Emerging Molecular Targets for Anti-Epileptogenic and Epilepsy Modifying Drugs
Abstract
:1. Introduction
2. Neuronal Damage and Plasticity
3. Astrogliosis
4. mTOR Pathway
5. Neuroinflammation
6. Extracellular Matrix and Intercellular Communication
7. Epigenetic Mechanisms in Epileptogenesis
8. Transcriptomics
9. Proteomic Analysis in Studying Epileptogenesis
10. Attempts to Prevent Epileptogenesis
11. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Devinsky, O.; Vezzani, A.; O’Brien, T.J.; Jette, N.; Scheffer, I.E.; de Curtis, M.; Perucca, P. Epilepsy. Nat. Rev. Dis. Prim. 2018, 4, 18024. [Google Scholar] [CrossRef] [PubMed]
- Marini, C.; Giardino, M. Novel treatments in epilepsy guided by genetic diagnosis. Br. J. Clin. Pharmacol. 2022, 88, 2539–2551. [Google Scholar] [CrossRef] [PubMed]
- Perucca, P.; Perucca, E. Identifying mutations in epilepsy genes: Impact on treatment selection. Epilepsy Res. 2019, 152, 18–30. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Marmiesse, A.; Roca, I.; Díaz-Flores, F.; Cantarín, V.; Pérez-Poyato, M.S.; Fontalba, A.; Laranjeira, F.; Quintans, S.; Moldovan, O.; Felgueroso, B.; et al. Rare Variants in 48 Genes Account for 42% of Cases of Epilepsy with or Without Neurodevelopmental Delay in 246 Pediatric Patients. Front. Neurosci. 2019, 13, 1135. [Google Scholar] [CrossRef]
- Akyuz, E.; Polat, A.K.; Eroglu, E.; Kullu, I.; Angelopoulou, E.; Paudel, Y.N. Revisiting the role of neurotransmitters in epilepsy: An updated review. Life Sci. 2021, 265, 118826. [Google Scholar] [CrossRef] [PubMed]
- Sills, G.J.; Rogawski, M.A. Mechanisms of action of currently used antiseizure drugs. Neuropharmacology 2020, 168, 107966. [Google Scholar] [CrossRef]
- Hung, T.-Y.; Wu, S.-N.; Huang, C.-W. The Integrated Effects of Brivaracetam, a Selective Analog of Levetiracetam, on Ionic Currents and Neuronal Excitability. Biomedicines 2021, 9, 369. [Google Scholar] [CrossRef]
- Wu, P.-M.; Lai, P.-C.; Cho, H.-Y.; Chuang, T.-H.; Wu, S.-N.; Tu, Y.-F. Effective Perturbations by Phenobarbital on INa, IK(erg), IK(M) and IK(DR) during Pulse Train Stimulation in Neuroblastoma Neuro-2a Cells. Biomedicines 2022, 10, 1968. [Google Scholar] [CrossRef]
- Lai, M.-C.; Wu, S.-N.; Huang, C.-W. Rufinamide, a Triazole-Derived Antiepileptic Drug, Stimulates Ca2+-Activated K+ Currents While Inhibiting Voltage-Gated Na+ Currents. Int. J. Mol. Sci. 2022, 23, 13677. [Google Scholar] [CrossRef]
- Wu, P.-M.; Cho, H.-Y.; Chiang, C.-W.; Chuang, T.-H.; Wu, S.-N.; Tu, Y.-F. Characterization in Inhibitory Effectiveness of Carbamazepine in Voltage-Gated Na+ and Erg-Mediated K+ Currents in a Mouse Neural Crest-Derived (Neuro-2a) Cell Line. Int. J. Mol. Sci. 2022, 23, 7892. [Google Scholar] [CrossRef]
- Kossoff, E.H.; Zupec-Kania, B.A.; Auvin, S.; Ballaban-Gil, K.R.; Christina Bergqvist, A.G.; Blackford, R.; Buchhalter, J.R.; Caraballo, R.H.; Cross, J.H.; Dahlin, M.G.; et al. Optimal clinical management of children receiving dietary therapies for epilepsy: Updated recommendations of the International Ketogenic Diet Study Group. Epilepsia Open 2018, 3, 175–192. [Google Scholar] [CrossRef] [PubMed]
- Sheng, J.; Liu, S.; Qin, H.; Li, B.; Zhang, X. Drug-Resistant Epilepsy and Surgery. Curr. Neuropharmacol. 2018, 16, 17–28. [Google Scholar] [CrossRef] [PubMed]
- Löscher, W.; Potschka, H.; Sisodiya, S.M.; Vezzani, A. Drug Resistance in Epilepsy: Clinical Impact, Potential Mechanisms, and New Innovative Treatment Options. Pharmacol. Rev. 2020, 72, 606–638. [Google Scholar] [CrossRef] [PubMed]
- Brodie, M.J. Antiepileptic drug therapy the story so far. Seizure 2010, 19, 650–655. [Google Scholar] [CrossRef]
- Lowenstein, D.H. Recent advances related to basic mechanisms of epileptogenesis. Epilepsy Res. Suppl. 1996, 11, 45–60. [Google Scholar]
- Zara, F.; Bianchi, A. The impact of genetics on the classification of epilepsy syndromes. Epilepsia 2009, 50 (Suppl. 5), 11–14. [Google Scholar] [CrossRef]
- Jóźwiak, S.; Kotulska, K. Prevention of Epileptogenesis—A new goal for epilepsy therapy. Pediatr. Neurol. 2014, 51, 758–759. [Google Scholar] [CrossRef] [PubMed]
- Pitkänen, A.; Roivainen, R.; Lukasiuk, K. Development of epilepsy after ischaemic stroke. Lancet Neurol. 2016, 15, 185–197. [Google Scholar] [CrossRef]
- Pitkänen, A.; Lukasiuk, K. Molecular and cellular basis of epileptogenesis in symptomatic epilepsy. Epilepsy Behav. 2009, 14, 16–25. [Google Scholar] [CrossRef]
- Pitkänen, A.; Lukasiuk, K. Mechanisms of epileptogenesis and potential treatment targets. Lancet Neurol. 2011, 10, 173–186. [Google Scholar] [CrossRef]
- Manna, I.; Fortunato, F.; De Benedittis, S.; Sammarra, I.; Bertoli, G.; Labate, A.; Gambardella, A. Non-Coding RNAs: New Biomarkers and Therapeutic Targets for Temporal Lobe Epilepsy. Int. J. Mol. Sci. 2022, 23, 3063. [Google Scholar] [CrossRef]
- Löscher, W. The holy grail of epilepsy prevention: Preclinical approaches to antiepileptogenic treatments. Neuropharmacology 2020, 167, 107605. [Google Scholar] [CrossRef] [PubMed]
- Twele, F.; Bankstahl, M.; Klein, S.; Römermann, K.; Löscher, W. The AMPA receptor antagonist NBQX exerts anti-seizure but not antiepileptogenic effects in the intrahippocampal kainate mouse model of mesial temporal lobe epilepsy. Neuropharmacology 2015, 95, 234–242. [Google Scholar] [CrossRef]
- Guarino, A.; Bettegazzi, B.; Aziz, N.; Barbieri, M.; Bochicchio, D.; Crippa, L.; Marino, P.; Sguizzato, M.; Soukupova, M.; Zucchini, S.; et al. Low-dose 7,8-Dihydroxyflavone Administration After Status Epilepticus Prevents Epilepsy Development. Neurotherapeutics 2022, 19, 1951–1965. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.Z.; He, X.-P.; Krishnamurthy, K.; McNamara, J.O. TrkB-Shc Signaling Protects against Hippocampal Injury Following Status Epilepticus. J. Neurosci. 2019, 39, 4624–4630. [Google Scholar] [CrossRef] [PubMed]
- Koyama, R.; Ikegaya, Y. To BDNF or Not to BDNF: That is the Epileptic Hippocampus. Neuroscientist 2005, 11, 282–287. [Google Scholar] [CrossRef]
- Lin, T.W.; Harward, S.C.; Huang, Y.Z.; McNamara, J.O. Targeting BDNF/TrkB pathways for preventing or suppressing epilepsy. Neuropharmacology 2020, 167, 107734. [Google Scholar] [CrossRef]
- Lybrand, Z.R.; Goswami, S.; Zhu, J.; Jarzabek, V.; Merlock, N.; Aktar, M.; Smith, C.; Zhang, L.; Varma, P.; Cho, K.-O.; et al. A critical period of neuronal activity results in aberrant neurogenesis rewiring hippocampal circuitry in a mouse model of epilepsy. Nat. Commun. 2021, 12, 1423. [Google Scholar] [CrossRef]
- Robel, S.; Buckingham, S.C.; Boni, J.L.; Campbell, S.L.; Danbolt, N.C.; Riedemann, T.; Sutor, B.; Sontheimer, H. Reactive Astrogliosis Causes the Development of Spontaneous Seizures. J. Neurosci. 2015, 35, 3330–3345. [Google Scholar] [CrossRef]
- Lee, D.J.; Hsu, M.S.; Seldin, M.M.; Arellano, J.L.; Binder, D.K. Decreased expression of the glial water channel aquaporin-4 in the intrahippocampal kainic acid model of epileptogenesis. Exp. Neurol. 2012, 235, 246–255. [Google Scholar] [CrossRef]
- Steinhäuser, C.; Boison, D. Epilepsy: Crucial role for astrocytes. Glia 2012, 60, 1191. [Google Scholar] [CrossRef]
- Boison, D. The adenosine kinase hypothesis of epileptogenesis. Prog. Neurobiol. 2008, 84, 249–262. [Google Scholar] [CrossRef] [PubMed]
- Bumanglag, A.V.; Sloviter, R.S. No latency to dentate granule cell epileptogenesis in experimental temporal lobe epilepsy with hippocampal sclerosis. Epilepsia 2018, 59, 2019–2034. [Google Scholar] [CrossRef] [PubMed]
- Sloviter, R.S.; Bumanglag, A.V. Defining “epileptogenesis” and identifying “antiepileptogenic targets” in animal models of acquired temporal lobe epilepsy is not as simple as it might seem. Neuropharmacology 2013, 69, 3–15. [Google Scholar] [CrossRef] [PubMed]
- Ostendorf, A.P.; Wong, M. mTOR Inhibition in Epilepsy: Rationale and Clinical Perspectives. CNS Drugs 2015, 29, 91–99. [Google Scholar] [CrossRef]
- Hodges, S.L.; Lugo, J.N. Therapeutic role of targeting mTOR signaling and neuroinflammation in epilepsy. Epilepsy Res. 2020, 161, 106282. [Google Scholar] [CrossRef]
- Zhao, X.-F.; Liao, Y.; Alam, M.M.; Mathur, R.; Feustel, P.; Mazurkiewicz, J.E.; Adamo, M.A.; Zhu, X.C.; Huang, Y. Microglial mTOR is neuronal protective and anti-epileptogenic in the pilocarpine model of temporal lobe epilepsy. J. Neurosci. 2020, 40, 7593–7608. [Google Scholar] [CrossRef]
- Citraro, R.; Leo, A.; Constanti, A.; Russo, E.; De Sarro, G. mTOR pathway inhibition as a new therapeutic strategy in epilepsy and epileptogenesis. Pharmacol. Res. 2016, 107, 333–343. [Google Scholar] [CrossRef]
- Heinemann, U.; Kaufer, D.; Friedman, A. Blood-brain barrier dysfunction, TGFβ signaling, and astrocyte dysfunction in epilepsy. Glia 2012, 60, 1251–1257. [Google Scholar] [CrossRef]
- Vezzani, A.; Balosso, S.; Ravizza, T. Neuroinflammatory pathways as treatment targets and biomarkers in epilepsy. Nat. Rev. Neurol. 2019, 15, 459–472. [Google Scholar] [CrossRef]
- Terrone, G.; Balosso, S.; Pauletti, A.; Ravizza, T.; Vezzani, A. Inflammation and reactive oxygen species as disease modifiers in epilepsy. Neuropharmacology 2020, 167, 107742. [Google Scholar] [CrossRef]
- Guo, A.; Zhang, H.; Li, H.; Chiu, A.; García-Rodríguez, C.; Lagos, C.F.; Sáez, J.C.; Lau, C.G. Inhibition of connexin hemichannels alleviates neuroinflammation and hyperexcitability in temporal lobe epilepsy. Proc. Natl. Acad. Sci. USA 2022, 119, e2213162119. [Google Scholar] [CrossRef]
- Wang, N.; Mi, X.; Gao, B.; Gu, J.; Wang, W.; Zhang, Y.; Wang, X. Minocycline inhibits brain inflammation and attenuates spontaneous recurrent seizures following pilocarpine-induced status epilepticus. Neuroscience 2015, 287, 144–156. [Google Scholar] [CrossRef] [PubMed]
- Wilczynski, G.M.; Konopacki, F.A.; Wilczek, E.; Lasiecka, Z.; Gorlewicz, A.; Michaluk, P.; Wawrzyniak, M.; Malinowska, M.; Okulski, P.; Kolodziej, L.R.; et al. Important role of matrix metalloproteinase 9 in epileptogenesis. J. Cell Biol. 2008, 180, 1021–1035. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Reddy, D.S. Integrins as receptor targets for neurological disorders. Pharmacol. Ther. 2012, 134, 68–81. [Google Scholar] [CrossRef]
- Dombroski, T.C.D.; Peixoto-Santos, J.E.; Maciel, K.; Baqui, M.M.A.; Velasco, T.R.; Sakamoto, A.C.; Assirati, J.A.; Carlotti, C.G.; Machado, H.R.; de Sousa, G.K.; et al. Drebrin expression patterns in patients with refractory temporal lobe epilepsy and hippocampal sclerosis. Epilepsia 2020, 61, 1581–1594. [Google Scholar] [CrossRef]
- Pierce, J.P.; Melton, J.; Punsoni, M.; McCloskey, D.P.; Scharfman, H.E. Mossy fibers are the primary source of afferent input to ectopic granule cells that are born after pilocarpine-induced seizures. Exp. Neurol. 2005, 196, 316–331. [Google Scholar] [CrossRef] [PubMed]
- Sloviter, R.S. Decreased Hippocampal Inhibition and a Selective Loss of Interneurons in Experimental Epilepsy. Science 1987, 235, 73–76. [Google Scholar] [CrossRef] [PubMed]
- Ratzliff, A.; Howard, A.L.; Santhakumar, V.; Osapay, I.; Soltesz, I. Rapid Deletion of Mossy Cells Does Not Result in a Hyperexcitable Dentate Gyrus: Implications for Epileptogenesis. J. Neurosci. 2004, 24, 2259–2269. [Google Scholar] [CrossRef]
- Jung, S.; Warner, L.N.; Pitsch, J.; Becker, A.J.; Poolos, N.P. Rapid Loss of Dendritic HCN Channel Expression in Hippocampal Pyramidal Neurons following Status Epilepticus. J. Neurosci. 2011, 31, 14291–14295. [Google Scholar] [CrossRef] [PubMed]
- Kazmierska-Grebowska, P.; Siwiec, M.; Sowa, J.E.; Caban, B.; Kowalczyk, T.; Bocian, R.; MacIver, M.B. Lamotrigine Attenuates Neuronal Excitability, Depresses GABA Synaptic Inhibition, and Modulates Theta Rhythms in Rat Hippocampus. Int. J. Mol. Sci. 2021, 22, 13604. [Google Scholar] [CrossRef]
- Kharouf, Q.; Pinares-Garcia, P.; Romanelli, M.N.; Reid, C.A. Testing broad-spectrum and isoform-preferring HCN channel blockers for anticonvulsant properties in mice. Epilepsy Res. 2020, 168, 106484. [Google Scholar] [CrossRef] [PubMed]
- Brooks-Kayal, A.R.; Raol, Y.H.; Russek, S.J. Alteration of epileptogenesis genes. Neurotherapeutics 2009, 6, 312–318. [Google Scholar] [CrossRef]
- Barton, M.E.; Shannon, H.E. The seizure-related phenotype of brain-derived neurotrophic factor knockdown mice. Neuroscience 2005, 136, 563–569. [Google Scholar] [CrossRef] [PubMed]
- Lahteinen, S.; Pitkanen, A.; Knuuttila, J.; Toronen, P.; Castren, E. Brain-derived neurotrophic factor signaling modifies hip-pocampal gene expression during epileptogenesis in transgenic mice. Eur. J. Neurosci. 2004, 19, 3245–3254. [Google Scholar] [CrossRef] [PubMed]
- Lähteinen, S.; Pitkänen, A.; Saarelainen, T.; Nissinen, J.; Koponen, E.; Castrén, E. Decreased BDNF signalling in transgenic mice reduces epileptogenesis. Eur. J. Neurosci. 2002, 15, 721–734. [Google Scholar] [CrossRef]
- Reibel, S.; Larmet, Y.; Lê, B.-T.; Carnahan, J.; Marescaux, C.; Depaulis, A. Brain-derived neurotrophic factor delays hippocampal kindling in the rat. Neuroscience 2000, 100, 777–788. [Google Scholar] [CrossRef] [PubMed]
- Borges, K.; Gearing, M.; McDermott, D.L.; Smith, A.B.; Almonte, A.G.; Wainer, B.H.; Dingledine, R. Neuronal and glial pathological changes during epileptogenesis in the mouse pilocarpine model. Exp. Neurol. 2003, 182, 21–34. [Google Scholar] [CrossRef]
- Vezzani, A.; Viviani, B. Neuromodulatory properties of inflammatory cytokines and their impact on neuronal excitability. Neuropharmacology 2015, 96, 70–82. [Google Scholar] [CrossRef]
- Steinhäuser, C.; Seifert, G.; Bedner, P. Astrocyte dysfunction in temporal lobe epilepsy: K+ channels and gap junction coupling. Glia 2012, 60, 1192–1202. [Google Scholar] [CrossRef]
- Seifert, G.; Steinhäuser, C. Neuron–astrocyte signaling and epilepsy. Exp. Neurol. 2013, 244, 4–10. [Google Scholar] [CrossRef]
- Eid, T.; Ghosh, A.; Wang, Y.; Beckström, H.; Zaveri, H.P.; Lee, T.S.; Lai, J.C.; Malthankar-Phatak, G.H.; de Lanerolle, N.C. Recurrent seizures and brain pathology after inhibition of glutamine synthetase in the hippocampus in rats. Brain 2008, 131, 2061–2070. [Google Scholar] [CrossRef]
- Carmignoto, G.; Haydon, P.G. Astrocyte calcium signaling and epilepsy. Glia 2012, 60, 1227–1233. [Google Scholar] [CrossRef] [PubMed]
- Héja, L.; Nyitrai, G.; Kékesi, O.; Dobolyi, Á.; Szabó, P.; Fiáth, R.; Ulbert, I.; Pál-Szenthe, B.; Palkovits, M.; Kardos, J. Astrocytes convert network excitation to tonic inhibition of neurons. BMC Biol. 2012, 10, 26. [Google Scholar] [CrossRef]
- Heinemann, U.; Gabriel, S.; Schuchmann, S.; Eder, C. Contribution of astrocytes to seizure activity. Adv. Neurol. 1999, 79, 583–590. [Google Scholar]
- White, H.S.; Woodbury, D.M.; Chen, C.F.; Kemp, J.W.; Chow, S.Y.; Yen-Chow, Y.C. Role of glial cation and anion transport mechanisms in etiology and arrest of seizures. Adv. Neurol. 1986, 44, 695–712. [Google Scholar] [PubMed]
- Li, T.; Ren, G.; Lusardi, T.; Wilz, A.; Lan, J.Q.; Iwasato, T.; Itohara, S.; Simon, R.P.; Boison, D. Adenosine kinase is a target for the prediction and prevention of epileptogenesis in mice. J. Clin. Investig. 2008, 118, 571–582. [Google Scholar] [CrossRef] [PubMed]
- Alves, M.; de Diego-Garcia, L.; Engel, T. Analyzing the Role of the P2X7 Receptor in Epilepsy. Methods Mol. Biol. 2022, 2510, 367–387. [Google Scholar] [CrossRef] [PubMed]
- Jimenez-Pacheco, A.; Diaz-Hernandez, M.; Arribas-Blázquez, M.; Sanz-Rodriguez, A.; Olivos-Oré, L.A.; Artalejo, A.R.; Alves, M.; Letavic, M.; Miras-Portugal, M.T.; Conroy, R.M.; et al. Transient P2X7 Receptor Antagonism Produces Lasting Reductions in Spontaneous Seizures and Gliosis in Experimental Temporal Lobe Epilepsy. J. Neurosci. 2016, 36, 5920–5932. [Google Scholar] [CrossRef]
- Cardamone, M.; Flanagan, D.; Mowat, D.; Kennedy, S.E.; Chopra, M.; Lawson, J.A. Mammalian Target of Rapamycin Inhibitors for Intractable Epilepsy and Subependymal Giant Cell Astrocytomas in Tuberous Sclerosis Complex. J. Pediatr. 2014, 164, 1195–1200. [Google Scholar] [CrossRef] [PubMed]
- Rajan, I.; Savelieva, K.V.; Ye, G.-L.; Wang, C.-Y.; Malbari, M.M.; Friddle, C.; Lanthorn, T.H.; Zhang, W. Loss of the Putative Catalytic Domain of HDAC4 Leads to Reduced Thermal Nociception and Seizures while Allowing Normal Bone Development. PLoS ONE 2009, 4, e6612. [Google Scholar] [CrossRef]
- Huang, Y.; Doherty, J.J.; Dingledine, R. Altered Histone Acetylation at Glutamate Receptor 2 and Brain-Derived Neurotrophic Factor Genes is an Early Event Triggered by Status Epilepticus. J. Neurosci. 2002, 22, 8422–8428. [Google Scholar] [CrossRef] [Green Version]
- Crosio, C.; Heitz, E.; Allis, C.D.; Borrelli, E.; Sassone-Corsi, P. Chromatin remodeling and neuronal response: Multiple signaling pathways induce specific histone H3 modifications and early gene expression in hippocampal neurons. J. Cell Sci. 2003, 116, 4905–4914. [Google Scholar] [CrossRef] [PubMed]
- Sng, J.C.; Taniura, H.; Yoneda, Y. Histone modifications in kainate-induced status epilepticus. Eur. J. Neurosci. 2006, 23, 1269–1282. [Google Scholar] [CrossRef] [PubMed]
- Tsankova, N.M.; Kumar, A.; Nestler, E.J. Histone Modifications at Gene Promoter Regions in Rat Hippocampus after Acute and Chronic Electroconvulsive Seizures. J. Neurosci. 2004, 24, 5603–5610. [Google Scholar] [CrossRef]
- Jessberger, S.; Nakashima, K.; Clemenson, G.D.; Mejia, E.; Mathews, E.; Ure, K.; Ogawa, S.; Sinton, C.M.; Gage, F.H.; Hsieh, J. Epigenetic Modulation of Seizure-Induced Neurogenesis and Cognitive Decline. J. Neurosci. 2007, 27, 5967–5975. [Google Scholar] [CrossRef]
- Brandt, C.; Gastens, A.M.; Sun, M.; Hausknecht, M.; Loscher, W. Treatment with valproate after status epilepticus: Effect on neuronal damage, epileptogenesis, and behavioral alterations in rats. Neuropharmacology 2006, 51, 789–804. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, H.; Liu, B.; Jiang, M.; Gu, Y.; Yan, S.; Han, X.; Hou, A.Y.; Tang, C.; Jiang, Z.; et al. Differential DNA Methylation Profiles in Patients with Temporal Lobe Epilepsy and Hippocampal Sclerosis ILAE Type I. J. Mol. Neurosci. 2021, 71, 1951–1966. [Google Scholar] [CrossRef] [PubMed]
- Dębski, K.J.; Pitkanen, A.; Puhakka, N.; Bot, A.M.; Khurana, I.; Harikrishnan, K.N.; Ziemann, M.; Kaspi, A.; El-Osta, A.; Lukasiuk, K.; et al. Etiology matters—Genomic DNA Methylation Patterns in Three Rat Models of Acquired Epilepsy. Sci. Rep. 2016, 6, 25668. [Google Scholar] [CrossRef]
- Berger, T.C.; Taubøll, E.; Heuser, K. The potential role of DNA methylation as preventive treatment target of epileptogenesis. Front. Cell. Neurosci. 2022, 16, 931356. [Google Scholar] [CrossRef]
- Berger, T.C.; Vigeland, M.D.; Hjorthaug, H.S.; Etholm, L.; Nome, C.G.; Taubøll, E.; Heuser, K.; Selmer, K.K. Neuronal and glial DNA methylation and gene expression changes in early epileptogenesis. PLoS ONE 2019, 14, e0226575. [Google Scholar] [CrossRef] [PubMed]
- Gorter, J.A.; van Vliet, E.A.; Aronica, E.; Breit, T.; Rauwerda, H.; da Silva, F.H.L.; Wadman, W.J. Potential new antiepi-leptogenic targets indicated by microarray analysis in a rat model for temporal lobe epilepsy. J. Neurosci. 2006, 26, 11083–11110. [Google Scholar] [CrossRef] [Green Version]
- Lukasiuk, K.; Kontula, L.; Pitkänen, A. cDNA profiling of epileptogenesis in the rat brain. Eur. J. Neurosci. 2003, 17, 271–279. [Google Scholar] [CrossRef] [PubMed]
- Ghafouri-Fard, S.; Hussen, B.M.; Abak, A.; Taheri, M.; Jalili Khoshnoud, R. Aberrant expression of miRNAs in epilepsy. Mol. Biol. Rep. 2022, 49, 5057–5074. [Google Scholar] [CrossRef] [PubMed]
- Brennan, G.P.; Henshall, D.C. microRNAs in the pathophysiology of epilepsy. Neurosci. Lett. 2018, 667, 47–52. [Google Scholar] [CrossRef]
- Bot, A.M.; Dębski, K.J.; Lukasiuk, K. Alterations in miRNA Levels in the Dentate Gyrus in Epileptic Rats. PLoS ONE 2013, 8, e76051. [Google Scholar] [CrossRef]
- Puhakka, N.; Bot, A.M.; Vuokila, N.; Debski, K.J.; Lukasiuk, K.; Pitkänen, A. Chronically dysregulated NOTCH1 interactome in the dentate gyrus after traumatic brain injury. PLoS ONE 2017, 12, e0172521. [Google Scholar] [CrossRef]
- Bencurova, P.; Baloun, J.; Musilova, K.; Radova, L.; Tichy, B.; Pail, M.; Zeman, M.; Brichtova, E.; Hermanova, M.; Pospisilova, S.; et al. MicroRNA and mesial temporal lobe epilepsy with hippocampal sclerosis: Whole miRNome profiling of human hippocampus. Epilepsia 2017, 58, 1782–1793. [Google Scholar] [CrossRef]
- Gorter, J.A.; Iyer, A.; White, I.; Colzi, A.; van Vliet, E.A.; Sisodiya, S.; Aronica, E. Hippocampal subregion-specific microRNA expression during epileptogenesis in experimental temporal lobe epilepsy. Neurobiol. Dis. 2014, 62, 508–520. [Google Scholar] [CrossRef]
- Korotkov, A.; Mills, J.D.; Gorter, J.A.; van Vliet, E.A.; Aronica, E. Systematic review and meta-analysis of differentially expressed miRNAs in experimental and human temporal lobe epilepsy. Sci. Rep. 2017, 7, 11592. [Google Scholar] [CrossRef]
- Ghafouri-Fard, S.; Hussen, B.M.; Jamali, E.; Branicki, W.; Taheri, M.; Dilmaghani, N.A. Role of lncRNAs and circRNAs in epilepsy. Ageing Res. Rev. 2022, 82, 101749. [Google Scholar] [CrossRef]
- Li, J.; Lin, H.; Sun, Z.; Kong, G.; Yan, X.; Wang, Y.; Wang, X.; Wen, Y.; Liu, X.; Zheng, H.; et al. High-Throughput Data of Circular RNA Profiles in Human Temporal Cortex Tissue Reveals Novel Insights into Temporal Lobe Epilepsy. Cell. Physiol. Biochem. 2018, 45, 677–691. [Google Scholar] [CrossRef]
- Lee, D.Y.; Moon, J.; Lee, S.-T.; Jung, K.-H.; Park, D.-K.; Yoo, J.-S.; Sunwoo, J.-S.; Byun, J.-I.; Lim, J.-A.; Kim, T.-J.; et al. Dysregulation of long non-coding RNAs in mouse models of localization-related epilepsy. Biochem. Biophys. Res. Commun. 2015, 462, 433–440. [Google Scholar] [CrossRef] [PubMed]
- Gray, L.G.; Mills, J.D.; Curry-Hyde, A.; Devore, S.; Friedman, D.; Thom, M.; Scott, C.; Thijs, R.D.; Aronica, E.; Devinsky, O.; et al. Identification of Specific Circular RNA Expression Patterns and MicroRNA Interaction Networks in Mesial Temporal Lobe Epilepsy. Front. Genet. 2020, 11, 564301. [Google Scholar] [CrossRef]
- Qian, X.; Ding, J.-Q.; Zhao, X.; Sheng, X.-W.; Wang, Z.-R.; Yang, Q.-X.; Zheng, J.-J.; Zhong, J.-G.; Zhang, T.-Y.; He, S.-Q.; et al. Proteomic Analysis Reveals the Vital Role of Synaptic Plasticity in the Pathogenesis of Temporal Lobe Epilepsy. Neural Plast. 2022, 2022, 8511066. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Y.; Jia, Y.; Zhao, Y.; Ma, C.; Bao, X.; Meng, X.; Dou, W.; Wang, X.; Ge, W. Proteomic profiling of sclerotic hippocampus revealed dysregulated packaging of vesicular neurotransmitters in temporal lobe epilepsy. Epilepsy Res. 2020, 166, 106412. [Google Scholar] [CrossRef] [PubMed]
- Furukawa, A.; Kakita, A.; Chiba, Y.; Kitaura, H.; Fujii, Y.; Fukuda, M.; Kameyama, S.; Shimada, A. Proteomic profile differentiating between mesial temporal lobe epilepsy with and without hippocampal sclerosis. Epilepsy Res. 2020, 168, 106502. [Google Scholar] [CrossRef]
- Pires, G.; Leitner, D.; Drummond, E.; Kanshin, E.; Nayak, S.; Askenazi, M.; Faustin, A.; Friedman, D.; Debure, L.; Ueberheide, B.; et al. Proteomic differences in the hippocampus and cortex of epilepsy brain tissue. Brain Commun. 2021, 3, fcab021. [Google Scholar] [CrossRef] [PubMed]
- Canto, A.M.; Matos, A.H.B.; Godoi, A.B.; Vieira, A.S.; Aoyama, B.B.; Rocha, C.S.; Henning, B.; Carvalho, B.S.; Pascoal, V.D.B.; Veiga, D.F.T.; et al. Multi-omics analysis suggests enhanced epileptogenesis in the Cornu Ammonis 3 of the pilocarpine model of mesial temporal lobe epilepsy. Hippocampus 2021, 31, 122–139. [Google Scholar] [CrossRef]
- Canto, A.M.; Godoi, A.B.; Matos, A.H.B.; Geraldis, J.C.; Rogerio, F.; Alvim, M.K.M.; Yasuda, C.L.; Ghizoni, E.; Tedeschi, H.; Veiga, D.F.T.; et al. Benchmarking the proteomic profile of animal models of mesial temporal epilepsy. Ann. Clin. Transl. Neurol. 2022, 9, 454–467. [Google Scholar] [CrossRef]
- Chen, Z.; Brodie, M.J.; Liew, D.; Kwan, P. Treatment Outcomes in Patients with Newly Diagnosed Epilepsy Treated With Established and New Antiepileptic Drugs: A 30-Year Longitudinal Cohort Study. JAMA Neurol. 2018, 75, 279–286. [Google Scholar] [CrossRef] [PubMed]
- Temkin, N.R. Preventing and treating posttraumatic seizures: The human experience. Epilepsia 2009, 50 (Suppl. 2), 10–13. [Google Scholar] [CrossRef]
- Kaminski, R.M.; Rogawski, M.A.; Klitgaard, H. The Potential of Antiseizure Drugs and Agents that Act on Novel Molecular Targets as Antiepileptogenic Treatments. Neurotherapeutics 2014, 11, 385–400. [Google Scholar] [CrossRef]
- Yan, H.-D.; Ji-Qun, C.; Ishihara, K.; Nagayama, T.; Serikawa, T.; Sasa, M. Separation of Antiepileptogenic and Antiseizure Effects of Levetiracetam in the Spontaneously Epileptic Rat (SER). Epilepsia 2005, 46, 1170–1177. [Google Scholar] [CrossRef] [PubMed]
- Blumenfeld, H.; Klein, J.P.; Schridde, U.; Vestal, M.; Rice, T.; Khera, D.S.; Bashyal, C.; Giblin, K.; Paul-Laughinghouse, C.; Wang, F.; et al. Early treatment suppresses the development of spike-wave epilepsy in a rat model. Epilepsia 2007, 49, 400–409. [Google Scholar] [CrossRef]
- Eastman, C.L.; Fender, J.S.; Klein, P.; D’Ambrosio, R. Therapeutic Effects of Time-Limited Treatment with Brivaracetam on Posttraumatic Epilepsy after Fluid Percussion Injury in the Rat. J. Pharmacol. Exp. Ther. 2021, 379, 310–323. [Google Scholar] [CrossRef]
- Miziak, B.; Konarzewska, A.; Ułamek-Kozioł, M.; Dudra-Jastrzębska, M.; Pluta, R.; Czuczwar, S.J. Anti-Epileptogenic Effects of Antiepileptic Drugs. Int. J. Mol. Sci. 2020, 21, 2340. [Google Scholar] [CrossRef] [PubMed]
- Löscher, W. Single-Target Versus Multi-Target Drugs Versus Combinations of Drugs With Multiple Targets: Preclinical and Clinical Evidence for the Treatment or Prevention of Epilepsy. Front. Pharmacol. 2021, 12, 730257. [Google Scholar] [CrossRef]
- Lukasiuk, K.; Sliwa, A. Fk506 Aggravates Development and Severity of Disease in the Rat Model of Temporal Lobe Epilepsy. Epilepsia 2009, 50, 94–95. [Google Scholar]
- Kim, W.S. Mammalian target of rapamycin inhibitors for treatment in tuberous sclerosis. Korean J. Pediatr. 2011, 54, 241–245. [Google Scholar] [CrossRef]
- Tang, H.; Long, H.; Zeng, C.; Li, Y.; Bi, F.; Wang, J.; Qian, H.; Xiao, B. Rapamycin suppresses the recurrent excitatory circuits of dentate gyrus in a mouse model of temporal lobe epilepsy. Biochem. Biophys. Res. Commun. 2012, 420, 199–204. [Google Scholar] [CrossRef] [PubMed]
- Yamawaki, R.; Thind, K.; Buckmaster, P.S. Blockade of excitatory synaptogenesis with proximal dendrites of dentate granule cells following rapamycin treatment in a mouse model of temporal lobe epilepsy. J. Comp. Neurol. 2014, 523, 281–297. [Google Scholar] [CrossRef] [PubMed]
- Sliwa, A.; Plucinska, G.; Bednarczyk, J.; Lukasiuk, K. Post-treatment with rapamycin does not prevent epileptogenesis in the amygdala stimulation model of temporal lobe epilepsy. Neurosci. Lett. 2012, 509, 105–109. [Google Scholar] [CrossRef] [PubMed]
- Buckmaster, P.S.; Ingram, E.A.; Wen, X. Inhibition of the Mammalian Target of Rapamycin Signaling Pathway Suppresses Dentate Granule Cell Axon Sprouting in a Rodent Model of Temporal Lobe Epilepsy. J. Neurosci. 2009, 29, 8259–8269. [Google Scholar] [CrossRef]
- Buckmaster, P.S.; Lew, F.H. Rapamycin Suppresses Mossy Fiber Sprouting but Not Seizure Frequency in a Mouse Model of Temporal Lobe Epilepsy. J. Neurosci. 2011, 31, 2337–2347. [Google Scholar] [CrossRef] [PubMed]
- Barker-Haliski, M.; Knox, K.; Zierath, D.; Koneval, Z.; Metcalf, C.; Wilcox, K.S.; White, H.S. Development of an antiepileptogenesis drug screening platform: Effects of everolimus and phenobarbital. Epilepsia 2021, 62, 1677–1688. [Google Scholar] [CrossRef] [PubMed]
- Jung, K.-H.; Chu, K.; Lee, S.-T.; Kim, J.; Sinn, D.-I.; Kim, J.-M.; Park, D.-K.; Lee, J.-J.; Kim, S.U.; Kim, M.; et al. Cyclooxygenase-2 inhibitor, celecoxib, inhibits the altered hippocampal neurogenesis with attenuation of spontaneous recurrent seizures following pilocarpine-induced status epilepticus. Neurobiol. Dis. 2006, 23, 237–246. [Google Scholar] [CrossRef]
- Polascheck, N.; Bankstahl, M.; Löscher, W. The COX-2 inhibitor parecoxib is neuroprotective but not antiepileptogenic in the pilocarpine model of temporal lobe epilepsy. Exp. Neurol. 2010, 224, 219–233. [Google Scholar] [CrossRef]
- Holtman, L.; van Vliet, E.A.; van Schaik, R.; Queiroz, C.M.; Aronica, E.; Gorter, J.A. Effects of SC58236, a selective COX-2 inhibitor, on epileptogenesis and spontaneous seizures in a rat model for temporal lobe epilepsy. Epilepsy Res. 2009, 84, 56–66. [Google Scholar] [CrossRef]
- Fabene, P.F.; Mora, G.N.; Martinello, M.; Rossi, B.; Merigo, F.; Ottoboni, L.; Bach, S.; Angiari, S.; Benati, D.; Chakir, A.; et al. A role for leukocyte-endothelial adhesion mechanisms in epilepsy. Nat. Med. 2008, 14, 1377–1383. [Google Scholar] [CrossRef]
- Russmann, V.; Goc, J.; Boes, K.; Ongerth, T.; Salvamoser, J.D.; Siegl, C.; Potschka, H. Minocycline fails to exert antiepileptogenic effects in a rat status epilepticus model. Eur. J. Pharmacol. 2016, 771, 29–39. [Google Scholar] [CrossRef] [PubMed]
- Pitkänen, A.; Narkilahti, S.; Bezvenyuk, Z.; Haapalinna, A.; Nissinen, J. Atipamezole, an alpha (2)-adrenoceptor antagonist, has disease modifying effects on epileptogenesis in rats. Epilepsy Res. 2004, 61, 119–140. [Google Scholar] [CrossRef] [PubMed]
- Echegoyen, J.; Armstrong, C.; Morgan, R.J.; Soltesz, I. Single application of a CB1 receptor antagonist rapidly following head injury prevents long-term hyperexcitability in a rat model. Epilepsy Res. 2009, 85, 123–127. [Google Scholar] [CrossRef] [Green Version]
- Lazarini-Lopes, W.; Do Val-Da Silva, R.A.; da Silva-Júnior, R.M.P.; Silva-Cardoso, G.K.; Leite-Panissi, C.R.A.; Leite, J.P.; Garcia-Cairasco, N. Chronic cannabidiol (CBD) administration induces anticonvulsant and antiepileptogenic effects in a genetic model of epilepsy. Epilepsy Behav. 2021, 119, 107962. [Google Scholar] [CrossRef] [PubMed]
- Hufthy, Y.; Bharadwaj, M.; Gupta, S.; Hussain, D.; Joseph, P.J.S.; Khan, A.; King, J.; Lahorgue, P.; Jayawardena, O.; Rostami-Hochaghan, D.; et al. Statins as antiepileptogenic drugs: Analyzing the evidence and identifying the most promising statin. Epilepsia 2022, 63, 1889–1898. [Google Scholar] [CrossRef]
- Nucera, B.; Rinaldi, F.; Nardone, R.; Lattanzi, S.; Brigo, F. Statins in primary prevention of poststroke seizures and epilepsy: A systematic review. Epilepsy Behav. 2020, 112, 107400. [Google Scholar] [CrossRef]
- Bar-Klein, G.; Cacheaux, L.P.; Kamintsky, L.; Prager, O.; Weissberg, I.; Schoknecht, K.; Cheng, P.; Kim, S.Y.; Wood, L.; Heinemann, U.; et al. Losartan prevents acquired epilepsy via TGF-β signaling suppression. Ann. Neurol. 2014, 75, 864–875. [Google Scholar] [CrossRef]
- Tchekalarova, J.D.; Ivanova, N.M.; Pechlivanova, D.M.; Atanasova, D.; Lazarov, N.; Kortenska, L.; Mitreva, R.; Lozanov, V.; Stoynev, A. Antiepileptogenic and neuroprotective effects of losartan in kainate model of temporal lobe epilepsy. Pharmacol. Biochem. Behav. 2014, 127, 27–36. [Google Scholar] [CrossRef]
- Cattaneo, S.; Verlengia, G.; Marino, P.; Simonato, M.; Bettegazzi, B. NPY and Gene Therapy for Epilepsy: How, When,... and Y. Front. Mol. Neurosci. 2020, 13, 608001. [Google Scholar] [CrossRef]
- Shaimardanova, A.A.; Chulpanova, D.S.; Mullagulova, A.I.; Afawi, Z.; Gamirova, R.G.; Solovyeva, V.V.; Rizvanov, A.A. Gene and Cell Therapy for Epilepsy: A Mini Review. Front. Mol. Neurosci. 2022, 15, 868531. [Google Scholar] [CrossRef]
- Qiu, Y.; O’Neill, N.; Maffei, B.; Zourray, C.; Almacellas-Barbanoj, A.; Carpenter, J.C.; Jones, S.P.; Leite, M.; Turner, T.J.; Moreira, F.C.; et al. On-demand cell-autonomous gene therapy for brain circuit disorders. Science 2022, 378, 523–532. [Google Scholar] [CrossRef]
- Lee, H.; Lee, S.; Lee, D.-H.; Kim, D.W. A comparison of the gut microbiota among adult patients with drug-responsive and drug-resistant epilepsy: An exploratory study. Epilepsy Res. 2021, 172, 106601. [Google Scholar] [CrossRef]
- Cheraghmakani, H.; Rezai, M.S.; Valadan, R.; Rahimzadeh, G.; Moradi, M.; Jahanfekr, V.; Moosazadeh, M.; Tabrizi, N. Ciprofloxacin for treatment of drug-resistant epilepsy. Epilepsy Res. 2021, 176, 106742. [Google Scholar] [CrossRef]
- Medel-Matus, J.-S.; Simpson, C.A.; Ahdoot, A.I.; Shin, D.; Sankar, R.; Jacobs, J.P.; Mazarati, A.M. Modification of post-traumatic epilepsy by fecal microbiota transfer. Epilepsy Behav. 2022, 134, 108860. [Google Scholar] [CrossRef]
- Al-Beltagi, M.; Saeed, N.K. Epilepsy and the gut: Perpetrator or victim? World J. Gastrointest. Pathophysiol. 2022, 13, 143–156. [Google Scholar] [CrossRef] [PubMed]
- Lusardi, T.A.; Akula, K.K.; Coffman, S.Q.; Ruskin, D.N.; Masino, S.A.; Boison, D. Ketogenic diet prevents epileptogenesis and disease progression in adult mice and rats. Neuropharmacology 2015, 99, 500–509. [Google Scholar] [CrossRef] [PubMed]
- Löscher, W.; Klein, P. New approaches for developing multi-targeted drug combinations for disease modification of complex brain disorders. Does epilepsy prevention become a realistic goal? Pharmacol. Ther. 2022, 229, 107934. [Google Scholar] [CrossRef] [PubMed]
Name | Class of Drugs | Indications | Mechanism of Action |
---|---|---|---|
Phenobarbital | Barbiturate | All types of seizures, except absence seizures | A positive allosteric modulator of GABA A receptor, especially on δ-subunit containing extrasynaptic GABA A receptors that mediate tonic inhibition, an antagonist of AMPA receptors, affects ina, IK(erg), IK(M) and IK(DR) ionic currents |
Primidone | Deoxybarbiturate | Focal-onset seizures, primary generalized seizures | Increases fast inactivation of voltage-gated Na+ channels |
Phenytoin | Hydantoin | Focal-onset seizures, primary generalized seizures | Increases fast inactivation of voltage-gated Na+ channels |
Ethosuximide | Succinimide | Absence seizures | Inhibits low voltage-gated calcium channels (T-type) |
Carbamazepine | Iminostilbene | Focal-onset seizures, primary generalized seizures | Increases fast inactivation voltage-gated Na+ channels, modifes ionic currents (e.g., ina and erg-mediated K+ current [IK(erg)]) |
Oxcarbazepine | Iminostilbene | Focal-onset seizures, primary generalized seizures | Increases fast inactivation of voltage-gated Na+ channels |
Eslicarbazepine | Iminostilbene | Focal-onset seizures | Increases fast inactivation voltage-gated Na+ channels |
Clonazepam | Benzodiazepine | Focal-onset seizures, primary generalized seizures, status epilepticus | A positive allosteric modulator of GABA A receptor |
Clobazam | Benzodiazepine | Focal-onset seizures, primary generalized seizures, Lennox–Gastaut syndrome, Infantile spasms (West syndrome), Dravet syndrome | A positive allosteric modulator at the GABA A receptor with some activity at sodium channels and voltage-sensitive calcium channels |
Vigabatrin | GABA analogue | Focal-onset seizures, primary generalized seizures, infantile spasms (West syndrome) | Gabaergic inhibition, inhibition of excitatory neurotransmission, modulation of voltage- and receptor-gated calcium ion channels activity. An inhibitor of gamma-aminobutyric acid aminotransferase (GABA-AT) |
Tiagabine | (R)-nipecotic acid | Focal-onset seizures | A GABA reuptake inhibitor blocking the GABA transporter 1 (GAT-1) |
Gabapentin | Cyclic GABA analogue | Focal-onset seizures, mixed seizure disorders | A modulator of the presynaptic release machinery via α2δ subunit of calcium channels |
Pregabalin | Cyclic GABA analogue | Focal-onset seizures | An inhibitor of α2δ subunit-containing voltage-dependent calcium channels |
Cenobamate | Carbamate | Focal-onset seizures | Inhibits persistent sodium currents (inap) |
Felbamate | Carbamate | Focal-onset seizures, Lennox–Gastaut syndrome, infantile spasms (West syndrome) | An allosteric modulator of GABA A receptors, an antagonist of NMDA receptors |
Lamotrigine | Phenyltriazine | Focal-onset seizures, primary generalized seizures, Lennox–Gastaut syndrome, Infantile spasms (West syndrome) | Increases fast inactivation of voltage-gated Na+ channels, An HCN channel modulator, |
Levetiracetam | Racetam | Focal-onset seizures, primary generalized seizures, Lennox–Gastaut syndrome, Dravet syndrome | Binds to the synaptic vesicle glycoprotein 2A (SV2A), inhibits presynaptic calcium channels |
Brivaracetam | Racetam | Focal-onset seizures, primary generalized seizures | Binds to the SV2A protein, multiple ionic mechanism in electrically excitable cells including M-type K+ current, large-conductance Ca2+-activated K+ channel and voltage-gated Na+ current |
Acetazolamide | Sulfonamide | Focal-onset seizures, primary generalized seizures, Lennox–Gastaut syndrome | Carbonic anhydrase inhibitor |
Zonisamide | Sulfonamide | Focal-onset seizures, primary generalized seizures, Lennox–Gastaut syndrome, infantile spasms (West syndrome), Dravet syndrome | Increases fast inactivation of voltage-gated Na+ channels, modulates gabaergic and glutamatergic neurotransmission |
Lacosamide | Functionalized amino acid | Focal-onset seizures, primary generalized seizures | Increases slow inactivation of voltage-gated Na+ channels |
Valproate | Aliphatic carboxylic acid | Focal-onset seizures, primary generalized seizures, Lennox–Gastaut syndrome, infantile spasms (West syndrome), Dravet syndrome | Several mechanisms of action proposed including: inhibition of voltage-gated sodium channels, inhibition of GABA transaminase and succinate semialdehyde dehydrogenase, reduces release and/or effects of excitatory amino acids |
Rufinamide | Triazole | Focal-onset seizures, primary generalized seizures, Lennox–Gastaut syndrome | Increases fast inactivation of voltage-gated Na+ channels, Stimulates Ca2+-Activated K+ currents while inhibiting Voltage-Gated Na+ currents |
Stiripentol | Phenylpropanoid | Focal-onset seizures, primary generalized seizures, Lennox–Gastaut syndrome, Dravet syndrome | A positive allosteric modulator of GABA A receptor, interferes with GABA reuptake and metabolism |
Perampanel | Bipyridine | Focal-onset seizures, primary generalized seizures | A selective non-competitive antagonist of ampa receptors |
Topiramate | Sulfamate-substituted monosaccharide | Focal-onset seizures, primary generalized seizures, Lennox–Gastaut syndrome, Dravet syndrome | Several mechanisms of action proposed including: modulation of voltage-dependent sodium channels, potentiation of gabaergic inhibition, inhibition of excitatory neurotransmission, modulation of voltage- and receptor-gated calcium ion channels activity |
Fenfluramine | Phenetylamine | Dravet syndrome, Lennox–Gastaut syndrome | A serotonergic 5-HT2 receptor agonist and σ1 receptor antagonist |
Cannabidiol | Cannabinoid | Dravet syndrome, Lennox-Gastaut syndrome | Acts on G-protein coupled receptor GPR55, transient receptor potential cation channel TRPV1, voltage-gated sodium channels, and equilibrative nucleoside transporter ENT1 |
Everolimus | Macrocyclic lactone | Tuberous sclerosis complex-associated focal-onset seizures | Inhibitor of the mTORC1 |
Stage of Epileptogenesis | Molecular Targets for Antiepileptogenic Therapy | Putative Antiepileptogenic Agents | References |
---|---|---|---|
Insult, excitotoxicity, oxidative stress, apoptosis/necrosis, neuronal damage | Glutamate receptors, reactive oxygen species, proapoptotic proteins, caspases, calpains | Glutamate receptor antagonists, antioxidants, antiapoptotic agents, protease inhibitors | Twele et al., 2015 [23]; Guarino et al., 2022 [24]; |
Neurogenesis | * BDNF/TrkB signaling pathway, TrkB-Shc-Akt signaling pathway | TrkB agonists, TrkB-Shc-Akt acivators | Guarino et al., 2022 [24]; Huang et al., 2019 [25]; Koyama and Ikegaya, 2005 [26]; Lin et al., 2020 [27]; Lybrand et al., 2021 [28] |
Astrogliosis | Neuronal cation-chloride cotransporters NKCC1 and KCC2, aquaporin AQP4 channels, glutamate transporters, glutamine synthase | Modulators of astroglial potassium channels, especially Kir 4.1, adenosine kinase inhibitors, antagonists of ATP-gated P2X7 receptor | Robel et al., 2015 [29]; Lee et al., 2012 [30]; Steinhäuser et al., 2012 [31]; Boison, 2008 [32] |
Axonal sprouting, dendritic plasticity | Neurotrophin/Trk signaling pathways, mTOR signaling pathway | mTOR inhibitors, e.g., rapamycin | Bumanglag and Sloviter, 2018 [33]; Sloviter and Bumanglag, 2013 [34]; Ostendorf and Wong, 2015 [35]; Hodges and Lugo, 2020 [36]; Zhao et al. 2020 [37]; Citraro et al., 2016 [38] |
Blood–brain barrier damage | TGFbeta signalling pathway, gap junction proteins, potassium channels | Modulators of TGFβ signaling, | Heinemann et al., 2012 [39] |
Neuroinflammation | The IL-1 receptor-Toll-like receptor 4 axis, COX-2, transforming growth factor-β signalling | Antagonists of proinflammatory cytokine receptors, COX-2 inhibitors, modulators of connexin hemichannels, minocycline, | Vezzani et al., 2019 [40]; Terrone et al., 2020 [41]; Guo, et al., 2022 [42]; Wang et al., 2015 [43] |
Reorganization of extracellular matrix | Integins, drebrins | Tissue inhibitors of MMPs | Wilczynski, 2008 [44]; Wu and Reddy, 2012 [45]; Dombroski etal., 2020 [46] |
Drug-resistant epilepsy | P-glycoprotein (P-gp) | Pgp inhibitors, e.g., tariquidar | Loscher et al., 2020 [13] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Łukasiuk, K.; Lasoń, W. Emerging Molecular Targets for Anti-Epileptogenic and Epilepsy Modifying Drugs. Int. J. Mol. Sci. 2023, 24, 2928. https://doi.org/10.3390/ijms24032928
Łukasiuk K, Lasoń W. Emerging Molecular Targets for Anti-Epileptogenic and Epilepsy Modifying Drugs. International Journal of Molecular Sciences. 2023; 24(3):2928. https://doi.org/10.3390/ijms24032928
Chicago/Turabian StyleŁukasiuk, Katarzyna, and Władysław Lasoń. 2023. "Emerging Molecular Targets for Anti-Epileptogenic and Epilepsy Modifying Drugs" International Journal of Molecular Sciences 24, no. 3: 2928. https://doi.org/10.3390/ijms24032928
APA StyleŁukasiuk, K., & Lasoń, W. (2023). Emerging Molecular Targets for Anti-Epileptogenic and Epilepsy Modifying Drugs. International Journal of Molecular Sciences, 24(3), 2928. https://doi.org/10.3390/ijms24032928