Left Ventricular Hypertrophy and Ventricular Tachyarrhythmia: The Role of Biomarkers
Abstract
:1. Introduction
2. Left Ventricular Hypertrophy
3. Methods of LVH Detection
3.1. Imagining Methods in LVH Detection
3.1.1. LVH Detected by Echocardiography
3.1.2. LVH Detected by CMR
3.2. Electrocardiography in LVH Detection
3.3. LVH by Molecular or Genetic Biomarkers
3.3.1. Classic Biomarkers
N-Terminal B-Type Natriuretic Peptide (NT-proBNP)
High-Sensitivity Cardiac Troponin I (Hs-cTnI) and High-Sensitivity Cardiac Troponin T (hs-cTnT)
Interleukin-6 (IL-6)
C-Reactive Protein (CRP)
3.3.2. Novel Biomarkers
Galectin-3
Derivatives of Reactive Oxidative Metabolites (DROM)
Matrix Metalloproteinases (MMPs) and Tissue Inhibitor of MMPs (TIMP)
Apelin
Soluble Suppression of Tumourigenicity-2 (sST2)
3.3.3. Potential Biomarkers
Cardiotrophin-1 (CT-1)
Growth Differentiation Factor 15 (GDF-15)
Annexin A5 (ANXA5)
Serum MicroRNA-27b (miR-27b)
Midregional Pro-Atrial Natriuretic Peptide (MR-proANP)
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Norrish, G.; Cantarutti, N.; Pissaridou, E.; Ridout, D.A.; Limongelli, G.; Elliott, P.M.; Kaski, J.P. Risk factors for sudden cardiac death in childhood hypertrophic cardiomyopathy: A systematic review and meta-analysis. Eur. J. Prev. Cardiol. 2017, 24, 1220–1230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsao, C.W.; Gona, P.N.; Salton, C.J.; Chuang, M.L.; Levy, D.; Manning, W.J.; O’Donnell, C.J. Left ventricular structure and risk of cardiovascular events: A Framingham Heart Study Cardiac Magnetic Resonace Study. J. Am. Heart Assoc. 2015, 4, e002188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruilope, L.M.; Schmieder, R.E. Left ventricular hypertrophy and clinical outcomes in hypertensive patients. Am. J. Hypertens. 2008, 21, 500–508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maron, B.J.; Gardin, J.M.; Flack, J.M.; Gidding, S.S.; Kurosaki, T.T.; Bild, D.E. Prevalence of hypertrophic cardiomyopathy in a general population of young adults. Echocardiographic analysis of 4111 subjects in the CARDIA Study. Circulation 1995, 92, 785–789. [Google Scholar] [CrossRef]
- Blauwet, L.A.; Ackerman, M.J.; Edwards, W.D.; Riehle, D.L.; Ommen, S.R. Myocardial fibrosis in patients with symptomatic obstructive hypertrophic cardiomyopathy: Correlation with echocardiographic measurements, sarcomeric genotypes, and pro-left ventricular hypertrophy polymorphisms involving the renin-angiotensin-aldosterone system. Cardiovasc. Pathol. 2009, 18, 262–268. [Google Scholar]
- Pfeffer, M.A.; Braunwald, E. Ventricular remodeling after myocardial infarction: Experimental observations and clinical implications. Circulation 1990, 81, 1161–1172. [Google Scholar] [CrossRef] [Green Version]
- Murdolo, G.; Angeli, F.; Reboldi, G.; di Giacomo, L.; Aita, A.; Bartolini, C.; Vedecchia, P. Left ventricular hypertrophy and obesity: Only a matter of fat? High Blood Press. Cardiovasc. Prev. 2015, 22, 29–41. [Google Scholar] [CrossRef]
- de Marneffe, N.; Dulgheru, R.; Ancion, A.; Moonen, M.; Lancellotti, P. Cardiac amyloidosis: A review of the literature. Acta Cardiol. 2022, 77, 683–692. [Google Scholar] [CrossRef]
- Garg, N.; Bhatia, V. Current status and future prospects for a vaccine against American trypanosomiasis. Expert Rev. Vaccines 2005, 4, 867–880. [Google Scholar] [CrossRef]
- Lang, R.M.; Badano, L.P.; Mor-Avi, V.; Afilalo, J.; Armstrong, A.; Ernande, L.; Flachskampf, F.A.; Foster, E.; Goldstein, S.A.; Kuznetsova, T.; et al. Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur. Heart J. Cardiovasc. Imaging 2015, 16, 238–271. [Google Scholar] [CrossRef]
- Park, S.H.; Shub, C.; Nobrega, T.P.; Bailey, K.R.; Seward, J.B. Two-dimensional echocardiographic calculation of left ventricular mass as recommended by the American Society of Echocardiography: Correlation with autopsy and M-mode echocardiography. J. Am. Soc. Echocardiogr. 1996, 9, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Perdrix, L.; Mansencal, N.; Cocheteux, B.; Chatellier, G.; Bissery, A.; Diebold, B.; Mousseaux, E.; Abergel, E. How to calculate left ventricular mass in routine practice? An echocardiographic versus cardiac magnetic resonance study. Arch. Cardiovasc. Dis. 2011, 104, 343–351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kusunose, K.; Kwon, D.H.; Motoki, H.; Flamm, S.D.; Marwick, T.H. Comparison of three-dimensional echocardiographic findings to those of magnetic resonance imaging for determination of left ventricular mass in patients with ischemic and non-ischemic cardiomyopathy. Am. J. Cardiol. 2013, 112, 604–611. [Google Scholar] [CrossRef]
- Chuang, M.L.; Beaudin, R.A.; Riley, M.F.; Mooney, M.G.; Manning, W.J.; Douglas, P.S.; Hibberd, M.G. Three-dimensional echocardiographic measurement of left ventricular mass: Comparison with magnetic resonance imaging and two-dimensional echocardiographic determinations in man. Int. J. Card. Imaging 2000, 16, 347–357. [Google Scholar] [CrossRef]
- Piva e Mattos, B.; Torres, M.A.; Freitas, V.C.; Scolari, F.L.; Loreto, M.S. Ventricular arrhythmias and left ventricular hypertrophy in hypertrophic cardiomyopathy. Arq. Bras. Cardiol. 2013, 100, 452–459. [Google Scholar]
- Chatterjee, S.; Bavishi, C.; Sardar, P.; Agarwal, V.; Krishnamoorthy, P.; Grodzicki, T.; Messerli, F.H. Meta-analysis of left ventricular hypertrophy and sustained arrhythmias. Am. J. Cardiol. 2014, 114, 1049–1052. [Google Scholar] [CrossRef] [PubMed]
- Correia, E.; Rodrigues, B.; Santos, L.F.; Moreira, D.; Gama, P.; Cabral, C.; Santos, O. Longitudinal left.ventricular strain in hypertrophic cardiomyopathy: Correlation with nonsustained ventricular tachycardia. Echocardiography 2011, 28, 709–714. [Google Scholar] [CrossRef]
- Pennell, D.J. Cardiovascular magnetic resonance: Twenty-first century solutions in cardiology. Clin. Med. 2003, 3, 273–278. [Google Scholar] [CrossRef]
- Kawel-Boehm, N.; Hetzel, S.J.; Ambale-Venkatesh, B.; Captur, G.; Francois, C.J.; Jerosch-Herold, M.; Salerno, M.; Teague, S.D.; Valsangiacomo-Buechel, E.; van der Geest, R.J.; et al. Reference ranges (“normal values”) for cardiovascular magnetic resonance (CMR) in adults and children: 2020 update. J. Cardiovasc. Magn. Reason. 2020, 22, 87. [Google Scholar] [CrossRef] [PubMed]
- Burrage, M.K.; Ferreira, V.M. Cardiovascular magnetic resonance for the differentiation of left ventricular hypertrophy. Curr. Heart Fail. Rep. 2020, 17, 192–204. [Google Scholar] [CrossRef]
- Weissler-Snir, A.; Hindieh, W.; Spears, D.A.; Adler, A.; Rakowski, H.; Chan, R.H. The relationship between the quantitative extent of late gadolinium enhancement and burden of nonsustained ventricular tachycardia in hypertrophic cardiomyopathy: A delayed contrast-enhanced magnetic resonance study. J. Cardiovasc. Electrophysiol. 2019, 30, 651–657. [Google Scholar] [CrossRef] [PubMed]
- McLellan, A.J.; Ellims, A.H.; Prabhu, S.; Voskoboinik, A.; Iles, L.M.; Hare, J.L.; Kaye, D.M.; Macciocca, I.; Mariani, J.A.; Kalman, J.M.; et al. Diffuse ventricular fibrosis on cardiac magnetic resonance imaging associates with ventricular tachycardia in patients with hypertrophic cardiomyopathy. J. Cardiovasc. Electrophysiol. 2016, 27, 571–580. [Google Scholar] [CrossRef] [PubMed]
- Briasoulis, A.; Mallikethi-Reddy, S.; Palla, M.; Alesh, I.; Afonso, L. Myocardial fibrosis on cardiac magnetic resonance and cardiac outcomes in hypertrophic cardiomyopathy: A meta-analysis. Heart 2015, 101, 1406–1411. [Google Scholar] [CrossRef] [PubMed]
- Hancock, E.W.; Deal, B.J.; Mirvis, D.M.; Okin, P.; Kligfield, P.; Gettes, L.S.; Bailey, J.J.; Childers, R.; Gorgels, A.; Josephson, M.; et al. American Heart Association Electrocardiography and Arrhythmias Committee, Council on Clinical Cardiology; American College of Cardiology Foundation; Heart Rhythm Society. AHA/ACCF/HRS recommendations for the standardization and interpretation of the electrocardiogram: Part V: Electrocardiogram changes associated with cardiac chamber hypertrophy: A scientific statement from the American Heart Association Electrocardiography and Arrhythmias Committee, Council on Clinical Cardiology; the American College of Cardiology Foundation; and the Heart Rhythm Society. Endorsed by the International Society for Computerized Electrocardiology. J. Am. Coll. Cardiol. 2009, 53, 992–1002. [Google Scholar]
- Sokolow, M.; Lyon, T.P. The ventricular complex in left ventricular hypertrophy as obtained by unipolar precordial and limb leads. Am. Heart J. 1949, 37, 161–186. [Google Scholar] [CrossRef]
- Casale, P.N.; Devereux, R.B.; Alonso, D.R.; Campo, E.; Kligfield, P. Improved sex-specific criteria of left ventricular hypertrophy for clinical and computer interpretation of electrocardiograms: Validation with autopsy findings. Circulation 1987, 75, 565–572. [Google Scholar] [CrossRef] [Green Version]
- Molloy, T.J.; Okin, P.M.; Devereux, R.B.; Kligfield, P. Electrocardiographic detection of left ventricular hypertrophy by the simple QRS voltage duration product. J. Am. Coll. Cardiol. 1992, 20, 1180–1186. [Google Scholar] [CrossRef] [Green Version]
- Romhilt, D.W.; Estes, E.H., Jr. A point-score system for the ECG diagnosis of left ventricular hypertrophy. Am. Heart J. 1968, 75, 752–758. [Google Scholar] [CrossRef]
- Pewsner, D.; Jüni, P.; Egger, M.; Battaglia, M.; Sundström, J.; Bachmann, L.M. Accuracy of electrocardiography in diagnosis of left ventricular hypertrophy in arterial hypertension: Systematic review. BMJ 2007, 335, 711. [Google Scholar] [CrossRef] [Green Version]
- Bacharova, L. Left ventricular hypertrophy: Disagreements between increased left ventricular mass and ECG-LVH criteria: The effect of impaired electrical properties of myocardium. J. Electrocardiol. 2014, 47, 625–629. [Google Scholar] [CrossRef]
- Bacharova, L. ECG in left ventricular hypertrophy: A change in paradigm from assessing left ventricular mass to its electrophysiological properties. J. Electrocardiol. 2022, 73, 153–156. [Google Scholar] [CrossRef] [PubMed]
- Bayés-Genís, A.; Guindo, J.; Viñolas, X.; Tomás, L.; Elosua, R.; Duran, I.; de Luna, A.B. Cardiac arrhythmias and left ventricular hypertrophy in systemic hypertension and their influences on prognosis. Am. J. Cardiol. 1995, 76, 54D–59D. [Google Scholar] [CrossRef] [PubMed]
- Morin, D.P.; Oikarinen, L.; Viitasalo, M.; Toivonen, L.; Nieminen, M.S.; Kjeldsen, S.E.; Dahlöf, B.; John, M.; Devereux, R.B.; Okin, P.M. QRS duration predicts sudden cardiac death in hypertensive patients undergoing intensive medical therapy: The LIFE study. Eur. Heart J. 2009, 30, 2908–2914. [Google Scholar] [CrossRef]
- Debonnaire, P.; Katsanos, S.; Joyce, E.; van den Brink, O.V.; Atsma, D.E.; Schalij, M.J.; Bax, J.J.; Delgado, V.; Marsan, N.A. QRS fragmentation and QTc duration relate to malignant ventricular tachyarrhythmias and sudden cardiac death in patients with hypertrophic cardiomyopathy. J. Cardiovasc. Electrophysiol. 2015, 26, 547–555. [Google Scholar] [CrossRef] [PubMed]
- Ekizler, F.A.; Cay, S.; Ozeke, O.; Tak, B.T.; Kafes, H.; Ozcan Cetin, E.H.; Ozcan, F.; Topaloglu, S.; Tufekcioglu, O.; Aras, D. Usefulness of positive T wave in lead aVR in predicting arrhythmic events and mortality in patients with hypertrophic cardiomyopathy. Heart Rhythm. 2020, 17, 1312–1319. [Google Scholar] [CrossRef]
- Fraley, M.A.; Birchem, J.A.; Senkottaiyan, N.; Alpert, M.A. Obesity and the electrocardiogram. Obes. Rev. 2005, 6, 275–281. [Google Scholar] [CrossRef]
- Narayanan, K.; Reinier, K.; Teodorescu, C.; Uy-Evanado, A.; Chugh, H.; Gunson, K.; Jui, J.; Chugh, S.S. Electrocardiographic versus echocardiographic left ventricular hypertrophy and sudden cardiac arrest in the community. Heart Rhythm. 2014, 11, 1040–1046. [Google Scholar] [CrossRef] [Green Version]
- He, D.; Ye, M.; Zhang, L.; Jiang, B. Prognostic significance of late gadolinium enhancement on cardiac magnetic resonance in patients with hypertrophic cardiomyopathy. Heart Lung 2018, 47, 122–126. [Google Scholar] [CrossRef]
- Klopotowski, M.; Kukula, K.; Malek, L.A.; Spiewak, M.; Polanska-Skrzypczyk, M.; Jamiolkowski, J.; Dabrowski, M.; Baranowski, R.; Klisiewicz, A.; Kusmierczyk, M.; et al. The value of cardiac magnetic resonance and distribution of late gadolinium enhancement for risk stratification of sudden cardiac death in patients with hypertrophic cardiomyopathy. J. Cardiol. 2016, 68, 49–56. [Google Scholar] [CrossRef] [Green Version]
- Weng, Z.; Yao, J.; Chan, R.H.; He, J.; Yang, X.; Zhou, Y.; He, Y. Prognostic Value of LGE-CMR in HCM: A Meta-Analysis. JACC Cardiovasc. Imaging 2016, 9, 1392–1402. [Google Scholar] [CrossRef]
- Freitas, P.; Ferreira, A.M.; Arteaga-Fernández, E.; de Oliveira Antunes, M.; Mesquita, J.; Abecasis, J.; Marques, H.; Saraiva, C.; Matos, D.N.; Rodrigues, R.; et al. The amount of late gadolinium enhancement outperforms current guideline-recommended criteria in the identification of patients with hypertrophic cardiomyopathy at risk of sudden cardiac death. J. Cardiovasc. Magn. Reason. 2019, 21, 50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Porthan, K.; Kenttä, T.; Niiranen, T.J.; Nieminen, M.S.; Oikarinen, L.; Viitasalo, M.; Hernesniemi, J.; Jula, A.M.; Salomaa, V.; Huikuri, H.V.; et al. ECG left ventricular hypertrophy as a risk predictor of sudden cardiac death. Int. J. Cardiol. 2019, 276, 125–129. [Google Scholar] [CrossRef] [Green Version]
- Darouian, N.; Aro, A.L.; Narayanan, K.; Uy-Evanado, A.; Rusinaru, C.; Reinier, K.; Gunson, K.; Jui, J.; Chugh, S.S. The Romhilt-Estes electrocardiographic score predicts sudden cardiac arrest independent of left ventricular mass and ejection fraction. Ann. Noninvasive Electrocardiol. 2017, 22, e12424. [Google Scholar] [CrossRef] [PubMed]
- Haukilahti, M.A.E.; Kenttä, T.V.; Tikkanen, J.T.; Anttonen, O.; Aro, A.L.; Kerola, T.; Eranti, A.; Holkeri, A.; Rissanen, H.; Heliövaara, M.; et al. Electrocardiographic risk markers of cardiac death: Gender differences in the general population. Front. Physiol. 2021, 11, 578059. [Google Scholar] [CrossRef]
- deFilippi, C.R.; de Lemos, J.A.; Christenson, R.H.; Gottdiener, J.S.; Kop, W.J.; Zhan, M.; Seliger, S.L. Association of serial measures of cardiac troponin T using a sensitive assay with incident heart failure and cardiovascular mortality in older adults. JAMA 2010, 304, 2494–2502. [Google Scholar] [CrossRef] [Green Version]
- de Lemos, J.A.; Drazner, M.H.; Omland, T.; Ayers, C.R.; Khera, A.; Rohatgi, A.; Hashim, I.; Berry, J.D.; Das, S.R.; Morrow, D.A.; et al. Association of troponin T detected with a highly sensitive assay and cardiac structure and mortality risk in the general population. JAMA 2010, 304, 2503–2512. [Google Scholar] [CrossRef] [PubMed]
- Sundström, J.; Ingelsson, E.; Berglund, L.; Zethelius, B.; Lind, L.; Venge, P.; Arnlöv, J. Cardiac troponin-I and risk of heart failure: A community-based cohort study. Eur. Heart J. 2009, 30, 773–781. [Google Scholar] [CrossRef] [Green Version]
- Neeland, I.J.; Drazner, M.H.; Berry, J.D.; Ayers, C.R.; deFilippi, C.; Seliger, S.L.; Nambi, V.; McGuire, D.K.; Omland, T.; de Lemos, J.A. Biomarkers of chronic cardiac injury and hemodynamic stress identify a malignant phenotype of left ventricular hypertrophy in the general population. J. Am. Coll. Cardiol. 2013, 61, 187–195. [Google Scholar] [CrossRef] [Green Version]
- Hijazi, Z.; Verdecchia, P.; Oldgren, J.; Andersson, U.; Reboldi, G.; Di Pasquale, G.; Mazzotta, G.; Angeli, F.; Eikelboom, J.W.; Ezekowitz, M.D.; et al. Cardiac biomarkers and left ventricular hypertrophy in relation to outcomes in patients with atrial fibrillation: Experiences from the RE—LY Trial. J. Am. Heart Assoc. 2019, 8, e010107. [Google Scholar] [CrossRef] [Green Version]
- Chopra, S.; Cherian, D.; Verghese, P.P.; Jacob, J.J. Physiology and clinical significance of natriuretic hormones. Indian J. Endocrinol. Metab. 2013, 17, 83–90. [Google Scholar]
- Huang, L.; Huang, L.; Yu, J.; Wu, X.; Zhao, J. An association between N-terminal pro-brain natriuretic protein level and risk of left ventricular hypertrophy in patients without heart failure. Exp. Ther. Med. 2020, 19, 3259–3266. [Google Scholar] [CrossRef] [Green Version]
- Mavrakis, H.E.; Kambouraki, D.N.; Kanoupakis, E.M.; Kallergis, E.M.; Klapsinos, N.; Manios, E.G.; Vardas, P.E. CRT37: The development of malignant ventricular arrhythmia in patients with ischemic cardiomyopathy and the prognostic significance of NT-PROBNP. Europace 2005, 7, 306-a. [Google Scholar]
- Aarsetøy, R.; Aarsetøy, H.; Hagve, T.A.; Strand, H.; Staines, H.; Nilsen, D.W.T. Initial phase NT-proBNP, but not copeptin and high-sensitivity cardiac troponin-T yielded diagnostic and prognostic information in addition to clinical assessment of out-of-hospital cardiac arrest patients with documented ventricular fibrillation. Front. Cardiovasc. Med. 2018, 5, 44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tigen, K.; Karaahmet, T.; Kahveci, G.; Tanalp, A.C.; Bitigen, A.; Fotbolcu, H.; Bayrak, F.; Mutlu, B.; Basaran, Y. N-terminal pro brain natriuretic peptide to predict prognosis in dilated cardiomyopathy with sinus rhythm. Heart Lung Circ. 2007, 16, 290–294. [Google Scholar] [CrossRef]
- Vrtovec, B.; Knezevic, I.; Poglajen, G.; Sebestjen, M.; Okrajsek, R.; Haddad, F. Relation of B-type natriuretic peptide level in heart failure to sudden cardiac death in patients with and without QT interval prolongation. Am. J. Cardiol. 2013, 111, 886–890. [Google Scholar] [CrossRef] [PubMed]
- Jaffe, A.S.; Ordonez-Llanos, J. High-sensitivity cardiac troponin: From theory to clinical practice. Rev. Esp. Cardiol. (Engl. Ed.) 2013, 66, 687–691. [Google Scholar] [CrossRef]
- Sato, Y.; Yamamoto, E.; Sawa, T.; Toda, K.; Hara, T.; Iwasaki, T.; Fujiwara, H.; Takatsu, Y. High-sensitivity cardiac troponin T in essential hypertension. J. Cardiol. 2011, 58, 226–231. [Google Scholar] [CrossRef] [Green Version]
- Askin, L.; Tanriverdi, O.; Turkmen, S. Clinical importance of high- sensitivity troponin T in patients without coronary artery disease. North. Clin. İstanbul 2020, 7, 305–310. [Google Scholar] [CrossRef]
- Liu, Z.Q.; Cui, L.Q. Association between serum cardiac troponin I and myocardial remodeling in patients with chronic heart failure. Zhonghua Xin Xue Guan Bing Za Zhi 2006, 34, 437–439. [Google Scholar]
- Schieffer, B.; Schieffer, E.; Hilfiker-Kleiner, D.; Hilfiker, A.; Kovanen, P.T.; Kaartinen, M.; Nussberger, J.; Harringer, W.; Drexler, H. Expression of angiotensin II and interleukin 6 in human coronary atherosclerotic plaques: Potential implications for inflammation and plaque instability. Circulation 2000, 101, 1372–1378. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.; Cheng, G.; Jin, R.; Afzal, M.R.; Samanta, A.; Xuan, Y.T.; Girgis, M.; Elias, H.K.; Zhu, Y.; Davani, A.; et al. Deletion of Interleukin-6 attenuates pressure overload-induced left ventricular hypertrophy and dysfunction. Circ. Res. 2016, 118, 1918–1929, Erratum in Circ. Res. 2020, 126, e35. [Google Scholar] [CrossRef] [PubMed]
- Safranow, K.; Dziedziejko, V.; Rzeuski, R.; Czyzycka, E.; Bukowska, H.; Wojtarowicz, A.; Binczak-Kuleta, A.; Jakubowska, K.; Olszewska, M.; Ciechanowicz, A.; et al. Inflammation markers are associated with metabolic syndrome and ventricular arrhythmia in patients with coronary artery disease. Postep. Hig. Med. Dosw. 2016, 70, 56–66. [Google Scholar] [CrossRef] [PubMed]
- Calabro, P.; Willerson, J.T.; Yeh, E.T. Inflammatory cytokines stimulated C-reactive protein production by human coronary artery smooth muscle cells. Circulation 2003, 108, 1930–1932. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Albert, C.M.; Ma, J.; Rifai, N.; Stampfer, M.J.; Ridker, P.M. Prospective study of C-reactive protein, homocysteine, and plasma lipid levels as predictors of sudden cardiac death. Circulation 2002, 105, 2595–2599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lazzerini, P.E.; Laghi-Pasini, F.; Bertolozzi, I.; Morozzi, G.; Lorenzini, S.; Simpatico, A.; Selvi, E.; Bacarelli, M.R.; Finizola, F.; Vanni, F.; et al. Systemic inflammation as a novel QT-prolonging risk factor in patients with torsades de pointes. Heart 2017, 103, 1821–1829. [Google Scholar] [CrossRef] [PubMed]
- Streitner, F.; Kuschyk, J.; Veltmann, C.; Ratay, D.; Schoene, N.; Streitner, I.; Brueckmann, M.; Schumacher, B.; Borggrefe, M.; Wolpert, C. Role of proinflammatory markers and NT-proBNP in patients with an implantable cardioverter-defibrillator and an electrical storm. Cytokine 2009, 47, 166–172. [Google Scholar] [CrossRef]
- Parikh, R.H.; Seliger, S.L.; Christenson, R.; Gottdiener, J.S.; Psaty, B.M.; deFilippi, C.R. Soluble ST2 for prediction of heart failure and cardiovascular death in an elderly, community-dwelling population. J. Am. Heart Assoc. 2016, 5, e003188. [Google Scholar] [CrossRef] [Green Version]
- Yakar Tülüce, S.; Tülüce, K.; Çil, Z.; Emren, S.V.; Akyıldız, Z.İ.; Ergene, O. Galectin-3 levels in patients with hypertrophic cardiomyopathy and its relationship with left ventricular mass index and function. Anatol. J. Cardiol. 2016, 16, 344–348. [Google Scholar] [CrossRef]
- Frunza, O.; Russo, I.; Saxena, A.; Shinde, A.V.; Humeres, C.; Hanif, W.; Rai, V.; Su, Y.; Frangogiannis, N.G. Myocardial galectin-3 expression is associated with remodeling of the pressure-overloaded heart and may delay the hypertrophic response without affecting survival, dysfunction, and cardiac fibrosis. Am. J. Pathol. 2016, 186, 1114–1127. [Google Scholar] [CrossRef] [Green Version]
- Erdogan, O.; Karaayvaz, E.; Erdogan, T.; Panc, C.; Sarıkaya, R.; Oncul, A.; Bilge, A.K. A new biomarker that predicts ventricular arrhythmia in patients with ischemic dilated cardiomyopathy: Galectin-3. Rev. Port. Cardiol. (Engl. Ed.) 2021, 40, 829–835. [Google Scholar] [CrossRef]
- Zou, K.H.; O’Malley, A.J.; Mauri, L. Receiver-operating characteristic analysis for evaluating diagnostic tests and predictive models. Circulation 2007, 115, 654–657. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nishihara, T.; Yamamoto, E.; Sueta, D.; Fujisue, K.; Usuku, H.; Oike, F.; Takae, M.; Tabata, N.; Ito, M.; Yamanaga, K.; et al. Impact of reactive oxidative metabolites among new categories of nonischemic heart failure. J. Am. Heart Assoc. 2021, 10, e016765. [Google Scholar] [CrossRef] [PubMed]
- Mihm, M.J.; Bauer, J.A. Peroxynitrite-induced inhibition and nitration of cardiac myofibrillar creatine kinase. Biochimie 2002, 84, 1013–1019. [Google Scholar] [CrossRef] [PubMed]
- Lindsey, M.L.; Iyer, R.P.; Jung, M.; DeLeon-Pennell, K.Y.; Ma, Y. Matrix metalloproteinases as input and output signals for post-myocardial infarction remodeling. J. Mol. Cell. Cardiol. 2016, 91, 134–140. [Google Scholar] [CrossRef] [Green Version]
- DeLeon-Pennell, K.Y.; Meschiari, C.A.; Jung, M.; Lindsey, M.L. Matrix metalloproteinases in myocardial infarction and heart failure. Prog. Mol. Biol. Transl. Sci. 2017, 147, 75–100. [Google Scholar]
- Flevari, P.; Theodorakis, G.; Leftheriotis, D.; Kroupis, C.; Kolokathis, F.; Dima, K.; Anastasiou-Nana, M.; Kremastinos, D. Serum markers of deranged myocardial collagen turnover: Their relation to malignant ventricular arrhythmias in cardioverter-defibrillator recipients with heart failure. Am. Heart J. 2012, 164, 530–537. [Google Scholar] [CrossRef]
- Zile, M.R.; Desantis, S.M.; Baicu, C.F.; Stroud, R.E.; Thompson, S.B.; McClure, C.D.; Mehurg, S.M.; Spinale, F.G. Plasma biomarkers that reflect determinants of matrix composition identify the presence of left ventricular hypertrophy and diastolic heart failure. Circ. Heart Fail. 2011, 4, 246–256. [Google Scholar] [CrossRef]
- Lu, Y.; Ussher, N.; Zhou, Y.; Jelinek, H.; Hambly, B.; Li, A.; McLachlan, C.S. Matrix metalloproteinase-3 (MMP-3) polymorphisms are associated with prolonged ECG-derived QTc interval: A Cross-Sectional Study of the Australian Rural Population. J. Pers. Med. 2021, 11, 705. [Google Scholar] [CrossRef]
- Ma, W.Y.; Yu, T.Y.; Wei, J.N.; Hung, C.S.; Lin, M.S.; Liao, Y.J.; Pei, D.; Su, C.C.; Lu, K.C.; Liu, P.H.; et al. Plasma apelin: A novel biomarker for predicting diabetes. Clin. Chim. Acta 2014, 435, 18–23. [Google Scholar] [CrossRef]
- Bohm, A.; Snopek, P.; Tothova, L.; Bezak, B.; Jajcay, N.; Vachalcova, M.; Uher, T.; Kurecko, M.; Kissova, V.; Danova, K.; et al. Association between apelin and atrial fibrillation in patients with high risk of ischemic stroke. Front. Cardiovasc. Med. 2021, 8, 1298. [Google Scholar] [CrossRef]
- Uher, T.; Bohm, A.; Urban, L.; Tothova, L.; Bacharova, L.; Musil, P.; Kyselovic, J.; Michalek, P.; Vachalcova, M.; Olejnik, P.; et al. Association of apelin and AF in patients with implanted loop recorders undergoing catheter ablation. Bratisl. Lek. Listy 2020, 121, 484–487. [Google Scholar] [CrossRef] [PubMed]
- Bohm, A.; Urban, L.; Tothova, L.; Bezak, B.; Uher, T.; Musil, P.; Kyselovic, J.; Lipton, J.; Olejnik, P.; Hatala, R. Concentration of apelin inversely correlates with atrial fibrillation burden. Bratisl. Lek. Listy 2021, 122, 165–171. [Google Scholar] [CrossRef] [PubMed]
- Maden, M.; Pamuk, O.N.; Pamuk, G.E. High apelin levels could be used as a diagnostic marker in multiple myeloma: A comparative study. Cancer Biomark. 2016, 17, 391–396. [Google Scholar] [CrossRef]
- Kalyon, S.; Altun, Ö.; Pala, A.S.; Tükek, T. Apelin: A new biomarker in fatty liver disease. Eur. J. Inflamm. 2021, 19, 1–6. [Google Scholar] [CrossRef]
- Ye, L.; Ding, F.; Zhang, L.; Shen, A.; Yao, H.; Deng, L.; Ding, Y. Serum apelin is associated with left ventricular hypertrophy in untreated hypertension patients. J. Transl. Med. 2015, 13, 290. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Yuan, J.; Wang, Y.; Qiao, S. Predictive values of apelin for myocardial fibrosis in hypertrophic cardiomyopathy. Int. Heart J. 2019, 60, 648–655. [Google Scholar] [CrossRef] [Green Version]
- Shah, A.K.; Bhullar, S.K.; Elimban, V.; Dhalla, N.S. Oxidative stress as a mechanism for functional alterations in cardiac hypertrophy and heart failure. Antioxidants 2021, 10, 931. [Google Scholar] [CrossRef] [PubMed]
- Ivankova, A.; Kuzminova, N.; Ivanov, V.; Lozinsky, S. Changes of apelin-13 concentration in patients with essential hypertension and extrasystole. Arter. Hypertens. 2022, 26, 141–145. [Google Scholar] [CrossRef]
- Cheng, C.C.; Weerateerangkul, P.; Lu, Y.Y.; Chen, Y.C.; Lin, Y.K.; Chen, S.A.; Chen, Y.J. Apelin regulates the electrophysiological characteristics of atrial myocytes. Eur. J. Clin. Investig. 2013, 43, 34–40. [Google Scholar] [CrossRef]
- Farkasfalvi, K.; Stagg, M.A.; Coppen, S.R.; Siedlecka, U.; Lee, J.; Soppa, G.K.; Marczin, N.; Szokodi, I.; Yacoub, M.H. Terracciano CM. Direct effects of apelin on cardiomyocyte contractility and electrophysiology. Biochem. Biophys. Res. Commun. 2007, 357, 889–895. [Google Scholar] [CrossRef]
- Shah, R.V.; Januzzi, J.L., Jr. ST2: A novel remodeling biomarker in acute and chronic heart failure. Curr. Heart Fail. Rep. 2010, 7, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Weinberg, E.O.; Shimpo, M.; De Keulenaer, G.W.; MacGillivray, C.; Tominaga, S.; Solomon, S.D.; Rouleau, J.L.; Lee, R.T. Expression and regulation of ST2, an interleukin-1 receptor family member, in cardiomyocytes and myocardial infarction. Circulation 2002, 106, 2961–2966. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delling, F.N.; Vasan, R.S. Epidemiology and pathophysiology of mitral valve prolapse: New insights into disease progression, genetics, and molecular basis. Circulation 2014, 129, 2158–2170. [Google Scholar] [CrossRef] [Green Version]
- Broch, K.; Leren, I.S.; Saberniak, J.; Ueland, T.; Edvardsen, T.; Gullestad, L.; Haugaa, K.H. Soluble ST2 is associated with disease severity in arrhythmogenic right ventricular cardiomyopathy. Biomarkers 2017, 22, 367–371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stadiotti, I.; Lippi, M.; Maione, A.S.; Compagnucci, P.; Andreini, D.; Casella, M.; Pompilio, G.; Sommariva, E. Cardiac biomarkers and autoantibodies in endurance athletes: Potential similarities with arrhythmogenic cardiomyopathy pathogenic mechanisms. Int. J. Mol. Sci. 2021, 22, 6500. [Google Scholar] [CrossRef]
- Aengevaeren, V.L.; van Kimmenade, R.; Hopman, M.; van Royen, N.; Snider, J.V.; Januzzi, J.L.; George, K.P.; Eijsvogels, T. Exercise-induced Changes in Soluble ST2 Concentrations in Marathon Runners. Med. Sci. Sports Exerc. 2019, 51, 405–410. [Google Scholar] [CrossRef]
- Pennica, D.; King, K.L.; Shaw, K.J.; Luis, E.; Rullamas, J.; Luoh, S.M.; Darbonne, W.C.; Knutzon, D.S.; Yen, R.; Chien, K.R.; et al. Expression cloning of cardiotrophin-1, a cytokine that induces cardiac myocyte hypertrophy. Proc. Natl. Acad. Sci. USA 1995, 92, 1142–1146. [Google Scholar] [CrossRef] [PubMed]
- Sheng, Z.; Pennica, D.; Wood, W.I.; Chien, K.R. Cardiotrophin-1 displays early expression in the murine heart tube and promotes cardiac myocyte survival. Development 1996, 122, 419–428. [Google Scholar] [CrossRef]
- Calabro, P.; Limongelli, G.; Riegler, L.; Maddaloni, V.; Palmieri, R.; Golia, E.; Roselli, T.; Masarone, D.; Pacileo, G.; Golino, P.; et al. Novel insights into the role of cardiotrophin-1 in cardiovascular diseases. J. Mol. Cell. Cardiol. 2009, 46, 142–148. [Google Scholar] [CrossRef]
- Monserrat, L.; López, B.; González, A.; Hermida, M.; Fernández, X.; Ortiz, M.; Barriales-Villa, R.; Castro-Beiras, A.; Díez, J. Cardiotrophin-1 plasma levels are associated with the severity of hypertrophy in hypertrophic cardiomyopathy. Eur. Heart J. 2011, 32, 177–183. [Google Scholar] [CrossRef] [Green Version]
- Hanatani, S.; Izumiya, Y.; Takashio, S.; Kojima, S.; Yamamuro, M.; Araki, S.; Rokutanda, T.; Tsujita, K.; Yamamoto, E.; Tanaka, T.; et al. Growth differentiation factor 15 can distinguish between hypertrophic cardiomyopathy and hypertensive hearts. Heart Vessel. 2014, 29, 231–237. [Google Scholar] [CrossRef] [PubMed]
- Xue, H.; Fu, Z.; Chen, Y.; Xing, Y.; Liu, J.; Zhu, H.; Zhou, X. The association of growth differentiation factor-15 with left ventricular hypertrophy in hypertensive patients. PLoS ONE 2012, 7, e46534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benevolensky, D.; Belikova, Y.; Mohammadzadeh, R.; Trouvé, P.; Marotte, F.; Russo-Marie, F.; Samuel, J.L.; Charlemagne, D. Expression and localization of the annexins II, V, and VI in myocardium from patients with end-stage heart failure. Lab. Investig. 2000, 80, 123–133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giambanco, I.; Verzini, M.; Donato, R. Annexins V and VI in rat tissues during post-natal development: Immunochemical measurements. Biochem. Biophys. Res. Commun. 1993, 196, 1221–1226. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Zeng, X.; Xu, Y.; Zhang, Y.; Huang, N.; Gu, Y.; Shen, X.; Liu, X. The association between annexin A5 (ANXA5) gene polymorphism and left ventricular hypertrophy (LVH) in Chinese endogenous hypertension patients. Medicine 2017, 96, e8305. [Google Scholar] [CrossRef] [PubMed]
- de Jong, R.C.M.; Pluijmert, N.J.; de Vries, M.R.; Pettersson, K.; Atsma, D.E.; Jukema, J.W.; Quax, P.H.A. Annexin A5 reduces infarct size and improves cardiac function after myocardial ischemia-reperfusion injury by suppression of the cardiac inflammatory response. Sci. Rep. 2018, 8, 6753. [Google Scholar] [CrossRef] [Green Version]
- Ravassa, S.; González, A.; López, B.; Beaumont, J.; Querejeta, R.; Larman, M.; Díez, J. Upregulation of myocardial Annexin A5 in hypertensive heart disease: Association with systolic dysfunction. Eur. Heart J. 2007, 28, 2785–2791. [Google Scholar] [CrossRef]
- Miska, E.A. How microRNAs control cell division, differentiation and death. Curr. Opin. Genet. Dev. 2005, 15, 563–568. [Google Scholar] [CrossRef]
- Weiland, M.; Gao, X.H.; Zhou, L.; Mi, Q.S. Small RNAs have a large impact: Circulating microRNAs as biomarkers for human diseases. RNA Biol. 2012, 9, 850–859. [Google Scholar] [CrossRef] [Green Version]
- Böhm, A.; Vachalcova, M.; Snopek, P.; Bacharova, L.; Komarova, D.; Hatala, R. Molecular mechanisms, diagnostic aspects and therapeutic opportunities of micro ribonucleic acids in atrial fibrillation. Int. J. Mol. Sci. 2020, 21, 2742. [Google Scholar] [CrossRef] [Green Version]
- Lopes, E.C.P.; Paim, L.R.; Carvalho-Romano, L.F.R.S.; Marques, E.R.; Minin, E.O.Z.; Vegian, C.F.L.; Pio-Magalhães, J.A.; Velloso, L.A.; Coelho-Filho, O.R.; Sposito, A.C.; et al. Relationship between circulating microRNAs and left ventricular hypertrophy in hypertensive patients. Front. Cardiovasc. Med. 2022, 9, 798954. [Google Scholar] [CrossRef] [PubMed]
- Biyashev, D.; Veliceasa, D.; Topczewski, J.; Topczewska, J.M.; Mizgirev, I.; Vinokour, E.; Reddi, A.L.; Licht, J.D.; Revskoy, S.Y.; Volpert, O.V. miR-27b controls venous specification and tip cell fate. Blood 2012, 11, 2679–2687. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Cheng, K.; Chen, H.; Tu, J.; Shen, Y.; Pang, L.; Wu, W. MicroRNA-27 attenuates pressure overload-Induced cardiac hypertrophy and dysfunction by targeting galectin-3. Arch. Biochem. Biophys. 2020, 689, 108405. [Google Scholar] [CrossRef]
- Idzikowska, K.; Zielińska, M. Midregional pro-atrial natriuretic peptide, an important member of the natriuretic peptide family: Potential role in diagnosis and prognosis of cardiovascular disease. J. Int. Med. Res. 2018, 46, 3017–3029. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levin, E.R.; Gardner, D.G.; Samson, W.K. Natriuretic peptides. N. Engl. J. Med. 1988, 339, 321–328. [Google Scholar]
- Sakurai, S.; Adachi, H.; Hasegawa, A.; Hoshizaki, H.; Oshima, S.; Taniguchi, K.; Kurabayashi, M. Brain natriuretic peptide facilitates severity classification of stable chronic heart failure with left ventricular dysfunction. Heart 2003, 89, 661–662. [Google Scholar] [CrossRef] [Green Version]
- Zeppenfeld, K.; Tfelt-Hansen, J.; de Riva, M.; Winkel, B.G.; Behr, E.R.; Blom, N.A.; Charron, P.; Corrado, D.; Dagres, N.; de Chillou, C.; et al. 2022 ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death. Eur. Heart J. 2022, 43, 3997–4126. [Google Scholar] [CrossRef]
- Homanova, Z.; Ohnewein, B.; Schernthaner, C.; Höfer, K.; Pogoda, C.A.; Frommeyer, G.; Wernly, B.; Brandt, M.C.; Dieplinger, A.M.; Reinecke, H.; et al. Classic and novel biomarkers as potential predictors of ventricular arrhythmias and sudden cardiac death. J. Clin. Med. 2020, 9, 578. [Google Scholar] [CrossRef]
Criterion | Formula | LVH Criteria |
---|---|---|
Sokolow Lyon index [25] | SV1 + RV5 or V6 | ≥35 mm data |
Cornell Voltage Criteria [26] | SV3 + RaVL | >28 mm (men) |
SV3 + RaVL | >20 mm (women) | |
Cornell Voltage-Duration Product [27] | (RaVL + SV3) × QRSd (men) | ≥244.0 mVms |
(RaVL + SV3 + 0.8 mV) × QRSd (women) | ||
Romhilt–Este Score [28] | Amplitude of largest R or S in limb leads ≥ 20 mm (3 points) | ≥5 points: definite LVH |
Amplitude of S in V1 or V2 ≥30 mm (3 points) | ||
Amplitude of R in V5 or V6 ≥30 mm (3 points) | ||
ST and T wave changes opposite QRS without digoxin (3 points) | ||
Left Atrial Enlargement (3 points) | ||
Left Axis Deviation (2 points) | ||
QRS duration ≥ 90 ms (1 point) | ||
Intrinsicoid deflection in V5 or V6 > 50 ms (1 point) | 4 points: probable LVH |
LVH Indicator | Study Population | Risk Prediction |
---|---|---|
Echo: LVM [37] | SUD | OR 2.7, 95% CI 1.5–4.9; p = 0.001 |
CMR: Presence of LGE [23] | HCM | OR 2.52, 95% CI 1.4–4.4; p = 0.001 |
CMR: Presence of LGE [38] | HCM | OR 3.40, 95% CI 1.9–6.1; p < 0.001 |
CMR: Presence of LGE [39] | HCM | HR 10.01, 95% CI 1.2–83.8; p = 0.033 |
CMR: Presence of LGE [40] | HCM | OR: 3.41; 95% CI:1.97–5.94; p < 0.001 |
CMR: Presence of LGE [41] | HCM | HR: 1.08; 95% CI: 1.04–1.12; p < 0.001 |
CMR: extent of LGE (+10%) [40] | HCM | HR: 1.56; 95% CI: 1.33–1.82; p < 0.0001 |
ECG: SLI [37] | General population | OR 2.5, 95% CI 1.1–6.0; p = 0.04 |
ECG: SLI per mm increase [33] | Hypertension | HR; 95% CI 1.02 1.00–1.03; p < 0.030 |
ECG: CVDP per 100 mm.ms increase [33] | Hypertension | HR1.02; 95% CI 1.01–1.03; p < 0.001 |
ECG: SLI and Cornell voltage [42] | General population | HR 1.82, 95% CI 1.20–2.70; p = 0.006 |
ECG: Romhilt–Estes score [43] | Sudden cardiac arrest | OR 2.04, 95% CI 1.16–3.59; p = 0.013 |
ECG: QRSd per 10 ms increase [33] | Hypertension | HR: 1.26, 95% CI 1.18–1.34; p < 0.001 |
ECG: QTc ≥ 490 ms and T inversions [44] | General population | HR: 2.4; 95% CI: 1.2–4.9; p = 0.014 (women) |
ECG: LBBB [33] | Hypertension | HR 3.24; 95% CI 2.19–4.81; p < 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bacharova, L.; Kollarova, M.; Bezak, B.; Bohm, A. Left Ventricular Hypertrophy and Ventricular Tachyarrhythmia: The Role of Biomarkers. Int. J. Mol. Sci. 2023, 24, 3881. https://doi.org/10.3390/ijms24043881
Bacharova L, Kollarova M, Bezak B, Bohm A. Left Ventricular Hypertrophy and Ventricular Tachyarrhythmia: The Role of Biomarkers. International Journal of Molecular Sciences. 2023; 24(4):3881. https://doi.org/10.3390/ijms24043881
Chicago/Turabian StyleBacharova, Ljuba, Marta Kollarova, Branislav Bezak, and Allan Bohm. 2023. "Left Ventricular Hypertrophy and Ventricular Tachyarrhythmia: The Role of Biomarkers" International Journal of Molecular Sciences 24, no. 4: 3881. https://doi.org/10.3390/ijms24043881
APA StyleBacharova, L., Kollarova, M., Bezak, B., & Bohm, A. (2023). Left Ventricular Hypertrophy and Ventricular Tachyarrhythmia: The Role of Biomarkers. International Journal of Molecular Sciences, 24(4), 3881. https://doi.org/10.3390/ijms24043881