Molecular Mechanisms Responsible for Mesenchymal Stem Cell-Based Modulation of Obstructive Sleep Apnea
Abstract
:1. Introduction
2. Molecular Mechanisms Responsible MSC-Dependent Attenuation of OSA-Induced Ischemia
3. MSC-Dependent Suppression of OSA-Triggered Inflammation
4. Therapeutic Potential of MSCs in the Treatment of Chronic Obstructive Pulmonary Disease (COPD)-OSA Overlap Syndrome
5. Molecular Mechanisms Responsible for the Attenuation of OSA-Induced Fibrosis
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ralls, F.; Cutchen, L. A contemporary review of obstructive sleep apnea. Curr. Opin. Pulm. Med. 2019, 25, 578–593. [Google Scholar] [CrossRef]
- Diamond, J.A.; Ismail, H. Obstructive Sleep Apnea and Cardiovascular Disease. Clin. Geriatr. Med. 2021, 37, 445–456. [Google Scholar] [CrossRef] [PubMed]
- Harrell, C.R.; Djonov, V.; Volarevic, V. The Cross-Talk between Mesenchymal Stem Cells and Immune Cells in Tissue Repair and Regeneration. Int. J. Mol. Sci. 2021, 22, 2472. [Google Scholar] [CrossRef]
- Harrell, C.R.; Fellabaum, C.; Jovicic, N.; Djonov, V.; Arsenijevic, N.; Volarevic, V. Molecular Mechanisms Responsible for Therapeutic Potential of Mesenchymal Stem Cell-Derived Secretome. Cells 2019, 8, 467. [Google Scholar] [CrossRef]
- Hocking, A.M. The Role of Chemokines in Mesenchymal Stem Cell Homing to Wounds. Adv. Wound Care 2015, 4, 623–630. [Google Scholar] [CrossRef] [PubMed]
- Carreras, A.; Almendros, I.; Acerbi, I.; Montserrat, J.M.; Navajas, D.; Farré, R. Obstructive apneas induce early release of mesenchymal stem cells into circulating blood. Sleep 2009, 32, 117–119. [Google Scholar]
- Carreras, A.; Almendros, I.; Farré, R. Potential role of bone marrow mesenchymal stem cells in obstructive sleep apnea. Int. J. Stem Cells 2011, 4, 43–49. [Google Scholar] [CrossRef]
- Almendros, I.; Carreras, A.; Montserrat, J.M.; Gozal, D.; Navajas, D.; Farre, R. Potential role of adult stem cells in obstructive sleep apnea. Front. Neurol. 2012, 3, 112. [Google Scholar] [CrossRef]
- Tao, H.; Han, Z.; Han, Z.C.; Li, Z. Proangiogenic Features of Mesenchymal Stem Cells and Their Therapeutic Applications. Stem Cells Int. 2016, 2016, 1314709. [Google Scholar] [CrossRef]
- Sherman, S.E.; Kuljanin, M.; Cooper, T.T.; Putman, D.M.; Lajoie, G.A.; Hess, D.A. High Aldehyde Dehydrogenase Activity Identifies a Subset of Human Mesenchymal Stromal Cells with Vascular Regenerative Potential. Stem Cells 2017, 35, 1542–1553. [Google Scholar] [CrossRef] [PubMed]
- Pankajakshan, D.; Agrawal, D.K. Mesenchymal Stem Cell Paracrine Factors in Vascular Repair and Regeneration. J. Biomed. Technol. Res. 2014, 1, 1–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ge, Q.; Zhang, H.; Hou, J.; Wan, L.; Cheng, W.; Wang, X.; Dong, D.; Chen, C.; Xia, J.; Guo, J.; et al. VEGF secreted by mesenchymal stem cells mediates the differentiation of endothelial progenitor cells into endothelial cells via paracrine mechanisms. Mol. Med. Rep. 2018, 17, 1667–1675. [Google Scholar] [CrossRef] [PubMed]
- Almalki, S.G.; Agrawal, D.K. ERK signaling is required for VEGF-A/VEGFR2-induced differentiation of porcine adipose-derived mesenchymal stem cells into endothelial cells. Stem Cell Res. Ther. 2017, 8, 113. [Google Scholar] [CrossRef] [PubMed]
- Jiao, W.; Ji, J.F.; Xu, W.; Bu, W.; Zheng, Y.; Ma, A.; Zhao, B.; Fan, Q. Distinct downstream signaling and the roles of VEGF and PlGF in high glucose-mediated injuries of human retinal endothelial cells in culture. Sci. Rep. 2019, 9, 15339. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Chen, L.; Qi, Y.; Ci, H.; Mou, S.; Yang, J.; Yuan, Q.; Yao, W.; Wang, Z.; Sun, J. Human umbilical cord mesenchymal stem cell promotes angiogenesis via integrin β1/ERK1/2/HIF-1α/VEGF-A signaling pathway for off-the-shelf breast tissue engineering. Stem Cell Res. Ther. 2022, 13, 99. [Google Scholar] [CrossRef]
- Li, Y.; Zheng, L.; Xu, X.; Song, L.; Li, Y.; Li, W.; Zhang, S.; Zhang, F.; Jin, H. Mesenchymal stem cells modified with angiopoietin-1 gene promote wound healing. Stem Cell Res. Ther. 2013, 4, 113. [Google Scholar] [CrossRef]
- Han, Y.; Yang, J.; Fang, J.; Zhou, Y.; Candi, E.; Wang, J.; Hua, D.; Shao, C.; Shi, Y. The secretion profile of mesenchymal stem cells and potential applications in treating human diseases. Signal Transduct. Target. Ther. 2022, 7, 92. [Google Scholar] [CrossRef]
- Chang, H.K.; Kim, P.H.; Cho, H.M.; Yum, S.Y.; Choi, Y.J.; Son, Y.; Lee, D.; Kang, I.; Kang, K.S.; Jang, G.; et al. Inducible HGF-secreting Human Umbilical Cord Blood-derived MSCs Produced via TALEN-mediated Genome Editing Promoted Angiogenesis. Mol. Ther. 2016, 24, 1644–1654. [Google Scholar] [CrossRef]
- Wang, X.; Jiang, H.; Guo, L.; Wang, S.; Cheng, W.; Wan, L.; Zhang, Z.; Xing, L.; Zhou, Q.; Yang, X.; et al. SDF-1 secreted by mesenchymal stem cells promotes the migration of endothelial progenitor cells via CXCR4/PI3K/AKT pathway. J. Mol. Histol. 2021, 52, 1155–1164. [Google Scholar] [CrossRef]
- Carreras, A.; Rojas, M.; Tsapikouni, T.; Montserrat, J.M.; Navajas, D.; Farré, R. Obstructive apneas induce early activation of mesenchymal stem cells and enhancement of endothelial wound healing. Respir. Res. 2010, 11, 91. [Google Scholar] [CrossRef]
- Jin, W.; Liang, X.; Brooks, A.; Futrega, K.; Liu, X.; Doran, M.R.; Simpson, M.J.; Roberts, M.S.; Wang, H. Modelling of the SDF-1/CXCR4 regulated in vivo homing of therapeutic mesenchymal stem/stromal cells in mice. PeerJ 2018, 6, e6072. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Unnikrishnan, D.; Jun, J.; Polotsky, V. Inflammation in sleep apnea: An update. Rev. Endocr. Metab. Disord. 2015, 16, 25–34. [Google Scholar] [CrossRef]
- Tang, T.Y.; Zhou, X.X.; Huang, H.; Huang, Q.D. Relationship between IL-1β polymorphisms and obstructive sleep apnea syndrome. Eur. Rev. Med. Pharmacol. Sci. 2017, 21, 3120–3128. [Google Scholar] [PubMed]
- Carreras, A.; Almendros, I.; Montserrat, J.M.; Navajas, D.; Farré, R. Mesenchymal stem cells reduce inflammation in a rat model of obstructive sleep apnea. Respir. Physiol. Neurobiol. 2010, 172, 210–212. [Google Scholar] [CrossRef]
- Harrell, C.R.; Markovic, B.S.; Fellabaum, C.; Arsenijevic, N.; Djonov, V.; Volarevic, V. The role of Interleukin 1 receptor antagonist in mesenchymal stem cell-based tissue repair and regeneration. Biofactors 2020, 46, 263–275. [Google Scholar] [CrossRef] [PubMed]
- Ortiz, L.A.; Dutreil, M.; Fattman, C.; Pandey, A.C.; Torres, G.; Go, K.; Phinney, D.G. Interleukin 1 receptor antagonist mediates the antiinflammatory and antifibrotic effect of mesenchymal stem cells during lung injury. Proc. Natl. Acad. Sci. USA 2007, 104, 11002–11007. [Google Scholar] [CrossRef]
- Harrell, C.R.; Jankovic, M.G.; Fellabaum, C.; Volarevic, A.; Djonov, V.; Arsenijevic, A.; Volarevic, V. Molecular Mechanisms Responsible for Anti-inflammatory and Immunosuppressive Effects of Mesenchymal Stem Cell-Derived Factors. Adv. Exp. Med. Biol. 2019, 1084, 187–206. [Google Scholar] [PubMed]
- Volarevic, V.; Gazdic, M.; Simovic Markovic, B.; Jovicic, N.; Djonov, V.; Arsenijevic, N. Mesenchymal stem cell-derived factors: Immuno-modulatory effects and therapeutic potential. Biofactors 2017, 43, 633–644. [Google Scholar] [CrossRef]
- Augello, A.; De Bari, C. The regulation of differentiation in mesenchymal stem cells. Hum. Gene Ther. 2010, 21, 1226–1238. [Google Scholar] [CrossRef]
- Oswald, J.; Boxberger, S.; Jørgensen, B.; Feldmann, S.; Ehninger, G.; Bornhäuser, M.; Werner, C. Mesenchymal stem cells can be differentiated into endothelial cells in vitro. Stem Cells 2004, 22, 377–384. [Google Scholar] [CrossRef]
- Khaki, M.; Salmanian, A.H.; Abtahi, H.; Ganji, A.; Mosayebi, G. Mesenchymal Stem Cells Differentiate to Endothelial Cells Using Recombinant Vascular Endothelial Growth Factor-A. Rep. Biochem. Mol. Biol. 2018, 6, 144–150. [Google Scholar] [PubMed]
- Yao, Z.; Liu, H.; Yang, M.; Bai, Y.; Zhang, B.; Wang, C.; Yan, Z.; Niu, G.; Zou, Y.; Li, Y. Bone marrow mesenchymal stem cell-derived endothelial cells increase capillary density and accelerate angiogenesis in mouse hindlimb ischemia model. Stem Cell Res. Ther. 2020, 11, 221. [Google Scholar] [CrossRef] [PubMed]
- Bi, H.; He, J.; He, X.; Du, J.; Chen, M.; Huang, Z.; Yang, C.; Yang, L.; Li, H.; Zhou, K.; et al. Bone marrow stem cells therapy alleviates vascular injury in a chronic obstructive pulmonary disease-obstructive sleep apnea overlap syndrome rat model. Mol. Med. Rep. 2021, 23, 69. [Google Scholar] [CrossRef]
- Chen, M.; Huang, Z.; Bi, H.; Pan, X.; He, J.; He, L.; He, X.; Du, J.; Zhou, K.; Wang, L.; et al. Effects of bone marrow-derived mesenchymal stem cell transplantation on chronic obstructive pulmonary disease/obstructive sleep apnea overlap syndrome in rats. Mol. Med. Rep. 2019, 20, 4665–4673. [Google Scholar] [CrossRef] [PubMed]
- Rubies, C.; Dantas, A.P.; Batlle, M.; Torres, M.; Farre, R.; Sangüesa, G.; Montserrat, J.M.; Mont, L.; Almendros, I.; Guasch, E. Aortic remodelling induced by obstructive apneas is normalized with mesenchymal stem cells infusion. Sci. Rep. 2019, 9, 11443. [Google Scholar] [CrossRef]
- Ramos, P.; Rubies, C.; Torres, M.; Batlle, M.; Farre, R.; Brugada, J.; Montserrat, J.M.; Almendros, I.; Mont, L. Atrial fibrosis in a chronic murine model of obstructive sleep apnea: Mechanisms and prevention by mesenchymal stem cells. Respir. Res. 2014, 15, 54. [Google Scholar] [CrossRef]
- Usunier, B.; Benderitter, M.; Tamarat, R.; Chapel, A. Management of fibrosis: The mesenchymal stromal cells breakthrough. Stem Cells Int. 2014, 2014, 340257. [Google Scholar] [CrossRef] [Green Version]
Tissue Source of MSC | Route of Injection | Total Number of MSC | Target Tissue | Mechanism of Action | Beneficial Effect(s) | Ref. No. |
---|---|---|---|---|---|---|
bone marrow | intravenous | 2 × 106 | aorta | modulated expression of apoptosis-related genes in ECs | inhibition of apoptosis of ECs | [33] |
bone marrow | intravenous | 2 × 106 | aorta | increased expression of eNOS gene and down-regulated expression of ET-1 gene in ECs | increased synthesis of NO; enhanced vasodilatation | [33] |
bone marrow | intravenous | 2 × 106 | aorta | down-regulated expression of vascular cell adhesion protein 1 (VCAM-1) gene in ECs | reduced influx of inflammatory cells and attenuated inflammation | [33] |
bone marrow | intravenous | 2 × 106 | lungs | differentiation in functional CD34-expressing ECs | generation of new blood vessels and re-oxygenation | [34] |
bone marrow | intravenous | 2 × 106 | lungs | decreased malondialdehyde and increased superoxide dismutase activity | prevention of oxidative stress-induced injury of alveolar epithelial cells | [34] |
bone marrow | intravenous | 2 × 106 | lungs | suppressed influx of inflammatory cells | reduced number of lung-infiltrated immune cells and attenuated inflammation | [34] |
OSA-Related Pathological Condition | MSC-Derived Factor(s) | Mechanism of Action | Beneficial Effect(s) | Ref. No. |
---|---|---|---|---|
OSA-induced ischemia | HGF | increased proliferation of ECs; generation of new blood vessels | increased endothelial wound healing; restoration of blood vessel integrity | [20] |
OSA-induced inflammation | IL-1Ra; IL-10 | inhibited recruitment of inflammatory immune cells in injured tissues; enhanced alternative activation of macrophages; attenuated proliferation n of inflammatory T cells; increased expansion of immunosuppressive Tregs | generation of immunosuppressive microenvironment; enhanced repair and regeneration of injured tissues; restoration of tissue homeostasis | [27,28] |
COPD-OSA overlap syndrome | NO | enhanced vasodilatation; re-oxygenation of ischemic tissues | improved breathing, loco-motor activity and appetite | [33,34] |
OSA-induced fibrosis | NO; IL-10 | inhibited collagen deposition; suppressed ACE-1 activity; increasing iNOS expression; attenuated superoxide anion production | normalized vascular remodeling; completely reversed aortic structural changes | [35] |
OSA-induced atrial fibrillation | MMP-2 IL-1Ra | reduced accumulation of collagen fibers in atrial walls; inhibition of IL-1β driven inflammation | reduced atrial fibrosis; improved cardiac function | [36] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zdravkovic, M.; Harrell, C.R.; Jakovljevic, V.; Djonov, V.; Volarevic, V. Molecular Mechanisms Responsible for Mesenchymal Stem Cell-Based Modulation of Obstructive Sleep Apnea. Int. J. Mol. Sci. 2023, 24, 3708. https://doi.org/10.3390/ijms24043708
Zdravkovic M, Harrell CR, Jakovljevic V, Djonov V, Volarevic V. Molecular Mechanisms Responsible for Mesenchymal Stem Cell-Based Modulation of Obstructive Sleep Apnea. International Journal of Molecular Sciences. 2023; 24(4):3708. https://doi.org/10.3390/ijms24043708
Chicago/Turabian StyleZdravkovic, Marija, Carl Randall Harrell, Vladimir Jakovljevic, Valentin Djonov, and Vladislav Volarevic. 2023. "Molecular Mechanisms Responsible for Mesenchymal Stem Cell-Based Modulation of Obstructive Sleep Apnea" International Journal of Molecular Sciences 24, no. 4: 3708. https://doi.org/10.3390/ijms24043708
APA StyleZdravkovic, M., Harrell, C. R., Jakovljevic, V., Djonov, V., & Volarevic, V. (2023). Molecular Mechanisms Responsible for Mesenchymal Stem Cell-Based Modulation of Obstructive Sleep Apnea. International Journal of Molecular Sciences, 24(4), 3708. https://doi.org/10.3390/ijms24043708