hallak, J.E.C.; Crippa, J.A.S. Effects of Cannabidiol in the Treatment of Patients with Parkinson’s Disease: An Exploratory Double-Blind Trial. J. Psychopharmacol. 2014, 28, 1088–1098. [Google Scholar] [CrossRef] [PubMed]
- Naftali, T.; Mechulam, R.; Marii, A.; Gabay, G.; Stein, A.; Bronshtain, M.; Laish, I.; Benjaminov, F.; Konikoff, F.M. Low-Dose Cannabidiol Is Safe but Not Effective in the Treatment for Crohn’s Disease, a Randomized Controlled Trial. Dig. Dis. Sci. 2017, 62, 1615–1620. [Google Scholar] [CrossRef] [PubMed]
- Crippa, J.A.S.; Derenusson, G.N.; Ferrari, T.B.; Wichert-Ana, L.; Duran, F.L.S.; Martin-Santos, R.; Simões, M.V.; Bhattacharyya, S.; Fusar-Poli, P.; Atakan, Z.; et al. Neural Basis of Anxiolytic Effects of Cannabidiol (CBD) in Generalized Social Anxiety Disorder: A Preliminary Report. J. Psychopharmacol. 2011, 25, 121–130. [Google Scholar] [CrossRef] [PubMed]
- Larsen, C.; Shahinas, J. Dosage, Efficacy and Safety of Cannabidiol Administration in Adults: A Systematic Review of Human Trials. J. Clin. Med. Res. 2020, 12, 129–141. [Google Scholar] [CrossRef]
- Thomas, A.; Baillie, G.L.; Phillips, A.M.; Razdan, R.K.; Ross, R.A.; Pertwee, R.G. Cannabidiol Displays Unexpectedly High Potency as an Antagonist of CB1 and CB2 Receptor Agonists in Vitro. Br. J. Pharmacol. 2007, 150, 613–623. [Google Scholar] [CrossRef]
- Bisogno, T.; Hanuš, L.; De Petrocellis, L.; Tchilibon, S.; Ponde, D.E.; Brandi, I.; Moriello, A.S.; Davis, J.B.; Mechoulam, R.; Di Marzo, V. Molecular Targets for Cannabidiol and Its Synthetic Analogues: Effect on Vanilloid VR1 Receptors and on the Cellular Uptake and Enzymatic Hydrolysis of Anandamide. Br. J. Pharmacol. 2001, 134, 845–852. [Google Scholar] [CrossRef]
- Qin, N.; Neeper, M.P.; Liu, Y.; Hutchinson, T.L.; Lubin, M.L.; Flores, C.M. TRPV2 Is Activated by Cannabidiol and Mediates CGRP Release in Cultured Rat Dorsal Root Ganglion Neurons. J. Neurosci. 2008, 28, 6231–6238. [Google Scholar] [CrossRef]
- O’Sullivan, S.E.; Sun, Y.; Bennett, A.J.; Randall, M.D.; Kendall, D.A. Time-Dependent Vascular Actions of Cannabidiol in the Rat Aorta. Eur. J. Pharmacol. 2009, 612, 61–68. [Google Scholar] [CrossRef]
- Russo, E.B.; Burnett, A.; Hall, B.; Parker, K.K. Agonistic Properties of Cannabidiol at 5-HT1a Receptors. Neurochem. Res. 2005, 30, 1037–1043. [Google Scholar] [CrossRef]
- Ryberg, E.; Larsson, N.; Sjögren, S.; Hjorth, S.; Hermansson, N.-O.; Leonova, J.; Elebring, T.; Nilsson, K.; Drmota, T.; Greasley, P.J. The Orphan Receptor GPR55 Is a Novel Cannabinoid Receptor. Br. J. Pharmacol. 2007, 152, 1092–1101. [Google Scholar] [CrossRef] [PubMed]
- Carrier, E.J.; Auchampach, J.A.; Hillard, C.J. Inhibition of an Equilibrative Nucleoside Transporter by Cannabidiol: A Mechanism of Cannabinoid Immunosuppression. Proc. Natl. Acad. Sci. USA 2006, 103, 7895–7900. [Google Scholar] [CrossRef] [PubMed]
- Holland, M.L.; Lau, D.T.T.; Allen, J.D.; Arnold, J.C. The Multidrug Transporter ABCG2 (BCRP) Is Inhibited by Plant-Derived Cannabinoids. Br. J. Pharmacol. 2007, 152, 815–824. [Google Scholar] [CrossRef] [PubMed]
- Holland, M.L.; Panetta, J.A.; Hoskins, J.M.; Bebawy, M.; Roufogalis, B.D.; Allen, J.D.; Arnold, J.C. The Effects of Cannabinoids on P-Glycoprotein Transport and Expression in Multidrug Resistant Cells. Biochem. Pharmacol. 2006, 71, 1146–1154. [Google Scholar] [CrossRef]
- Zhu, H.-J.; Wang, J.-S.; Markowitz, J.S.; Donovan, J.L.; Gibson, B.B.; Gefroh, H.A.; Devane, C.L. Characterization of P-Glycoprotein Inhibition by Major Cannabinoids from Marijuana. J. Pharmacol. Exp. Ther. 2006, 317, 850–857. [Google Scholar] [CrossRef] [PubMed]
- Borges, R.S.; Batista, J.; Viana, R.B.; Baetas, A.C.; Orestes, E.; Andrade, M.A.; Honório, K.M.; da Silva, A.B.F. Understanding the Molecular Aspects of Tetrahydrocannabinol and Cannabidiol as Antioxidants. Molecules 2013, 18, 12663–12674. [Google Scholar] [CrossRef]
- Wu, H.-Y.; Chu, R.-M.; Wang, C.-C.; Lee, C.-Y.; Lin, S.-H.; Jan, T.-R. Cannabidiol-Induced Apoptosis in Primary Lymphocytes Is Associated with Oxidative Stress-Dependent Activation of Caspase-8. Toxicol. Appl. Pharmacol. 2008, 226, 260–270. [Google Scholar] [CrossRef]
- Mortimer, T.L.; Mabin, T.; Engelbrecht, A.-M. Cannabinoids: The Lows and the Highs of Chemotherapy-Induced Nausea and Vomiting. Future Oncol. 2019, 15, 1035–1049. [Google Scholar] [CrossRef]
- Pisanti, S.; Malfitano, A.M.; Ciaglia, E.; Lamberti, A.; Ranieri, R.; Cuomo, G.; Abate, M.; Faggiana, G.; Proto, M.C.; Fiore, D.; et al. Cannabidiol: State of the Art and New Challenges for Therapeutic Applications. Pharmacol. Ther. 2017, 175, 133–150. [Google Scholar] [CrossRef]
- Farber, S.; Diamond, L.K. Temporary Remissions in Acute Leukemia in Children Produced by Folic Acid Antagonist, 4-Aminopteroyl-Glutamic Acid. N. Engl. J. Med. 1948, 238, 787–793. [Google Scholar] [CrossRef]
- Luengo, A.; Gui, D.Y.; Vander Heiden, M.G. Targeting Metabolism for Cancer Therapy. Cell Chem. Biol. 2017, 24, 1161–1180. [Google Scholar] [CrossRef] [PubMed]
- Cuba, L. de F.; Salum, F.G.; Guimarães, F.S.; Cherubini, K.; Borghetti, R.L.; de Figueiredo, M.A.Z. Cannabidiol on 5-FU-Induced Oral Mucositis in Mice. Oral Dis. 2020, 26, 1483–1493. [Google Scholar] [CrossRef] [PubMed]
- Leaf Vertical Inc. Randomized Double-Blind, Placebo-Controlled Parallel Multi-Center Study to Assess the Efficacy of Cannabidiol (BRCX014) Combined with Standard-of-Care Treatment in Subjects with Multiple Myeloma, Glioblastoma Multiforme, and GI Malignancies; Clinicaltrials.gov: Bethesda, MD, USA, 2018.
- Toschi, L.; Finocchiaro, G.; Bartolini, S.; Gioia, V.; Cappuzzo, F. Role of Gemcitabine in Cancer Therapy. Future Oncol. 2005, 1, 7–17. [Google Scholar] [CrossRef] [PubMed]
- Ferro, R.; Adamska, A.; Lattanzio, R.; Mavrommati, I.; Edling, C.E.; Arifin, S.A.; Fyffe, C.A.; Sala, G.; Sacchetto, L.; Chiorino, G.; et al. GPR55 Signalling Promotes Proliferation of Pancreatic Cancer Cells and Tumour Growth in Mice, and Its Inhibition Increases Effects of Gemcitabine. Oncogene 2018, 37, 6368–6382. [Google Scholar] [CrossRef]
- Oka, S.; Nakajima, K.; Yamashita, A.; Kishimoto, S.; Sugiura, T. Identification of GPR55 as a Lysophosphatidylinositol Receptor. Biochem. Biophys. Res. Commun. 2007, 362, 928–934. [Google Scholar] [CrossRef]
- Piñeiro, R.; Maffucci, T.; Falasca, M. The Putative Cannabinoid Receptor GPR55 Defines a Novel Autocrine Loop in Cancer Cell Proliferation. Oncogene 2011, 30, 142–152. [Google Scholar] [CrossRef]
- Luongo, M.; Marinelli, O.; Zeppa, L.; Aguzzi, C.; Morelli, M.B.; Amantini, C.; Frassineti, A.; di Costanzo, M.; Fanelli, A.; Santoni, G.; et al. Cannabidiol and Oxygen-Ozone Combination Induce Cytotoxicity in Human Pancreatic Ductal Adenocarcinoma Cell Lines. Cancers 2020, 12, 2774. [Google Scholar] [CrossRef]
- Hagner, N.; Joerger, M. Cancer Chemotherapy: Targeting Folic Acid Synthesis. Cancer Manag. Res 2010, 2, 293–301. [Google Scholar] [CrossRef]
- Koźmiński, P.; Halik, P.K.; Chesori, R.; Gniazdowska, E. Overview of Dual-Acting Drug Methotrexate in Different Neurological Diseases, Autoimmune Pathologies and Cancers. Int. J. Mol. Sci. 2020, 21, 3483. [Google Scholar] [CrossRef]
- Purcell, W.T.; Ettinger, D.S. Novel Antifolate Drugs. Curr. Oncol. Rep. 2003, 5, 114–125. [Google Scholar] [CrossRef]
- Mao, Q.; Unadkat, J.D. Role of the Breast Cancer Resistance Protein (ABCG2) in Drug Transport. AAPS J. 2005, 7, E118–E133. [Google Scholar] [CrossRef]
- Fu, D.; Calvo, J.A.; Samson, L.D. Balancing Repair and Tolerance of DNA Damage Caused by Alkylating Agents. Nat. Rev. Cancer 2012, 12, 104–120. [Google Scholar] [CrossRef]
- Puyo, S.; Montaudon, D.; Pourquier, P. From Old Alkylating Agents to New Minor Groove Binders. Crit. Rev. Oncol. Hematol. 2014, 89, 43–61. [Google Scholar] [CrossRef]
- Adair, F.E.; Bagg, H.J. Experimental and clinical studies on the treatment of cancer by dichlorethylsulphide (mustard gas). Ann. Surg. 1931, 93, 190–199. [Google Scholar] [CrossRef]
- Brandes, A.A.; Bartolotti, M.; Tosoni, A.; Franceschi, E. Nitrosoureas in the Management of Malignant Gliomas. Curr. Neurol. Neurosci. Rep. 2016, 16, 13. [Google Scholar] [CrossRef]
- Weiss, R.B.; Issell, B.F. The Nitrosoureas: Carmustine (BCNU) and Lomustine (CCNU). Cancer Treat Rev. 1982, 9, 313–330. [Google Scholar] [CrossRef]
- Nabissi, M.; Morelli, M.B.; Santoni, M.; Santoni, G. Triggering of the TRPV2 Channel by Cannabidiol Sensitizes Glioblastoma Cells to Cytotoxic Chemotherapeutic Agents. Carcinogenesis 2013, 34, 48–57. [Google Scholar] [CrossRef]
- Likar, R.; Nahler, G. The Use of Cannabis in Supportive Care and Treatment of Brain Tumor. Neurooncol. Pract. 2017, 4, 151–160. [Google Scholar] [CrossRef]
- Chuang, L.S.H.; Ito, K.; Ito, Y. RUNX Family: Regulation and Diversification of Roles through Interacting Proteins. Int. J. Cancer 2013, 132, 1260–1271. [Google Scholar] [CrossRef]
- Nabissi, M.; Morelli, M.B.; Amantini, C.; Liberati, S.; Santoni, M.; Ricci-Vitiani, L.; Pallini, R.; Santoni, G. Cannabidiol Stimulates Aml-1a-Dependent Glial Differentiation and Inhibits Glioma Stem-like Cells Proliferation by Inducing Autophagy in a TRPV2-Dependent Manner. Int. J. Cancer 2015, 137, 1855–1869. [Google Scholar] [CrossRef] [Green Version]
- Deng, L.; Ng, L.; Ozawa, T.; Stella, N. Quantitative Analyses of Synergistic Responses between Cannabidiol and DNA-Damaging Agents on the Proliferation and Viability of Glioblastoma and Neural Progenitor Cells in Culture. J. Pharmacol. Exp. Ther. 2017, 360, 215–224. [Google Scholar] [CrossRef] [PubMed]
- Arora, A.; Somasundaram, K. Glioblastoma vs Temozolomide: Can the Red Queen Race Be Won? Cancer Biol. Ther. 2019, 20, 1083–1090. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.; Miner, A.; Hennis, L.; Mittal, S. Mechanisms of Temozolomide Resistance in Glioblastoma—A Comprehensive Review. Cancer Drug Resist. 2021, 4, 17–43. [Google Scholar] [CrossRef] [PubMed]
- Baumert, B.G.; Hegi, M.E.; van den Bent, M.J.; von Deimling, A.; Gorlia, T.; Hoang-Xuan, K.; Brandes, A.A.; Kantor, G.; Taphoorn, M.J.B.; Hassel, M.B.; et al. Temozolomide Chemotherapy versus Radiotherapy in High-Risk Low-Grade Glioma (EORTC 22033-26033): A Randomised, Open-Label, Phase 3 Intergroup Study. Lancet Oncol. 2016, 17, 1521–1532. [Google Scholar] [CrossRef]
- Chang, W.-H.; Cerione, R.A.; Antonyak, M.A. Extracellular Vesicles and Their Roles in Cancer Progression. Methods Mol. Biol. 2021, 2174, 143–170. [Google Scholar] [CrossRef]
- Kosgodage, U.S.; Uysal-Onganer, P.; MacLatchy, A.; Mould, R.; Nunn, A.V.; Guy, G.W.; Kraev, I.; Chatterton, N.P.; Thomas, E.L.; Inal, J.M.; et al. Cannabidiol Affects Extracellular Vesicle Release, MiR21 and MiR126, and Reduces Prohibitin Protein in Glioblastoma Multiforme Cells. Transl. Oncol. 2019, 12, 513–522. [Google Scholar] [CrossRef]
- López-Valero, I.; Saiz-Ladera, C.; Torres, S.; Hernández-Tiedra, S.; García-Taboada, E.; Rodríguez-Fornés, F.; Barba, M.; Dávila, D.; Salvador-Tormo, N.; Guzmán, M.; et al. Targeting Glioma Initiating Cells with A Combined Therapy of Cannabinoids and Temozolomide. Biochem. Pharmacol. 2018, 157, 266–274. [Google Scholar] [CrossRef]
- Huang, T.; Xu, T.; Wang, Y.; Zhou, Y.; Yu, D.; Wang, Z.; He, L.; Chen, Z.; Zhang, Y.; Davidson, D.; et al. Cannabidiol Inhibits Human Glioma by Induction of Lethal Mitophagy through Activating TRPV4. Autophagy 2021, 17, 3592–3606. [Google Scholar] [CrossRef]
- Likar, R.; Koestenberger, M.; Stultschnig, M.; Nahler, G. Concomitant Treatment of Malignant Brain Tumours With CBD—A Case Series and Review of the Literature. Anticancer Res. 2019, 39, 5797–5801. [Google Scholar] [CrossRef]
- Leaf Vertical Inc. A Phase I Study of BRCX014 to Investigate Dose-Ranging Safety and Pharmacokinetics in Adults with Glioblastoma (GBM) and Non-Methylated MGMT Gene Status; Clinicaltrials.gov: Bethesda, MD, USA, 2019.
- Ghosh, S. Cisplatin: The First Metal Based Anticancer Drug. Bioorg. Chem. 2019, 88, 102925. [Google Scholar] [CrossRef]
- Pan, H.; Mukhopadhyay, P.; Rajesh, M.; Patel, V.; Mukhopadhyay, B.; Gao, B.; Haskó, G.; Pacher, P. Cannabidiol Attenuates Cisplatin-Induced Nephrotoxicity by Decreasing Oxidative/Nitrosative Stress, Inflammation, and Cell Death. J. Pharmacol. Exp. Ther. 2009, 328, 708–714. [Google Scholar] [CrossRef] [PubMed]
- Kwiatkowska, M.; Parker, L.A.; Burton, P.; Mechoulam, R. A Comparative Analysis of the Potential of Cannabinoids and Ondansetron to Suppress Cisplatin-Induced Emesis in the Suncus Murinus (House Musk Shrew). Psychopharmacology 2004, 174, 254–259. [Google Scholar] [CrossRef] [PubMed]
- Rock, E.M.; Bolognini, D.; Limebeer, C.L.; Cascio, M.G.; Anavi-Goffer, S.; Fletcher, P.J.; Mechoulam, R.; Pertwee, R.G.; Parker, L.A. Cannabidiol, a Non-Psychotropic Component of Cannabis, Attenuates Vomiting and Nausea-like Behaviour via Indirect Agonism of 5-HT(1A) Somatodendritic Autoreceptors in the Dorsal Raphe Nucleus. Br. J. Pharmacol. 2012, 165, 2620–2634. [Google Scholar] [CrossRef] [PubMed]
- Parker, L.A.; Rock, E.M.; Limebeer, C.L. Regulation of Nausea and Vomiting by Cannabinoids. Br. J. Pharmacol. 2011, 163, 1411–1422. [Google Scholar] [CrossRef]
- Bolognini, D.; Rock, E.M.; Cluny, N.L.; Cascio, M.G.; Limebeer, C.L.; Duncan, M.; Stott, C.G.; Javid, F.A.; Parker, L.A.; Pertwee, R.G. Cannabidiolic Acid Prevents Vomiting in Suncus Murinus and Nausea-Induced Behaviour in Rats by Enhancing 5-HT1A Receptor Activation. Br. J. Pharmacol. 2013, 168, 1456–1470. [Google Scholar] [CrossRef]
- Marinelli, O.; Morelli, M.B.; Annibali, D.; Aguzzi, C.; Zeppa, L.; Tuyaerts, S.; Amantini, C.; Amant, F.; Ferretti, B.; Maggi, F.; et al. The Effects of Cannabidiol and Prognostic Role of TRPV2 in Human Endometrial Cancer. Int. J. Mol. Sci. 2020, 21, 5409. [Google Scholar] [CrossRef]
- Fraguas-Sánchez, A.I.; Fernández-Carballido, A.; Delie, F.; Cohen, M.; Martin-Sabroso, C.; Mezzanzanica, D.; Figini, M.; Satta, A.; Torres-Suárez, A.I. Enhancing Ovarian Cancer Conventional Chemotherapy through the Combination with Cannabidiol Loaded Microparticles. Eur. J. Pharm. Biopharm. 2020, 154, 246–258. [Google Scholar] [CrossRef]
- Raymond, E.; Faivre, S.; Chaney, S.; Woynarowski, J.; Cvitkovic, E. Cellular and Molecular Pharmacology of Oxaliplatin. Mol. Cancer Ther. 2002, 1, 227–235. [Google Scholar]
- Riddell, I.A. Cisplatin and Oxaliplatin: Our Current Understanding of Their Actions. Met. Ions Life Sci. 2018, 18. [Google Scholar] [CrossRef]
- Ozdian, T.; Holub, D.; Maceckova, Z.; Varanasi, L.; Rylova, G.; Rehulka, J.; Vaclavkova, J.; Slavik, H.; Moudry, P.; Znojek, P.; et al. Proteomic Profiling Reveals DNA Damage, Nucleolar and Ribosomal Stress Are the Main Responses to Oxaliplatin Treatment in Cancer Cells. J. Proteomics 2017, 162, 73–85. [Google Scholar] [CrossRef]
- King, K.M.; Myers, A.M.; Soroka-Monzo, A.J.; Tuma, R.F.; Tallarida, R.J.; Walker, E.A.; Ward, S.J. Single and Combined Effects of Δ9 -Tetrahydrocannabinol and Cannabidiol in a Mouse Model of Chemotherapy-Induced Neuropathic Pain. Br. J. Pharmacol. 2017, 174, 2832–2841. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pereira, A.F.; Lisboa, M.R.P.; de Freitas Alves, B.W.; da Silva, C.M.P.; Dias, D.B.S.; de Menezes, K.L.S.; Cesário, F.R.A.S.; de França, J.C.; de Oliveira, A.R.; Hallak, J.E.C.; et al. Endocannabinoid System Attenuates Oxaliplatin-Induced Peripheral Sensory Neuropathy Through the Activation of CB1 Receptors. Neurotox Res. 2021, 39, 1782–1799. [Google Scholar] [CrossRef] [PubMed]
- Jeong, S.; Kim, B.G.; Kim, D.Y.; Kim, B.R.; Kim, J.L.; Park, S.H.; Na, Y.J.; Jo, M.J.; Yun, H.K.; Jeong, Y.A.; et al. Cannabidiol Overcomes Oxaliplatin Resistance by Enhancing NOS3- and SOD2-Induced Autophagy in Human Colorectal Cancer Cells. Cancers 2019, 11, 781. [Google Scholar] [CrossRef] [PubMed]
- Lokich, J.; Anderson, N. Carboplatin versus Cisplatin in Solid Tumors: An Analysis of the Literature. Ann. Oncol. 1998, 9, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Wilkins, A.C.; Rosenfelder, N.; Schick, U.; Gupta, S.; Thway, K.; Nutting, C.M.; Harrington, K.J.; Newbold, K.; Bhide, S.A. Equivalence of Cisplatin and Carboplatin-Based Chemoradiation for Locally Advanced Squamous Cell Carcinoma of the Head and Neck: A Matched-Pair Analysis. Oral Oncol. 2013, 49, 615–619. [Google Scholar] [CrossRef] [PubMed]
- Ho, G.Y.; Woodward, N.; Coward, J.I.G. Cisplatin versus Carboplatin: Comparative Review of Therapeutic Management in Solid Malignancies. Crit. Rev. Oncol. Hematol. 2016, 102, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Oun, R.; Moussa, Y.E.; Wheate, N.J. The Side Effects of Platinum-Based Chemotherapy Drugs: A Review for Chemists. Dalton Trans. 2018, 47, 6645–6653. [Google Scholar] [CrossRef]
- Inkol, J.M.; Hocker, S.E.; Mutsaers, A.J. Combination Therapy with Cannabidiol and Chemotherapeutics in Canine Urothelial Carcinoma Cells. PLoS ONE 2021, 16, e0255591. [Google Scholar] [CrossRef]
- Dumontet, C.; Jordan, M.A. Microtubule-Binding Agents: A Dynamic Field of Cancer Therapeutics. Nat. Rev. Drug Discov. 2010, 9, 790–803. [Google Scholar] [CrossRef]
- Steinmetz, M.O.; Prota, A.E. Microtubule-Targeting Agents: Strategies To Hijack the Cytoskeleton. Trends Cell Biol. 2018, 28, 776–792. [Google Scholar] [CrossRef]
- Parthasarathy, R.; Shanmuganathan, R.; Pugazhendhi, A. Vinblastine Production by the Endophytic Fungus Curvularia Verruculosa from the Leaves of Catharanthus Roseus and Its in Vitro Cytotoxicity against HeLa Cell Line. Anal. Biochem. 2020, 593, 113530. [Google Scholar] [CrossRef]
- Aslam, J.; Khan, S.H.; Siddiqui, Z.H. Catharanthus roseus (L.) g. don. an important drug: Its applications and production. Pharm. Glob. 2010, 4, 1–16. [Google Scholar]
- Earhart, R.H.; Khandekar, J.D.; Faraggi, D.; Schinella, R.A.; Davis, T.E. Phase II Trial of Continuous Drug Infusions in Advanced Ovarian Carcinoma: Acivicin versus Vinblastine. Investig. New Drugs 1989, 7, 255–260. [Google Scholar] [CrossRef]
- Wani, M.C.; Taylor, H.L.; Wall, M.E.; Coggon, P.; McPhail, A.T. Plant Antitumor Agents. VI. The Isolation and Structure of Taxol, a Novel Antileukemic and Antitumor Agent from Taxus Brevifolia. J. Am. Chem. Soc. 1971, 93, 2325–2327. [Google Scholar] [CrossRef] [PubMed]
- Marupudi, N.I.; Han, J.E.; Li, K.W.; Renard, V.M.; Tyler, B.M.; Brem, H. Paclitaxel: A Review of Adverse Toxicities and Novel Delivery Strategies. Expert Opin. Drug Saf. 2007, 6, 609–621. [Google Scholar] [CrossRef] [PubMed]
- Ward, S.J.; Ramirez, M.D.; Neelakantan, H.; Walker, E.A. Cannabidiol Prevents the Development of Cold and Mechanical Allodynia in Paclitaxel-Treated Female C57Bl6 Mice. Anesth Analg. 2011, 113, 947–950. [Google Scholar] [CrossRef] [PubMed]
- Ward, S.J.; McAllister, S.D.; Kawamura, R.; Murase, R.; Neelakantan, H.; Walker, E.A. Cannabidiol Inhibits Paclitaxel-Induced Neuropathic Pain through 5-HT(1A) Receptors without Diminishing Nervous System Function or Chemotherapy Efficacy. Br. J. Pharmacol. 2014, 171, 636–645. [Google Scholar] [CrossRef]
- Baron, R.; Binder, A.; Wasner, G. Neuropathic Pain: Diagnosis, Pathophysiological Mechanisms, and Treatment. Lancet Neurol 2010, 9, 807–819. [Google Scholar] [CrossRef]
- Brenneman, D.E.; Kinney, W.A.; Ward, S.J. Knockdown SiRNA Targeting the Mitochondrial Sodium-Calcium Exchanger-1 Inhibits the Protective Effects of Two Cannabinoids Against Acute Paclitaxel Toxicity. J. Mol. Neurosci. 2019, 68, 603–619. [Google Scholar] [CrossRef]
- Foss, J.D.; Farkas, D.J.; Huynh, L.M.; Kinney, W.A.; Brenneman, D.E.; Ward, S.J. Behavioural and Pharmacological Effects of Cannabidiol (CBD) and the Cannabidiol Analogue KLS-13019 in Mouse Models of Pain and Reinforcement. Br. J. Pharmacol. 2021, 178, 3067–3078. [Google Scholar] [CrossRef]
- Fraguas-Sánchez, A.I.; Fernández-Carballido, A.; Simancas-Herbada, R.; Martin-Sabroso, C.; Torres-Suárez, A.I. CBD Loaded Microparticles as a Potential Formulation to Improve Paclitaxel and Doxorubicin-Based Chemotherapy in Breast Cancer. Int. J. Pharm. 2020, 574, 118916. [Google Scholar] [CrossRef] [PubMed]
- Alsherbiny, M.A.; Bhuyan, D.J.; Low, M.N.; Chang, D.; Li, C.G. Synergistic Interactions of Cannabidiol with Chemotherapeutic Drugs in MCF7 Cells: Mode of Interaction and Proteomics Analysis of Mechanisms. Int. J. Mol. Sci. 2021, 22, 10103. [Google Scholar] [CrossRef]
- Sainz-Cort, A.; Müller-Sánchez, C.; Espel, E. Anti-Proliferative and Cytotoxic Effect of Cannabidiol on Human Cancer Cell Lines in Presence of Serum. BMC Res. Notes 2020, 13, 389. [Google Scholar] [CrossRef] [PubMed]
- Cortes, J.E.; Pazdur, R. Docetaxel. J. Clin. Oncol. 1995, 13, 2643–2655. [Google Scholar] [CrossRef]
- Zhang, E.; Xing, R.; Liu, S.; Li, P. Current Advances in Development of New Docetaxel Formulations. Expert Opin. Drug Deliv. 2019, 16, 301–312. [Google Scholar] [CrossRef]
- De Petrocellis, L.; Ligresti, A.; Schiano Moriello, A.; Iappelli, M.; Verde, R.; Stott, C.G.; Cristino, L.; Orlando, P.; Di Marzo, V. Non-THC Cannabinoids Inhibit Prostate Carcinoma Growth in Vitro and in Vivo: Pro-Apoptotic Effects and Underlying Mechanisms. Br. J. Pharmacol. 2013, 168, 79–102. [Google Scholar] [CrossRef] [PubMed]
- Mohammadgholi, A.; Rabbani-Chadegani, A.; Fallah, S. Mechanism of the Interaction of Plant Alkaloid Vincristine with DNA and Chromatin: Spectroscopic Study. DNA Cell Biol. 2013, 32, 228–235. [Google Scholar] [CrossRef] [PubMed]
- Michlitsch, J.; Larkin, S.; Vichinsky, E.; Kuypers, F.A. Vincristine-Induced Anemia in Hereditary Spherocytosis. Exp. Biol. Med. 2019, 244, 850–854. [Google Scholar] [CrossRef]
- Holland, M.L.; Allen, J.D.; Arnold, J.C. Interaction of Plant Cannabinoids with the Multidrug Transporter ABCC1 (MRP1). Eur. J. Pharmacol. 2008, 591, 128–131. [Google Scholar] [CrossRef]
- Henry, J.G.; Shoemaker, G.; Prieto, J.M.; Hannon, M.B.; Wakshlag, J.J. The Effect of Cannabidiol on Canine Neoplastic Cell Proliferation and Mitogen-Activated Protein Kinase Activation during Autophagy and Apoptosis. Vet. Comp. Oncol. 2021, 19, 253–265. [Google Scholar] [CrossRef]
- Dall’Stella, P.B.; Docema, M.F.L.; Maldaun, M.V.C.; Feher, O.; Lancellotti, C.L.P. Case Report: Clinical Outcome and Image Response of Two Patients With Secondary High-Grade Glioma Treated With Chemoradiation, PCV, and Cannabidiol. Front. Oncol. 2018, 8, 643. [Google Scholar] [CrossRef]
- Douedi, S.; Carson, M.P. Anthracycline Medications (Doxorubicin). In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Minotti, G.; Menna, P.; Salvatorelli, E.; Cairo, G.; Gianni, L. Anthracyclines: Molecular Advances and Pharmacologic Developments in Antitumor Activity and Cardiotoxicity. Pharmacol. Rev. 2004, 56, 185–229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carvalho, C.; Santos, R.X.; Cardoso, S.; Correia, S.; Oliveira, P.J.; Santos, M.S.; Moreira, P.I. Doxorubicin: The Good, the Bad and the Ugly Effect. Curr. Med. Chem. 2009, 16, 3267–3285. [Google Scholar] [CrossRef] [PubMed]
- Speth, P.A.; van Hoesel, Q.G.; Haanen, C. Clinical Pharmacokinetics of Doxorubicin. Clin. Pharm. 1988, 15, 15–31. [Google Scholar] [CrossRef] [PubMed]
- Hao, E.; Mukhopadhyay, P.; Cao, Z.; Erdélyi, K.; Holovac, E.; Liaudet, L.; Lee, W.-S.; Haskó, G.; Mechoulam, R.; Pacher, P. Cannabidiol Protects against Doxorubicin-Induced Cardiomyopathy by Modulating Mitochondrial Function and Biogenesis. Mol. Med. 2015, 21, 38–45. [Google Scholar] [CrossRef]
- Fouad, A.A.; Albuali, W.H.; Al-Mulhim, A.S.; Jresat, I. Cardioprotective Effect of Cannabidiol in Rats Exposed to Doxorubicin Toxicity. Environ. Toxicol. Pharmacol. 2013, 36, 347–357. [Google Scholar] [CrossRef]
- Neumann-Raizel, H.; Shilo, A.; Lev, S.; Mogilevsky, M.; Katz, B.; Shneor, D.; Shaul, Y.D.; Leffler, A.; Gabizon, A.; Karni, R.; et al. 2-APB and CBD-Mediated Targeting of Charged Cytotoxic Compounds Into Tumor Cells Suggests the Involvement of TRPV2 Channels. Front. Pharmacol. 2019, 10, 1198. [Google Scholar] [CrossRef]
- Elbaz, M.; Ahirwar, D.; Xiaoli, Z.; Zhou, X.; Lustberg, M.; Nasser, M.W.; Shilo, K.; Ganju, R.K. TRPV2 Is a Novel Biomarker and Therapeutic Target in Triple Negative Breast Cancer. Oncotarget 2016, 9, 33459–33470. [Google Scholar] [CrossRef]
- Patel, N.; Kommineni, N.; Surapaneni, S.K.; Kalvala, A.; Yaun, X.; Gebeyehu, A.; Arthur, P.; Duke, L.C.; York, S.B.; Bagde, A.; et al. Cannabidiol Loaded Extracellular Vesicles Sensitize Triple-Negative Breast Cancer to Doxorubicin in Both in-Vitro and in Vivo Models. Int. J. Pharm. 2021, 607, 120943. [Google Scholar] [CrossRef]
- Surapaneni, S.K.; Patel, N.; Sun, L.; Kommineni, N.; Kalvala, A.K.; Gebeyehu, A.; Arthur, P.; Duke, L.C.; Nimma, R.; G Meckes, D.; et al. Anticancer and Chemosensitization Effects of Cannabidiol in 2D and 3D Cultures of TNBC: Involvement of GADD45α, Integrin-A5, -Β5, -Β1, and Autophagy. Drug Deliv. Transl. Res. 2022. [Google Scholar] [CrossRef]
- Deshaies, R.J. Proteotoxic Crisis, the Ubiquitin-Proteasome System, and Cancer Therapy. BMC Biol. 2014, 12, 94. [Google Scholar] [CrossRef] [PubMed]
- Bastola, P.; Oien, D.B.; Cooley, M.; Chien, J. Emerging Cancer Therapeutic Targets in Protein Homeostasis. AAPS J. 2018, 20, 94. [Google Scholar] [CrossRef] [PubMed]
- Manasanch, E.E.; Orlowski, R.Z. Proteasome Inhibitors in Cancer Therapy. Nat. Rev. Clin. Oncol. 2017, 14, 417–433. [Google Scholar] [CrossRef]
- Scott, K.; Hayden, P.J.; Will, A.; Wheatley, K.; Coyne, I. Bortezomib for the Treatment of Multiple Myeloma. Cochrane Database Syst. Rev. 2016, 4, CD010816. [Google Scholar] [CrossRef] [PubMed]
- Morelli, M.B.; Offidani, M.; Alesiani, F.; Discepoli, G.; Liberati, S.; Olivieri, A.; Santoni, M.; Santoni, G.; Leoni, P.; Nabissi, M. The Effects of Cannabidiol and Its Synergism with Bortezomib in Multiple Myeloma Cell Lines. A Role for Transient Receptor Potential Vanilloid Type-2. Int. J. Cancer 2014, 134, 2534–2546. [Google Scholar] [CrossRef] [PubMed]
- Meraz-Torres, F.; Plöger, S.; Garbe, C.; Niessner, H.; Sinnberg, T. Disulfiram as a Therapeutic Agent for Metastatic Malignant Melanoma-Old Myth or New Logos? Cancers 2020, 12, 3538. [Google Scholar] [CrossRef] [PubMed]
- University of Utah. A Phase I Study of Disulfiram and Copper Gluconate in Patients with Treatment-Refractory Multiple Myeloma; Clinicaltrials.gov: Bethesda, MD, USA, 2022.
- The Institute of Molecular and Translational Medicine, Czech Republic. Phase II Open Labeled Trial of Disulfiram with Copper in Metastatic Breast Cancer; Clinicaltrials.gov: Bethesda, MD, USA, 2021.
- National Cancer Institute, Slovakia. Phase II Study of Disulfiram and Cisplatin in Refractory TGCT; Clinicaltrials.gov: Bethesda, MD, USA, 2020.
- Chroma, K.; Skrott, Z.; Gursky, J.; Bacovsky, J.; Moudry, P.; Buchtova, T.; Mistrik, M.; Bartek, J. A Drug Repurposing Strategy for Overcoming Human Multiple Myeloma Resistance to Standard-of-Care Treatment. Cell Death Dis. 2022, 13, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Skrott, Z.; Mistrik, M.; Andersen, K.K.; Friis, S.; Majera, D.; Gursky, J.; Ozdian, T.; Bartkova, J.; Turi, Z.; Moudry, P.; et al. Alcohol-Abuse Drug Disulfiram Targets Cancer via P97 Segregase Adaptor NPL4. Nature 2017, 552, 194–199. [Google Scholar] [CrossRef]
- Meyer, H.; Bug, M.; Bremer, S. Emerging Functions of the VCP/P97 AAA-ATPase in the Ubiquitin System. Nat. Cell Biol. 2012, 14, 117–123. [Google Scholar] [CrossRef]
- Buchtova, T.; Skrott, Z.; Chroma, K.; Rehulka, J.; Dzubak, P.; Hajduch, M.; Lukac, D.; Arampatzis, S.; Bartek, J.; Mistrik, M. Cannabidiol-Induced Activation of the Metallothionein Pathway Impedes Anticancer Effects of Disulfiram and Its Metabolite CuET. Mol. Oncol. 2021. [Google Scholar] [CrossRef]
- Liang, X.; Wu, Q.; Luan, S.; Yin, Z.; He, C.; Yin, L.; Zou, Y.; Yuan, Z.; Li, L.; Song, X.; et al. A Comprehensive Review of Topoisomerase Inhibitors as Anticancer Agents in the Past Decade. Eur. J. Med. Chem. 2019, 171, 129–168. [Google Scholar] [CrossRef]
- Staker, B.L.; Hjerrild, K.; Feese, M.D.; Behnke, C.A.; Burgin, A.B.; Stewart, L. The Mechanism of Topoisomerase I Poisoning by a Camptothecin Analog. Proc. Natl. Acad. Sci. USA 2002, 99, 15387–15392. [Google Scholar] [CrossRef] [Green Version]
- Devriese, L.A.; Witteveen, P.E.O.; Mergui-Roelvink, M.; Smith, D.A.; Lewis, L.D.; Mendelson, D.S.; Bang, Y.-J.; Chung, H.C.; Dar, M.M.; Huitema, A.D.R.; et al. Pharmacodynamics and Pharmacokinetics of Oral Topotecan in Patients with Advanced Solid Tumours and Impaired Renal Function. Br. J. Clin. Pharmacol. 2015, 80, 253–266. [Google Scholar] [CrossRef]
- McLennan, A.; Kerba, M.; Subnis, U.; Campbell, T.; Carlson, L.E. Health Care Provider Preferences for, and Barriers to, Cannabis Use in Cancer Care. Curr. Oncol. 2020, 27, e199–e205. [Google Scholar] [CrossRef]
- Mangelinck, A.; da Costa, M.E.M.; Stefanovska, B.; Bawa, O.; Polrot, M.; Gaspar, N.; Fromigué, O. MT2A Is an Early Predictive Biomarker of Response to Chemotherapy and a Potential Therapeutic Target in Osteosarcoma. Sci. Rep. 2019, 9, 12301. [Google Scholar] [CrossRef]
- Merlos Rodrigo, M.A.; Jimenez Jimemez, A.M.; Haddad, Y.; Bodoor, K.; Adam, P.; Krizkova, S.; Heger, Z.; Adam, V. Metallothionein Isoforms as Double Agents—Their Roles in Carcinogenesis, Cancer Progression and Chemoresistance. Drug Resist. Updat. 2020, 52, 100691. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buchtova, T.; Lukac, D.; Skrott, Z.; Chroma, K.; Bartek, J.; Mistrik, M. Drug–Drug Interactions of Cannabidiol with Standard-of-Care Chemotherapeutics. Int. J. Mol. Sci. 2023, 24, 2885. https://doi.org/10.3390/ijms24032885
Buchtova T, Lukac D, Skrott Z, Chroma K, Bartek J, Mistrik M. Drug–Drug Interactions of Cannabidiol with Standard-of-Care Chemotherapeutics. International Journal of Molecular Sciences. 2023; 24(3):2885. https://doi.org/10.3390/ijms24032885
Chicago/Turabian StyleBuchtova, Tereza, David Lukac, Zdenek Skrott, Katarina Chroma, Jiri Bartek, and Martin Mistrik. 2023. "Drug–Drug Interactions of Cannabidiol with Standard-of-Care Chemotherapeutics" International Journal of Molecular Sciences 24, no. 3: 2885. https://doi.org/10.3390/ijms24032885
APA StyleBuchtova, T., Lukac, D., Skrott, Z., Chroma, K., Bartek, J., & Mistrik, M. (2023). Drug–Drug Interactions of Cannabidiol with Standard-of-Care Chemotherapeutics. International Journal of Molecular Sciences, 24(3), 2885. https://doi.org/10.3390/ijms24032885