Burns: Classification, Pathophysiology, and Treatment: A Review
Abstract
:1. Introduction
2. Burn Injury
2.1. Classification of Burns
2.2. Aetiology
2.2.1. Thermal Injuries
- -
- Injuries caused by hot liquids (scalds)—the most common type of burn injury, accounting for nearly 70% of burns in children, but also common in the elderly. Scalds usually cause partial-thickness burns that heal after a standard treatment regimen;
- -
- Dry heat injuries—usually caused by direct contact with a flame or radiant heat. Common in adults and often associated with complications due to smoke inhalation. They are usually deep (partial or full thickness) and generally require surgical intervention;
- -
- Contact injuries—result from direct contact with a hot object. Prolonged contact with a moderately hot object (e.g., a radiator) can also cause a thermal injury, which is commonly associated with loss of consciousness (e.g., in the elderly, patients with epilepsy, drug addicts and alcoholics). Contact burns are usually deep and require surgery [9].
2.2.2. Electrical Injuries
2.2.3. Chemical Injuries
2.2.4. Radiation
3. Pathophysiology of Burn Injuries
3.1. Local Effects of Burn Injuries
- -
- Zone of coagulation—represents the area of necrosis with irreversible tissue damage incurred at the time of injury;
- -
- Zone of stasis—surrounds the coagulation zone and is moderately damaged with vascular transudate, elevated vasoconstricting factors, as well as local inflammatory reactions, resulting in impaired tissue perfusion. Depending on the wound environment, the zone may recover or progress to necrosis;
- -
- Zone of hyperaemia, with dilated vessels caused by inflammation. It is characterised by increased blood flow to healthy tissues without much risk of necrosis, unless there is severe sepsis or prolonged hypoperfusion [14].
3.2. Systemic Effects of Burn Injuries
4. Treatment of Patients after Thermal Injury
4.1. Cooling of Burned Areas
4.2. Fluid Resuscitation
4.3. Ventilation
4.4. Surgical Treatment
4.5. Sepsis
4.6. Thermoregulation
4.7. Treatment of Contractures
4.8. Hormonal Regulation
4.9. Nutrition in Burn Patients
4.9.1. Duration of Nutritional Support
4.9.2. The Role of Micronutrients in the Nutrition of Burn Patients
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shpichka, A.; Butnaru, D.; Bezrukov, E.A.; Sukhanov, R.B.; Atala, A.; Burdukovskii, V.; Zhang, Y.; Timashev, P. Skin Tissue Regeneration for Burn Injury. Stem Cell Res. Ther. 2019, 10, 94. [Google Scholar] [CrossRef]
- Branski, L.K.; Herndon, D.N.; Barrow, R.E. 1-A Brief History of Acute Burn Care Management. In Total Burn Care, 4th ed.; Herndon, D.N., Ed.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 1–7.e2. ISBN 978-0-323-47661-4. [Google Scholar]
- Lee, K.C.; Joory, K.; Moiemen, N.S. History of Burns: The Past, Present and the Future. Burn. Trauma 2014, 2, 2321–3868.143620. [Google Scholar] [CrossRef]
- Tolles, J. Emergency Department Management of Patients with Thermal Burns. Emerg. Med. Pract. 2018, 20, 1–24. [Google Scholar] [PubMed]
- Ja, G.-E.; Vb, A.-A.; Eh, O.-V.; García-Manzano, R.; Barker Antonio, A.; Aron, J.; García-Espinoza, J. Burns: Definition, Classification, Pathophysiology and Initial Approach. Int. J. Gen. Med. 2020, 5, 2327–5146. [Google Scholar] [CrossRef]
- Vivó, C.; Galeiras, R.; del Caz, M.D.P. Initial Evaluation and Management of the Critical Burn Patient. Med. Intensiv. 2016, 40, 49–59. [Google Scholar] [CrossRef] [PubMed]
- Evers, L.H.; Bhavsar, D.; Mailänder, P. The Biology of Burn Injury. Exp. Dermatol. 2010, 19, 777–783. [Google Scholar] [CrossRef] [PubMed]
- Deitch, E.A.; Wheelahan, T.M.; Rose, M.P.; Clothier, J.; Cotter, J. Hypertrophic Burn Scars: Analysis of Variables. J. Trauma. 1983, 23, 895–898. [Google Scholar] [CrossRef]
- Schaefer, T.J.; Tannan, S.C. Thermal Burns. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Spies, C.; Trohman, R.G. Narrative Review: Electrocution and Life-Threatening Electrical Injuries. Ann. Intern. Med. 2006, 145, 531–537. [Google Scholar] [CrossRef]
- Fish, R.M. Electric Injury, Part II: Specific Injuries. J. Emerg. Med. 2000, 18, 27–34. [Google Scholar] [CrossRef]
- Koh, D.-H.; Lee, S.-G.; Kim, H.-C. Incidence and Characteristics of Chemical Burns. Burns 2017, 43, 654–664. [Google Scholar] [CrossRef]
- Bhattacharya, S. Radiation Injury. Indian J. Plast. Surg. 2010, 43, S91–S93. [Google Scholar] [CrossRef] [PubMed]
- Hettiaratchy, S.; Dziewulski, P. Pathophysiology and Types of Burns. BMJ 2004, 328, 1427–1429. [Google Scholar] [CrossRef] [PubMed]
- Demling, R.H. Fluid Replacement in Burned Patients. Surg. Clin. N. Am. 1987, 67, 15–30. [Google Scholar] [CrossRef]
- Leape, I.L. Kinetics of Burn Edema Formation in Primates. Ann. Surg. 1972, 176, 223–226. [Google Scholar] [CrossRef]
- Lund, T.; Reed, R.K. Acute Hemodynamic Effects of Thermal Skin Injury in the Rat. Circ. Shock 1986, 20, 105–114. [Google Scholar] [PubMed]
- Lund, T.; Wiig, H.; Reed, R.K. Acute Postburn Edema: Role of Strongly Negative Interstitial Fluid Pressure. Am. J. Physiol.-Heart Circ. Physiol. 1988, 255, H1069–H1074. [Google Scholar] [CrossRef]
- Onarheim, H.; Lund, T.; Reed, R. Thermal Skin Injury: II. Effects on Edema Formation and Albumin Extravasation of Fluid Resuscitation with Lactated Ringer’s, Plasma, and Hypertonic Saline (2400 Mosmol/l) in the Rat. Circ. Shock 1989, 27, 25–37. [Google Scholar]
- Garcia, N.M.; Horton, J.W. L-Arginine Improves Resting Cardiac Transmembrane Potential after Burn Injury. Shock 1994, 1, 354–358. [Google Scholar] [CrossRef]
- Evans, J.A.; Darlington, D.N.; Gann, D.S. A Circulating Factor(s) Mediates Cell Depolarization in Hemorrhagic Shock. Ann. Surg. 1991, 213, 549. [Google Scholar] [CrossRef]
- Button, B.; Baker, R.D.; Vertrees, R.A.; Allen, S.E.; Brodwick, M.S.; Kramer, G.C. Quantitative Assessment of a Circulating Depolarizing Factor in Shock. Shock 2001, 15, 239–244. [Google Scholar] [CrossRef]
- Hart, D.W.; Wolf, S.E.; Mlcak, R.; Chinkes, D.L.; Ramzy, P.I.; Obeng, M.K.; Ferrando, A.A.; Wolfe, R.R.; Herndon, D.N. Persistence of Muscle Catabolism after Severe Burn. Surgery 2000, 128, 312–319. [Google Scholar] [CrossRef] [PubMed]
- Gauglitz, G.G.; Herndon, D.N.; Kulp, G.A.; Meyer, W.J., III; Jeschke, M.G. Abnormal Insulin Sensitivity Persists up to Three Years in Pediatric Patients Post-Burn. J. Clin. Endocrinol. Metab. 2009, 94, 1656–1664. [Google Scholar] [CrossRef] [PubMed]
- Jeschke, M.G.; Chinkes, D.L.; Finnerty, C.C.; Kulp, G.; Suman, O.E.; Norbury, W.B.; Branski, L.K.; Gauglitz, G.G.; Mlcak, R.P.; Herndon, D.N. Pathophysiologic Response to Severe Burn Injury. Ann. Surg. 2008, 248, 387. [Google Scholar] [CrossRef]
- Knuth, C.M.; Auger, C.; Jeschke, M.G. Burn-induced hypermetabolism and skeletal muscle dysfunction. Am. J. Physiol. Cell Physiol. 2021, 321, C58–C71. [Google Scholar] [CrossRef] [PubMed]
- Morykwas, M.J.; David, L.R.; Schneider, A.M.; Whang, C.; Jennings, D.A.; Canty, C.; Parker, D.; White, W.L.; Argenta, L.C. Use of Subatmospheric Pressure to Prevent Progression of Partial-Thickness Burns in a Swine Model. J. Burn Care Rehabil. 1999, 20, 15–21. [Google Scholar] [CrossRef]
- Yu, Y.-M.; Tompkins, R.G.; Ryan, C.M.; Young, V.R. The Metabolic Basis of the Increase in Energy Expenditure in Severely Burned Patients. J. Parenter. Enter. Nutr. 1999, 23, 160–168. [Google Scholar] [CrossRef]
- Porter, C.; Tompkins, R.G.; Finnerty, C.C.; Sidossis, L.S.; Suman, O.E.; Herndon, D.N. The Metabolic Stress Response to Burn Trauma: Current Understanding and Therapies. Lancet 2016, 388, 1417–1426. [Google Scholar] [CrossRef]
- Patsouris, D.; Qi, P.; Abdullahi, A.; Stanojcic, M.; Chen, P.; Parousis, A.; Amini-Nik, S.; Jeschke, M.G. Burn Induces Browning of the Subcutaneous White Adipose Tissue in Mice and Humans. Cell Rep. 2015, 13, 1538–1544. [Google Scholar] [CrossRef]
- Sidossis, L.S.; Porter, C.; Saraf, M.K.; Børsheim, E.; Radhakrishnan, R.S.; Chao, T.; Ali, A.; Chondronikola, M.; Mlcak, R.; Finnerty, C.C.; et al. Browning of Subcutaneous White Adipose Tissue in Humans after Severe Adrenergic Stress. Cell Metab. 2015, 22, 219–227. [Google Scholar] [CrossRef]
- Williams, F.N.; Herndon, D.N.; Jeschke, M.G. The Hypermetabolic Response to Burn Injury and Interventions to Modify This Response. Clin. Plast. Surg. 2009, 36, 583–596. [Google Scholar] [CrossRef]
- Chao, T.; Herndon, D.N.; Porter, C.; Chondronikola, M.; Chaidemenou, A.; Abdelrahman, D.R.; Bohanon, F.J.; Andersen, C.; Sidossis, L.S. Skeletal Muscle Protein Breakdown Remains Elevated in Pediatric Burn Survivors up to One-Year Post-Injury. Shock 2015, 44, 397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herndon, D.N.; Tompkins, R.G. Support of the Metabolic Response to Burn Injury. Lancet 2004, 363, 1895–1902. [Google Scholar] [CrossRef]
- Chang, D.W.; DeSanti, L.; Demling, R.H. Anticatabolic and Anabolic Strategies in Critical Illness: A Review of Current Treatment Modalities. Shock 1998, 10, 155–160. [Google Scholar] [CrossRef] [PubMed]
- Gore, D.C.; Ferrando, A.; Barnett, J.; Wolf, S.E.; Desai, M.; Herndon, D.N.; Goodwin, C.; Wolfe, R.R. Influence of Glucose Kinetics on Plasma Lactate Concentration and Energy Expenditure in Severely Burned Patients. J. Trauma Acute Care Surg. 2000, 49, 673. [Google Scholar] [CrossRef] [PubMed]
- Cree, M.G.; Aarsland, A.; Herndon, D.N.; Wolfe, R.R. Role of fat metabolism in burn trauma-induced skeletal muscle insulin resistance. Crit. Care Med. 2007, 35, S476. [Google Scholar] [CrossRef]
- Herndon, D.N.; Hart, D.W.; Wolf, S.E.; Chinkes, D.L.; Wolfe, R.R. Reversal of Catabolism by Beta-Blockade after Severe Burns. N. Engl. J. Med. 2001, 345, 1223–1229. [Google Scholar] [CrossRef]
- Chrysopoulo, M.T.; Jeschke, M.G.; Dziewulski, P.; Barrow, R.E.; Herndon, D.N. Acute Renal Dysfunction in Severely Burned Adults. J. Trauma Acute Care Surg. 1999, 46, 141. [Google Scholar] [CrossRef]
- Deitch, E.A.; Rutan, R.; Waymack, J.P. Trauma, Shock, and Gut Translocation. New Horiz. 1996, 4, 289–299. [Google Scholar]
- Gore, D.C.; Wolf, S.E.; Sanford, A.; Herndon, D.N.; Wolfe, R.R. Influence of Metformin on Glucose Intolerance and Muscle Catabolism Following Severe Burn Injury. Ann. Surg. 2005, 241, 334. [Google Scholar] [CrossRef]
- Jeschke, M.G.; Micak, R.P.; Finnerty, C.C.; Herndon, D.N. Changes in Liver Function and Size after a Severe Thermal Injury. Shock 2007, 28, 172. [Google Scholar] [CrossRef]
- Jeschke, M.G.; Barrow, R.E.; Mlcak, R.P.; Herndon, D.N. Endogenous Anabolic Hormones and Hypermetabolism: Effect of Trauma and Gender Differences. Ann. Surg. 2005, 241, 759. [Google Scholar] [CrossRef] [PubMed]
- Jewo, P.I.; Duru, F.I.; Fadeyibi, I.O.; Saalu, L.C.; Noronha, C.C. The Protective Role of Ascorbic Acid in Burn-Induced Testicular Damage in Rats. Burns 2012, 38, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Shoup, M.; Weisenberger, J.M.; Wang, J.L.; Pyle, J.M.; Gamelli, R.L.; Shankar, R. Mechanisms of Neutropenia Involving Myeloid Maturation Arrest in Burn Sepsis. Ann. Surg. 1998, 228, 112. [Google Scholar] [CrossRef] [PubMed]
- Abraham, J.P.; Plourde, B.D.; Vallez, L.J.; Nelson-Cheeseman, B.B.; Stark, J.R.; Sparrow, E.M.; Gorman, J.M. Skin Burns. In Theory and Applications of Heat Transfer in Humans; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2018; pp. 723–739. ISBN 978-1-119-12742-0. [Google Scholar]
- Snell, J.A.; Loh, N.-H.W.; Mahambrey, T.; Shokrollahi, K. Clinical Review: The Critical Care Management of the Burn Patient. Crit. Care 2013, 17, 241. [Google Scholar] [CrossRef] [PubMed]
- Alvarado, R.; Chung, K.K.; Cancio, L.C.; Wolf, S.E. Burn Resuscitation. Burns 2009, 35, 4–14. [Google Scholar] [CrossRef] [PubMed]
- Pruitt, B.A. Protection from excessive resuscitation: “Pushing the pendulum back”. J. Trauma-Inj. Infect. Crit. Care 2000, 49, 567–568. [Google Scholar] [CrossRef]
- Yoshino, Y.; Ohtsuka, M.; Kawaguchi, M.; Sakai, K.; Hashimoto, A.; Hayashi, M.; Madokoro, N.; Asano, Y.; Abe, M.; Ishii, T.; et al. The Wound/Burn Guidelines–6: Guidelines for the Management of Burns. J. Dermatol. 2016, 43, 989–1010. [Google Scholar] [CrossRef]
- Chung, K.K.; Rhie, R.Y.; Lundy, J.B.; Cartotto, R.; Henderson, E.; Pressman, M.A.; Joe, V.C.; Aden, J.K.; Driscoll, I.R.; Faucher, L.D.; et al. A Survey of Mechanical Ventilator Practices Across Burn Centers in North America. J. Burn Care Res. 2016, 37, e131–e139. [Google Scholar] [CrossRef]
- Ong, Y.S.; Samuel, M.; Song, C. Meta-Analysis of Early Excision of Burns. Burns 2006, 32, 145–150. [Google Scholar] [CrossRef]
- Spronk, I.; Legemate, C.; Oen, I.; van Loey, N.; Polinder, S.; van Baar, M. Health related quality of life in adults after burn injuries: A systematic review. PLoS ONE 2018, 13, e0197507. [Google Scholar] [CrossRef]
- Yakupu, A.; Zhang, J.; Dong, W.; Song, F.; Dong, J.; Lu, S. The epidemiological characteristic and trends of burns globally. BMC Public Health 2022, 22, 1596. [Google Scholar] [CrossRef] [PubMed]
- Hop, M.J.; Hiddingh, J.; Stekelenburg, C.M.; Kuipers, H.C.; Middelkoop, E.; Nieuwenhuis, M.K.; Polinder, S.; van Baar, M.E. The LDI Study Group Cost-Effectiveness of Laser Doppler Imaging in Burn Care in the Netherlands. BMC Surg. 2013, 13, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monstrey, S.; Hoeksema, H.; Verbelen, J.; Pirayesh, A.; Blondeel, P. Assessment of Burn Depth and Burn Wound Healing Potential. Burns 2008, 34, 761–769. [Google Scholar] [CrossRef] [PubMed]
- Machens, H.-G.; Berger, A.C.; Mailaender, P. Bioartificial Skin. CTO 2000, 167, 88–94. [Google Scholar] [CrossRef] [PubMed]
- Shores, J.T.; Gabriel, A.; Gupta, S. Skin Substitutes and Alternatives: A Review. Adv. Ski. Wound Care 2007, 20, 493. [Google Scholar] [CrossRef]
- Gosk, J. Materiały zastępcze skóry teraźniejszość i przyszłość. Polim. Med. 2012, 42, 109–114. [Google Scholar]
- Li, A.T.; Moussa, A.; Gus, E.; Paul, E.; Yii, E.; Romero, L.; Lin, Z.C.; Padiglione, A.; Lo, C.H.; Cleland, H.; et al. Biomarkers for the Early Diagnosis of Sepsis in Burns: Systematic Review and Meta-Analysis. Ann. Surg. 2022, 275, 654–662. [Google Scholar] [CrossRef]
- Branski, L.K.; Al-Mousawi, A.; Rivero, H.; Jeschke, M.G.; Sanford, A.P.; Herndon, D.N. Emerging Infections in Burns. Surg. Infect. 2009, 10, 389–397. [Google Scholar] [CrossRef]
- Rizzo, J.A.; Rowan, M.P.; Driscoll, I.R.; Chan, R.K.; Chung, K.K. Perioperative Temperature Management During Burn Care. J. Burn Care Res. 2017, 38, e277–e283. [Google Scholar] [CrossRef]
- Hayashida, K.; Akita, S. Surgical Treatment Algorithms for Post-Burn Contractures. Burn. Trauma 2017, 5, 9. [Google Scholar] [CrossRef]
- Gauglitz, G.G.; Williams, F.N.; Herndon, D.N.; Jeschke, M.G. Burns: Where are we standing with propranolol, oxandrolone, recombinant human growth hormone, and the new incretin analogs? Curr. Opin. Clin. Nutr. Met. Care 2011, 14, 176. [Google Scholar] [CrossRef] [PubMed]
- Hrynyk, M.; Neufeld, R.J. Insulin and wound healing. Burns 2014, 40, 433–446. [Google Scholar] [CrossRef] [PubMed]
- Mochizuki, H.; Trocki, O.; Dominioni, L.; Brackett, K.A.; Joffe, S.N.; Alexander, J.W. Mechanism of Prevention of Postburn Hypermetabolism and Catabolism by Early Enteral Feeding. Ann. Surg. 1984, 200, 297. [Google Scholar] [CrossRef]
- Magnotti, L.J.; Deitch, E.A. Burns, Bacterial Translocation, Gut Barrier Function, and Failure. J. Burn Care Rehabil. 2005, 26, 383–391. [Google Scholar] [CrossRef] [PubMed]
- Mosier, M.J.; Pham, T.N.; Klein, M.B.; Gibran, N.S.; Arnoldo, B.D.; Gamelli, R.L.; Tompkins, R.G.; Herndon, D.N. Early Enteral Nutrition in Burns: Compliance with Guidelines and Associated Outcomes in a Multicenter Study. J. Burn Care Res. 2011, 32, 104–109. [Google Scholar] [CrossRef]
- Houschyar, M.; Borrelli, M.R.; Tapking, C.; Maan, Z.N.; Rein, S.; Chelliah, M.P.; Sheckter, C.C.; Duminik, D.; Branski, L.K.; Wallner, C.; et al. Burns: Modified metabolism and the nuances of nutrition therapy. J. Wound Care 2020, 29, 184–191. [Google Scholar] [CrossRef]
- Rousseau, A.-F.; Losser, M.-R.; Ichai, C.; Berger, M.M. ESPEN Endorsed Recommendations: Nutritional Therapy in Major Burns. Clin. Nutr. 2013, 32, 497–502. [Google Scholar] [CrossRef]
- Peck, M.D.; Kessler, M.; Cairns, B.A.; Chang, Y.-H.; Ivanova, A.; Schooler, W. Early Enteral Nutrition Does Not Decrease Hypermetabolism Associated with Burn Injury. J. Trauma Acute Care Surg. 2004, 57, 1143. [Google Scholar] [CrossRef]
- Vicic, V.K.; Radman, M.; Kovacic, V. Early Initiation of Enteral Nutrition Improves Outcomes in Burn Disease. Asia Pac. J. Clin. Nutr. 2013, 22, 543–547. [Google Scholar] [CrossRef]
- McClave, S.A.; Taylor, B.E.; Martindale, R.G.; Warren, M.M.; Johnson, D.R.; Braunschweig, C.; McCarthy, M.S.; Davanos, E.; Rice, T.W.; Cresci, G.A.; et al. Guidelines for the Provision and Assessment of Nutrition Support Therapy in the Adult Critically Ill Patient. J. Parenter. Enter. Nutr. 2016, 40, 159–211. [Google Scholar] [CrossRef]
- Żwierełło, W.; Styburski, D.; Maruszewska, A.; Piorun, K.; Skórka-Majewicz, M.; Czerwińska, M.; Maciejewska, D.; Baranowska-Bosiacka, I.; Krajewski, A.; Gutowska, I. Bioelements in the Treatment of Burn Injuries-The Complex Review of Metabolism and Supplementation (Copper, Selenium, Zinc, Iron, Manganese, Chromium and Magnesium). J. Trace Elem. Med. Biol. 2020, 62, 126616. [Google Scholar] [CrossRef]
- Berger, M.M. Antioxidant Micronutrients in Major Trauma and Burns: Evidence and Practice. Nutr. Clin. Pract. 2006, 21, 438–449. [Google Scholar] [CrossRef] [PubMed]
- Gutowska, I.; Żwierełło, W.; Piorun, K.; Skórka-Majewicz, M.; Maciejewska-Markiewicz, D.; Kupnicka, P.; Baranowska-Bosiacka, I.; Dalewski, B.; Chlubek, D. The Extent of Burn Injury Significantly Affects Serum Micro- and Macroelement Concentrations in Patients on the First Day of Hospitalisation. Nutrients 2022, 14, 4248. [Google Scholar] [CrossRef] [PubMed]
- Berger, M.M.; Reintam-Blaser, A.; Calder, P.C.; Casaer, M.; Hiesmayr, M.J.; Mayer, K.; Montejo, J.C.; Pichard, C.; Preiser, J.-C.; van Zanten, A.R.H.; et al. Monitoring Nutrition in the ICU. Clin. Nutr. 2019, 38, 584–593. [Google Scholar] [CrossRef] [PubMed]
- Selmanpakoĝlu, A.N.; Çetin, C.; Sayal, A.; Işimer, A. Trace Element (Al, Se, Zn, Cu) Levels in Serum, Urine and Tissues of Burn Patients. Burns 1994, 20, 99–103. [Google Scholar] [CrossRef] [PubMed]
- Sampson, B.; Constantinescu, M.A.; Chandarana, I.; Cussons, P.D. Severe Hypocupraemia in a Patient with Extensive Burn Injuries. Ann. Clin. Biochem. 1996, 33, 462–464. [Google Scholar] [CrossRef]
- Berger, M.M.; Binnert, C.; Chiolero, R.L.; Taylor, W.; Raffoul, W.; Cayeux, M.-C.; Benathan, M.; Shenkin, A.; Tappy, L. Trace Element Supplementation after Major Burns Increases Burned Skin Trace Element Concentrations and Modulates Local Protein Metabolism but Not Whole-Body Substrate Metabolism. Am. J. Clin. Nutr. 2007, 85, 1301–1306. [Google Scholar] [CrossRef]
- Gottschlich, M.M.; Mayes, T.; Khoury, J.; Warden, G.D. Hypovitaminosis D in Acutely Injured Pediatric Burn Patients. J. Am. Diet. Assoc. 2004, 104, 931–941. [Google Scholar] [CrossRef]
- Rock, C.L.; Dechert, R.E.; Khilnani, R.; Parker, R.S.; Rodriguez, J.L. Carotenoids and Antioxidant Vitamins in Patients after Burn Injury. J. Burn Care Rehabil. 1997, 18, 269–278; discussion 268. [Google Scholar] [CrossRef]
- Klein, G.L.; Herndon, D.N.; Chen, T.C.; Kulp, G.; Holick, M.F. Standard Multivitamin Supplementation Does Not Improve Vitamin D Insufficiency after Burns. J. Bone Miner. Metab. 2009, 27, 502–506. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Żwierełło, W.; Piorun, K.; Skórka-Majewicz, M.; Maruszewska, A.; Antoniewski, J.; Gutowska, I. Burns: Classification, Pathophysiology, and Treatment: A Review. Int. J. Mol. Sci. 2023, 24, 3749. https://doi.org/10.3390/ijms24043749
Żwierełło W, Piorun K, Skórka-Majewicz M, Maruszewska A, Antoniewski J, Gutowska I. Burns: Classification, Pathophysiology, and Treatment: A Review. International Journal of Molecular Sciences. 2023; 24(4):3749. https://doi.org/10.3390/ijms24043749
Chicago/Turabian StyleŻwierełło, Wojciech, Krzysztof Piorun, Marta Skórka-Majewicz, Agnieszka Maruszewska, Jacek Antoniewski, and Izabela Gutowska. 2023. "Burns: Classification, Pathophysiology, and Treatment: A Review" International Journal of Molecular Sciences 24, no. 4: 3749. https://doi.org/10.3390/ijms24043749
APA StyleŻwierełło, W., Piorun, K., Skórka-Majewicz, M., Maruszewska, A., Antoniewski, J., & Gutowska, I. (2023). Burns: Classification, Pathophysiology, and Treatment: A Review. International Journal of Molecular Sciences, 24(4), 3749. https://doi.org/10.3390/ijms24043749