An Epidemiological Systematic Review with Meta-Analysis on Biomarker Role of Circulating MicroRNAs in Breast Cancer Incidence
Abstract
:1. Introduction
2. Materials and Methods
2.1. Publication Search
2.2. Inclusion and Exclusion Criteria
2.3. Data Extraction
2.4. Quality Assessment
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar]
- Loibl, S.; Poortmans, P.; Morrow, M.; Denkert, C.; Curigliano, G. Breast cancer. Lancet 2021, 397, 1750–1769. [Google Scholar] [PubMed]
- Chen, S.; Parmigiani, G. Meta-analysis of BRCA1 and BRCA2 penetrance. J. Clin. Oncol. 2007, 25, 1329–1333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antoniou, A.C.; Foulkes, W.D.; Tischkowitz, M. Breast-cancer risk in families with mutations in PALB2. N. Engl. J. Med. 2014, 371, 497–506. [Google Scholar] [PubMed] [Green Version]
- Cuk, K.; Obernosterer, G.; Leuschner, P.J.; Alenius, M.; Martinez, J. Post-transcriptional regulation of microRNA expression. RNA 2006, 12, 1161–1167. [Google Scholar]
- Hamam, R.; Hamam, D.; Alsaleh, K.A.; Kassem, M.; Zaher, W.; Alfayez, M.; Aldahmash, A.; Alajez, N.M. Circulating microRNAs in breast cancer; novel diagnostic and prognostic biomarkers. Cell Death Dis. 2017, 8, e3045. [Google Scholar]
- Shajari, E.; Mollasalehi, H. Ribonucleic-acid-biomarker candidates for early-phase group detection of common cancers. Genomics 2020, 112, 163–168. [Google Scholar]
- McGrath, T.A.; Alabousi, M.; Skidmore, B.; Korevaar, D.A.; Bossuyt, P.M.M.; Moher, D.; Thombs, B.; McInnes, M.D.F. Recommendations for reporting of systematic reviews and meta-analyses of diagnostic test accuracy; a systematic review. Syst. Rev. 2017, 6, 194. [Google Scholar]
- Whiting, P.F.; Rutjes, A.W.; Westwood, M.E.; Mallett, S.; Deeks, J.J.; Reitsma, J.B.; Leeflang, M.M.; Sterne, J.A.; Bossuyt, P.M.; QUADAS-2 Group. QUADAS-2: A revised tool for the quality assessment of diagnostic accuracy studies. Ann. Intern. Med. 2011, 155, 529–536. [Google Scholar] [CrossRef]
- Lee, Y.H. Overview of the process of conducting meta-analyses of the diagnostic test accuracy. J. Rheum. Dis. 2017, 25, 3–10. [Google Scholar] [CrossRef]
- Leeflang, M.M.; Deeks, J.J.; Gatsonis, C.; Bossuyt, P.M.; Cochrane Diagnostic Test Accuracy Working Group. Systematic reviews of diagnostic test accuracy. Ann. Intern. Med. 2008, 149, 889–897. [Google Scholar] [CrossRef]
- Sterne, J.A.; Sutton, A.J.; Ioannidis, J.P.; Terrin, N.; Jones, D.R.; Lau, J.; Carpenter, J.; Rücker, G.; Harbord, R.M.; Schmid, C.H.; et al. Recommendations for examining and interpreting funnel plot asymmetry in meta-analyses of randomised controlled trials. BMJ 2011, 343, d4002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, W.; Qin, W.; Atasoy, U.; Sauter, E.R. Circulating microRNAs in breast cancer and healthy subjects. BMC Res. Notes 2009, 2, 89. [Google Scholar] [CrossRef] [Green Version]
- Heneghan, H.M.; Miller, N.; Kelly, R.; Newell, J.; Kerin, M.J. Systemic miRNA-195 differentiates breast cancer from other malignancies and is a potential biomarker for detecting noninvasive and early stage disease. Oncologist 2010, 15, 673–682. [Google Scholar] [CrossRef] [Green Version]
- Roth, C.; Rack, B.; Müller, V.; Janni, W.; Pantel, K.; Schwarzenbach, H. Circulating microRNAs as blood-based markers for patients with primary and metastatic breast cancer. Breast Cancer Res. 2010, 12, R90. [Google Scholar]
- Wang, F.; Zheng, Z.; Guo, J.; Ding, X. Correlation and quantitation of microRNA aberrant expression in tissues and sera from patients with breast tumor. Gynecol. Oncol. 2010, 119, 586–593. [Google Scholar] [CrossRef]
- Asaga, S.; Kuo, C.; Nguyen, T.; Terpenning, M.; Giuliano, A.E.; Hoon, D.S. Direct serum assay for microRNA-21 concentrations in early and advanced breast cancer. Clin. Chem. 2011, 57, 84–91. [Google Scholar] [CrossRef] [Green Version]
- Guo, L.J.; Zhang, Q.Y. Decreased serum miR-181a is a potential new tool for breast cancer screening. Int. J. Mol. Med. 2012, 30, 680–686. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schrauder, M.G.; Strick, R.; Schulz-Wendtland, R.; Strissel, P.L.; Kahmann, L.; Loehberg, C.R.; Lux, M.P.; Jud, S.M.; Hartmann, A.; Hein, A.; et al. Circulating micro-RNAs as potential blood-based markers for early stage breast cancer detection. PLoS ONE 2012, 7, e29770. [Google Scholar]
- Schwarzenbach, H.; Milde-Langosch, K.; Steinbach, B.; Müller, V.; Pantel, K. Diagnostic potential of PTEN-targeting miR-214 in the blood of breast cancer patients. Breast Cancer Res. Treat. 2012, 134, 933–941. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Wang, M.; Lin, G.; Sun, S.; Li, X.; Qi, J.; Li, J. Serum microRNA-155 as a potential biomarker to track disease in breast cancer. PLoS ONE 2012, 7, e47003. [Google Scholar] [CrossRef]
- van Schooneveld, E.; Wouters, M.C.; Van der Auwera, I.; Peeters, D.J.; Wildiers, H.; Van Dam, P.A.; Vergote, I.; Vermeulen, P.B.; Dirix, L.Y.; Van Laere, S.J. Expression profiling of cancerous and normal breast tissues identifies microRNAs that are differentially expressed in serum from patients with (metastatic) breast cancer and healthy volunteers. Breast Cancer Res. 2012, 14, R34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Q.; Wang, C.; Lu, Z.; Guo, L.; Ge, Q. Analysis of serum genome-wide microRNAs for breast cancer detection. Clin. Chim. Acta 2012, 413, 1058–1065. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.L.; Hu, G.D.; Wang, X.F.; Zhang, X.H.; Zhang, Y.K.; Yu, Z.S. Serum overexpression of microRNA-10b in patients with bone metastatic primary breast cancer. J. Int. Med. Res. 2012, 40, 859–866. [Google Scholar]
- Chan, M.; Liaw, C.S.; Ji, S.M.; Tan, H.H.; Wong, C.Y.; Thike, A.A.; Tan, P.H.; Ho, G.H.; Lee, A.S. Identification of circulating microRNA signatures for breast cancer detection. Clin. Cancer Res. 2013, 19, 4477–4487. [Google Scholar] [PubMed] [Green Version]
- Cuk, K.; Zucknick, M.; Heil, J.; Madhavan, D.; Schott, S.; Turchinovich, A.; Arlt, D.; Rath, M.; Sohn, C.; Benner, A.; et al. Circulating microRNAs in plasma as early detection markers for breast cancer. Int. J. Cancer 2013, 132, 1602–1612. [Google Scholar]
- Eichelser, C.; Flesch-Janys, D.; Chang-Claude, J.; Pantel, K.; Schwarzenbach, H. Deregulated serum concentrations of circulating cell-free microRNAs miR-17; miR-34a; miR-155; and miR-373 in human breast cancer development and progression. Clin. Chem. 2013, 59, 1489–1496. [Google Scholar]
- Godfrey, A.C.; Xu, Z.; Weinberg, C.R.; Getts, R.C.; Wade, P.A.; DeRoo, L.A.; Sandler, D.P.; Taylor, J.A. Serum microRNA expression as an early marker for breast cancer risk in prospectively collected samples from the Sister Study cohort. Breast Cancer Res. 2013, 15, R42. [Google Scholar]
- Kumar, S.; Keerthana, R.; Pazhanimuthu, A.; Perumal, P. Overexpression of circulating miRNA-21 and miRNA-146a in plasma samples of breast cancer patients. Indian J. Biochem. Biophys. 2013, 50, 210–214. [Google Scholar]
- Ng, E.K.; Li, R.; Shin, V.Y.; Jin, H.C.; Leung, C.P.; Ma, E.S.; Pang, R.; Chua, D.; Chu, K.M.; Law, W.L.; et al. Circulating microRNAs as specific biomarkers for breast cancer detection. PLoS ONE 2013, 8, e53141. [Google Scholar] [CrossRef] [Green Version]
- Si, H.; Sun, X.; Chen, Y.; Cao, Y.; Chen, S.; Wang, H.; Hu, C. Circulating microRNA-92a and microRNA-21 as novel minimally invasive biomarkers for primary breast cancer. J. Cancer Res. Clin. Oncol. 2013, 139, 223–229. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.Y.; Gong, H.T.; Li, B.F.; Lv, C.L.; Wang, H.T.; Zhou, H.H.; Li, X.X.; Xie, S.Y.; Jiang, B.F. Higher expression of circulating miR-182 as a novel biomarker for breast cancer. Oncol. Lett. 2013, 6, 1681–1686. [Google Scholar] [CrossRef]
- Zeng, R.C.; Zhang, W.; Yan, X.Q.; Ye, Z.Q.; Chen, E.D.; Huang, D.P.; Zhang, X.H.; Huang, G.L. Down-regulation of miRNA-30a in human plasma is a novel marker for breast cancer. Med. Oncol. 2013, 30, 477. [Google Scholar] [CrossRef] [PubMed]
- Eichelser, C.; Stückrath, I.; Müller, V.; Milde-Langosch, K.; Wikman, H.; Pantel, K.; Schwarzenbach, H. Increased serum levels of circulating exosomal microRNA-373 in receptor-negative breast cancer patients. Oncotarget 2014, 5, 9650–9663. [Google Scholar] [CrossRef] [Green Version]
- Hamdi, K.; Goerlitz, D.; Stambouli, N.; Islam, M.; Baroudi, O.; Neili, B.; Benayed, F.; Chivi, S.; Loffredo, C.; Jillson, I.A.; et al. miRNAs in Sera of Tunisian patients discriminate between inflammatory breast cancer and non-inflammatory breast cancer. Springerplus 2014, 3, 636. [Google Scholar] [CrossRef] [Green Version]
- Joosse, S.A.; Müller, V.; Steinbach, B.; Pantel, K.; Schwarzenbach, H. Circulating cell-free cancer-testis MAGE-A RNA, BORIS RNA, let-7b and miR-202 in the blood of patients with breast cancer and benign breast diseases. Br. J. Cancer 2014, 111, 909–917. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kodahl, A.R.; Lyng, M.B.; Binder, H.; Cold, S.; Gravgaard, K.; Knoop, A.S.; Ditzel, H.J. Novel circulating microRNA signature as a potential non-invasive multi-marker test in ER-positive early-stage breast cancer; a case control study. Mol. Oncol. 2014, 8, 874–883. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mar-Aguilar, F.; Rodríguez-Padilla, C.; Reséndez-Pérez, D. Use of serum-circulating miRNA profiling for the identification of breast cancer biomarkers. Methods Mol. Biol. 2014, 1165, 71–80. [Google Scholar] [PubMed]
- McDermott, A.M.; Miller, N.; Wall, D.; Martyn, L.M.; Ball, G.; Sweeney, K.J.; Kerin, M.J. Identification and validation of oncologic miRNA biomarkers for luminal A-like breast cancer. PLoS ONE 2014, 9, e87032. [Google Scholar] [CrossRef] [Green Version]
- Shen, J.; Hu, Q.; Schrauder, M.; Yan, L.; Wang, D.; Medico, L.; Guo, Y.; Yao, S.; Zhu, Q.; Liu, B.; et al. Circulating miR-148b and miR-133a as biomarkers for breast cancer detection. Oncotarget 2014, 5, 5284–5294. [Google Scholar] [CrossRef] [Green Version]
- Sochor, M.; Basova, P.; Pesta, M.; Dusilkova, N.; Bartos, J.; Burda, P.; Pospisil, V.; Stopka, T. Oncogenic microRNAs, miR-155, miR-19a, miR-181b, and miR-24 enable monitoring of early breast cancer in serum. BMC Cancer 2014, 14, 448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zearo, S.; Kim, E.; Zhu, Y.; Zhao, J.T.; Sidhu, S.B.; Robinson, B.G.; Soon, P.S. MicroRNA-484 is more highly expressed in serum of early breast cancer patients compared to healthy volunteers. BMC Cancer 2014, 14, 200. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.L.; Dou, Y.C.; Wang, X.F.; Han, D.C.; Lv, Z.G.; Ge, S.L.; Zhang, Y.K. Serum microRNA-195 is down-regulated in breast cancer; a potential marker for the diagnosis of breast cancer. Mol. Biol. Rep. 2014, 41, 5913–5922. [Google Scholar] [CrossRef] [PubMed]
- Antolín, S.; Calvo, L.; Blanco-Calvo, M.; Santiago, M.P.; Lorenzo-Patiño, M.J.; Haz-Conde, M.; Santamarina, I.; Figueroa, A.; Antón-Aparicio, L.M.; Valladares-Ayerbes, M. Circulating miR-200c and miR-141 and outcomes in patients with breast cancer. BMC Cancer 2015, 15, 297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.X.; Gao, S.Y.; Wang, P.Y.; Zhou, X.; Li, Y.J.; Yu, Y.; Yan, Y.F.; Zhang, H.H.; Lv, C.J.; Zhou, H.H.; et al. Reduced expression levels of let-7c in human breast cancer patients. Oncol. Lett. 2015, 9, 1207–1212. [Google Scholar] [CrossRef] [Green Version]
- Mangolini, A.; Ferracin, M.; Zanzi, M.V.; Saccenti, E.; Ebnaof, S.O.; Poma, V.V.; Sanz, J.M.; Passaro, A.; Pedriali, M.; Frassoldati, A.; et al. Diagnostic and prognostic microRNAs in the serum of breast cancer patients measured by droplet digital PCR. Biomark. Res. 2015, 3, 12. [Google Scholar] [CrossRef] [Green Version]
- Matamala, N.; Vargas, M.T.; González-Cámpora, R.; Miñambres, R.; Arias, J.I.; Menéndez, P.; Andrés-León, E.; Gómez-López, G.; Yanowsky, K.; Calvete-Candenas, J.; et al. Tumor microRNA expression profiling identifies circulating microRNAs for early breast cancer detection. Clin. Chem. 2015, 61, 1098–1106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shaker, O.; Maher, M.; Nassar, Y.; Morcos, G.; Gad, Z. Role of microRNAs -29b-2, -155, -197 and -205 as diagnostic biomarkers in serum of breast cancer females. Gene 2015, 560, 77–82. [Google Scholar] [CrossRef]
- Zhang, L.; Xu, Y.; Jin, X.; Wang, Z.; Wu, Y.; Zhao, D.; Chen, G.; Li, D.; Wang, X.; Cao, H.; et al. A circulating miRNA signature as a diagnostic biomarker for non-invasive early detection of breast cancer. Breast Cancer Res. Treat. 2015, 154, 423–434. [Google Scholar] [CrossRef] [PubMed]
- Frères, P.; Wenric, S.; Boukerroucha, M.; Fasquelle, C.; Thiry, J.; Bovy, N.; Struman, I.; Geurts, P.; Collignon, J.; Schroeder, H.; et al. Circulating microRNA-based screening tool for breast cancer. Oncotarget 2016, 7, 5416–5428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, L.; Li, Z.; Zhu, J.; Wang, P.; Fan, G.; Dai, Y.; Zheng, Z.; Liu, Y. Serum expression levels of microRNA-382-3p, -598-3p, -1246 and -184 in breast cancer patients. Oncol. Lett. 2016, 12, 269–274. [Google Scholar] [CrossRef] [Green Version]
- Hamam, R.; Ali, A.M.; Alsaleh, K.A.; Kassem, M.; Alfayez, M.; Aldahmash, A.; Alajez, N.M. microRNA expression profiling on individual breast cancer patients identifies novel panel of circulating microRNA for early detection. Sci. Rep. 2016, 6, 25997. [Google Scholar] [CrossRef]
- Hannafon, B.N.; Trigoso, Y.D.; Calloway, C.L.; Zhao, Y.D.; Lum, D.H.; Welm, A.L.; Zhao, Z.J.; Blick, K.E.; Dooley, W.C.; Ding, W.Q. Plasma exosome microRNAs are indicative of breast cancer. Breast Cancer Res. 2016, 18, 90. [Google Scholar] [CrossRef] [Green Version]
- Motawi, T.M.; Sadik, N.A.; Shaker, O.G.; El Masry, M.R.; Mohareb, F. Study of microRNAs-21/221 as potential breast cancer biomarkers in Egyptian women. Gene 2016, 590, 210–219. [Google Scholar] [PubMed] [Green Version]
- Shimomura, A.; Shiino, S.; Kawauchi, J.; Takizawa, S.; Sakamoto, H.; Matsuzaki, J.; Ono, M.; Takeshita, F.; Niida, S.; Shimizu, C.; et al. Novel combination of serum microRNA for detecting breast cancer in the early stage. Cancer Sci. 2016, 107, 326–334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thakur, S.; Grover, R.K.; Gupta, S.; Yadav, A.K.; Das, B.C. Identification of Specific miRNA Signature in Paired Sera and Tissue Samples of Indian Women with Triple Negative Breast Cancer. PLoS ONE 2016, 11, e0158946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, S.; Wang, Y.; Wang, M.; Li, Z.; Zhao, Z.; Wang, R.X.; Wu, R.; Yuan, Z.; Cui, R.; Jiao, K.; et al. MicroRNA-155; induced by FOXP3 through transcriptional repression of BRCA1; is associated with tumor initiation in human breast cancer. Oncotarget 2017, 8, 41451–41464. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Wang, Y.W.; Wang, Y.Y.; Song, Y.; Zhu, J.; Si, P.C.; Ma, R. Identification of microRNA biomarkers in the blood of breast cancer patients based on microRNA profiling. Gene 2017, 619, 10–20. [Google Scholar] [CrossRef]
- Heydari, N.; Nikbakhsh, N.; Sadeghi, F.; Farnoush, N.; Khafri, S.; Bastami, M.; Parsian, H. Overexpression of serum MicroRNA-140-3p in premenopausal women with newly diagnosed breast cancer. Gene 2018, 655, 25–29. [Google Scholar]
- Zaleski, M.; Kobilay, M.; Schroeder, L.; Debald, M.; Semaan, A.; Hettwer, K.; Uhlig, S.; Kuhn, W.; Hartmann, G.; Holdenrieder, S. Improved sensitivity for detection of breast cancer by combination of miR-34a and tumor markers CA 15-3 or CEA. Oncotarget 2018, 9, 22523–22536. [Google Scholar]
- Kahraman, M.; Röske, A.; Laufer, T.; Fehlmann, T.; Backes, C.; Kern, F.; Kohlhaas, J.; Schrörs, H.; Saiz, A.; Zabler, C.; et al. MicroRNA in diagnosis and therapy monitoring of early-stage triple-negative breast cancer. Sci. Rep. 2018, 8, 11584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McAnena, P.; Tanriverdi, K.; Curran, C.; Gilligan, K.; Freedman, J.E.; Brown, J.A.L.; Kerin, M.J. Circulating microRNAs miR-331 and miR-195 differentiate local luminal a from metastatic breast cancer. BMC Cancer 2019, 19, 436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peña-Cano, M.I.; Saucedo, R.; Morales-Avila, E.; Valencia, J.; Zavala-Moha, J.A.; López, A. Deregulated microRNAs and Adiponectin in Postmenopausal Women with Breast Cancer. Gynecol. Obstet. Investig. 2019, 84, 369–377. [Google Scholar] [CrossRef]
- Raheem, A.R.; Abdul-Rasheed, O.F.; Al-Naqqash, M.A. The diagnostic power of circulating micro ribonucleic acid 34a in combination with cancer antigen 15-3 as a potential biomarker of breast cancer. Saudi Med. J. 2019, 40, 1218–1226. [Google Scholar] [CrossRef] [PubMed]
- Soleimanpour, E.; Babaei, E.; Hosseinpour-Feizi, M.A.; Montazeri, V. Circulating miR-21 and miR-155 as potential noninvasive biomarkers in Iranian Azeri patients with breast carcinoma. J. Cancer Res. Ther. 2019, 15, 1092–1097. [Google Scholar] [PubMed]
- Anwar, S.L.; Tanjung, D.S.; Fitria, M.S.; Kartika, A.I.; Sari, D.N.I.; Rakhmina, D.; Wardana, T.; Astuti, I.; Haryana, S.M.; Aryandono, T. Dynamic Changes of Circulating Mir-155 Expression and the Potential Application as a Non-Invasive Biomarker in Breast Cancer. Asian Pac. J. Cancer Prev. 2020, 21, 491–497. [Google Scholar] [CrossRef] [Green Version]
- Arabkari, V.; Clancy, E.; Dwyer, R.M.; Kerin, M.J.; Kalinina, O.; Holian, E.; Newell, J.; Smith, T.J. Relative and Absolute Expression Analysis of MicroRNAs Associated with Luminal A Breast Cancer- A Comparison. Pathol. Oncol. Res. 2020, 26, 833–844. [Google Scholar] [CrossRef]
- Ashirbekov, Y.; Abaildayev, A.; Omarbayeva, N.; Botbayev, D.; Belkozhayev, A.; Askandirova, A.; Neupokoyeva, A.; Utegenova, G.; Sharipov, K.; Aitkhozhina, N. Combination of circulating miR-145-5p/miR-191-5p as biomarker for breast cancer detection. Peer J. 2020, 8, e10494. [Google Scholar] [CrossRef]
- Guo, H.; Zeng, X.; Li, H.; Guo, Y.; Wang, T.; Guo, H.; Zhu, G.; Wang, L.; Zhou, H.; Liu, K.; et al. Plasma miR-1273g-3p acts as a potential biomarker for early Breast Ductal Cancer diagnosis. An. Acad Bras. Cienc 2020, 92, e20181203. [Google Scholar] [CrossRef] [Green Version]
- Holubekova, V.; Kolkova, Z.; Grendar, M.; Brany, D.; Dvorska, D.; Stastny, I.; Jagelkova, M.; Zelinova, K.; Samec, M.; Liskova, A.; et al. Pathway Analysis of Selected Circulating miRNAs in Plasma of Breast Cancer Patients; A Preliminary Study. Int. J. Mol. Sci. 2020, 21, 7288. [Google Scholar] [CrossRef]
- Hosseini Mojahed, F.; Aalami, A.H.; Pouresmaeil, V.; Amirabadi, A.; Qasemi Rad, M.; Sahebkar, A. Clinical Evaluation of the Diagnostic Role of MicroRNA-155 in Breast Cancer. Int. J. Genom. 2020, 2020, 9514831. [Google Scholar] [CrossRef]
- Ibrahim, A.M.; Said, M.M.; Hilal, A.M.; Medhat, A.M.; AbdElsalam, I.M. Candidate circulating microRNAs as potential diagnostic and predictive biomarkers for the monitoring of locally advanced breast cancer patients. Tumour. Biol. 2020, 42, 1010428320963811. [Google Scholar] [CrossRef]
- Jang, J.Y.; Kim, Y.S.; Kang, K.N.; Kim, K.H.; Park, Y.J.; Kim, C.W. Multiple microRNAs as biomarkers for early breast cancer diagnosis. Mol. Clin. Oncol. 2020, 14, 31. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Park, S.; Hwang, D.; Kim, S.I.; Lee, H. Diagnostic Value of Circulating miR-202 in Early-Stage Breast Cancer in South Korea. Medicina 2020, 56, 340. [Google Scholar] [CrossRef]
- Pastor-Navarro, B.; García-Flores, M.; Fernández-Serra, A.; Blanch-Tormo, S.; Martínez de Juan, F.; Martínez-Lapiedra, C.; Maia de Alcantara, F.; Peñalver, J.C.; Cervera-Deval, J.; Rubio-Briones, J.; et al. A Tetra-Panel of Serum Circulating miRNAs for the Diagnosis of the Four Most Prevalent Tumor Types. Int. J. Mol. Sci. 2020, 21, 2783. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bakr, N.M.; Mahmoud, M.S.; Nabil, R.; Boushnak, H.; Swellam, M. Impact of circulating miRNA-373 on breast cancer diagnosis through targeting VEGF and cyclin D1 genes. J. Genet. Eng. Biotechnol. 2021, 19, 84. [Google Scholar] [CrossRef]
- Diansyah, M.N.; Prayogo, A.A.; Sedana, M.P.; Savitri, M.; ZakyRomadhon, P.; NikenAyu Amrita, P.; Yasmin Wijaya, A.; May Hendrata, W.; YudhoBintoro, U. Early detection breast cancer; role of circulating plasma miRNA-21 expression as a potential screening biomarker. Turk. J. Med. Sci. 2021, 51, 562–569. [Google Scholar] [CrossRef] [PubMed]
- Itani, M.M.; Nassar, F.J.; Tfayli, A.H.; Talhouk, R.S.; Chamandi, G.K.; Itani, A.R.S.; Makoukji, J.; Boustany, R.N.; Hou, L.; Zgheib, N.K.; et al. A Signature of Four Circulating microRNAs as Potential Biomarkers for Diagnosing Early-Stage Breast Cancer. Int. J. Mol. Sci. 2021, 22, 6121. [Google Scholar] [CrossRef] [PubMed]
- Ahmed Mohmmed, E.; Shousha, W.G.; El-Saiid, A.S.; Ramadan, S.S. A Clinical Evaluation of Circulating MiR-106a and Raf-1 as Breast Cancer Diagnostic and Prognostic Markers. Asian Pac. J. Cancer Prev. 2021, 22, 3513–3520. [Google Scholar] [CrossRef] [PubMed]
- Nashtahosseini, Z.; Aghamaali, M.R.; Sadeghi, F.; Heydari, N.; Parsian, H. Circulating status of microRNAs 660-5p and 210-3p in breast cancer patients. J. Gene Med. 2021, 23, e3320. [Google Scholar] [CrossRef]
- Zhang, K.; Wang, Y.Y.; Xu, Y.; Zhang, L.; Zhu, J.; Si, P.C.; Wang, Y.W.; Ma, R. A two-miRNA signature of upregulated miR-185-5p and miR-362-5p as a blood biomarker for breast cancer. Pathol. Res. Pract. 2021, 222, 153458. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.; Meng, W.; Chin, Y.; Gao, L.; Yang, X.; Sun, S.; Pan, X.; He, L. Identification of miR-25-3p as a tumor biomarker; Regulation of cellular functions via TOB1 in breast cancer. Mol. Med. Rep. 2021, 23, 406. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Tang, X.; Li, K.; Lu, L. Evaluation of Serum MicroRNAs (miR-9-5p, miR-17-5p, and miR-148a-3p) as Potential Biomarkers of Breast Cancer. Biomed. Res. Int. 2022, 2022, 9961412. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Bian, Q.Z.; Zhang, W.; Cui, H.B. Circulating microRNA-103a-3p could be a diagnostic and prognostic biomarker for breast cancer. Oncol. Lett. 2022, 23, 38. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, A.A.; Allam, A.E.; Aref, A.M.; Mahmoud, M.O.; Eldesoky, N.A.; Fawazy, N.; Sakr, Y.; Sobeih, M.E.; Albogami, S.; Fayad, E.; et al. Evaluation of Expressed MicroRNAs as Prospective Biomarkers for Detection of Breast Cancer. Diagnostics 2022, 12, 789. [Google Scholar] [CrossRef]
- Záveský, L.; Jandáková, E.; Weinberger, V.; Minář, L.; Hanzíková, V.; Dušková, D.; Faridová, A.; Turyna, R.; Slanař, O.; Hořínek, A.; et al. Small non-coding RNA profiling in breast cancer: plasma U6 snRNA, miR-451a and miR-548b-5p as novel diagnostic and prognostic biomarkers. Mol. Biol. Rep. 2022, 49, 1955–1971. [Google Scholar] [CrossRef]
- Zou, R.; Loke, S.Y.; Tang, Y.C.; Too, H.P.; Zhou, L.; Lee, A.S.G.; Hartman, M. Development and validation of a circulating microRNA panel for the early detection of breast cancer. Br. J. Cancer 2022, 126, 472–481. [Google Scholar] [CrossRef]
- Ali, A.S.; Ali, S.; Ahmad, A.; Bao, B.; Philip, P.A.; Sarkar, F.H. Expression of microRNAs; potential molecular link between obesity; diabetes and cancer. Obes. Rev. 2011, 12, 1050–1062. [Google Scholar] [CrossRef]
- Murri, M.; Insenser, M.; Fernández-Durán, E.; San-Millán, J.L.; Escobar-Morreale, H.F. Effects of polycystic ovary syndrome (PCOS); sex hormones; and obesity on circulating miRNA-21; miRNA-27b; miRNA-103; and miRNA-155 expression. J. Clin. Endocrinol. Metab. 2013, 98, E1835–E1844. [Google Scholar] [CrossRef] [Green Version]
- Chadeau-Hyam, M.; Athersuch, T.J.; Keun, H.C.; De Iorio, M.; Ebbels, T.M.; Jenab, M.; Sacerdote, C.; Bruce, S.J.; Holmes, E.; Vineis, P. Meeting-in-the-middle using metabolic profiling—A strategy for the identification of intermediate biomarkers in cohort studies. Biomarkers 2011, 16, 83–88. [Google Scholar] [CrossRef]
- Frankel, L.B.; Christoffersen, N.R.; Jacobsen, A.; Lindow, M.; Krogh, A.; Lund, A.H. Programmed cell death 4 (PDCD4) is an important functional target of the microRNA miR-21 in breast cancer cells. J. Biol. Chem. 2008, 283, 1026–1033. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Banerjee, N.; Talcott, S.; Safe, S.; Mertens-Talcott, S.U. Cytotoxicity of pomegranate polyphenolics in breast cancer cells in vitro and vivo; potential role of miRNA-27a and miRNA-155 in cell survival and inflammation. Breast Cancer Res. Treat. 2012, 136, 21–34. [Google Scholar] [CrossRef]
- Ali, S.A.; Abdulrahman, Z.F.A.; Faraidun, H.N. Circulatory miRNA-155; miRNA-21 target PTEN expression and activity as a factor in breast cancer development. Cell Mol. Biol. 2020, 66, 44–50. [Google Scholar] [CrossRef]
- Sonkoly, E.; Ståhle, M.; Pivarcsi, A. MicroRNAs and immunity; novel players in the regulation of normal immune function and inflammation. Semin. Cancer Biol. 2008, 18, 131–140. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Yuan, Y.; Cho, J.H.; McClarty, S.; Baxter, D.; Galas, D.J. Comparing the MicroRNA spectrum between serum and plasma. PLoS ONE 2012, 7, e41561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sato, F.; Tsuchiya, S.; Terasawa, K.; Tsujimoto, G. Intra-platform repeatability and inter-platform comparability of microRNA microarray technology. PloS ONE 2009, 4, e5540. [Google Scholar] [CrossRef]
First Author, Year | Country | Type | Specimen Source | Cases Size | Controls Size | MIR | Internal Reference |
---|---|---|---|---|---|---|---|
Zhu W, 2009 [13] | USA | Candidate | Serum | 13 | 8 | 16 | MIR18 |
145 | |||||||
155 | |||||||
Heneghan H, 2010 [14] | Ireland | Candidate | Blood | 83 | 44 | 21 | MIR16 |
145 | |||||||
155 | |||||||
195 | |||||||
10b | |||||||
Let-7a | |||||||
Roth C, 2010 [15] | Germany | Candidate | Serum | 59 | 29 | 141 | MIR16 |
155 | |||||||
10b | |||||||
34a | |||||||
Wang F, 2010 [16] | China | Candidate | Serum | 68 | 40 | 21 | MIR16 |
126 | |||||||
155 | |||||||
335 | |||||||
106a | |||||||
199a | |||||||
Asaga S, 2011 [17] | USA | Validation | Serum | 62 | 10 | 21 | MIR16 |
Guo LJ, 2012 [18] | China | Candidate | Serum | 152 | 75 | 181a | MIR16 |
Schrauder MG, 2012 [19] | Germany | Validation | Serum | 24 | 24 | 202 | MIR16 |
718 | |||||||
Schwarzenbach H, 2012 [20] | Germany | Candidate | Serum | 34 | 53 | 21 | MIR16 |
214 | |||||||
19a | |||||||
20a | |||||||
Sun Y, 2012 [21] | China | Candidate | Serum | 103 | 55 | 155 | MIR39 |
van Schooneveld E, 2012 [22] | Belgium | Candidate | Serum | 75 | 20 | 215 | |
299 | |||||||
411 | |||||||
452 | |||||||
Wu Q, 2012 [23] | China | Validation | Serum | 50 | 50 | 222 | |
Zhao FL, 2012 [24] | China | Candidate | Serum | 122 | 59 | 10b | MIR16 |
Chan M, 2013 [25] | Singapore | Validation | Serum | 132 | 101 | 1 | MIR103, MIR191 |
133a | |||||||
133b | |||||||
92a | |||||||
Cuk K, 2013 [26] | Germany | Validation | Plasma | 127 | 80 | 409 | MIR39 |
801 | |||||||
148b | |||||||
376c | |||||||
Eichelser C, 2013 [27] | Germany | Candidate | Serum | 40 | 40 | 17 | MIR16 |
93 | |||||||
155 | |||||||
373 | |||||||
10b | |||||||
34a | |||||||
Godfrey AC, 2013 [28] | USA | Validation | Serum | 5 | 5 | 222 | MIR1825 |
181a | |||||||
18a | |||||||
Kumar S, 2013 [29] | India | Candidate | Plasma | 14 | 8 | 21 | MIR16 |
146a | |||||||
Ng EKO, 2013 [30] | China | Validation | Plasma | 170 | 100 | 16 | RNU6B |
21 | |||||||
145 | |||||||
451 | |||||||
Si H, 2013 [31] | China | Validation | Serum | 100 | 20 | 21 | MIR16 |
92a | |||||||
Wang PY, 2013 [32] | China | Candidate | Serum | 46 | 58 | 182 | 5S rRNA |
Zeng RC, 2013 [33] | China | Candidate | Plasma | 100 | 64 | 30a | MIR16 |
Eichelser C, 2014 [34] | Germany | Candidate | Serum | 168 | 28 | 101 | MIR16, MIR 484 |
372 | |||||||
373 | |||||||
Hamdi K, 2014 [35] | Tunisia | Candidate | Serum | 20 | 20 | 24 | RNU48 |
320 | |||||||
335 | |||||||
337 | |||||||
451 | |||||||
486 | |||||||
548 | |||||||
15a | |||||||
29a | |||||||
30b | |||||||
342-3p | |||||||
342-5p | |||||||
Joosse SA, 2014 [36] | Germany | Candidate | Serum | 102 | 37 | 202 | MIR16 |
Let-7b | |||||||
Kodahl AR, 2014 [37] | Denmark | Validation | Serum | 60 | 51 | 107 | |
139 | |||||||
143 | |||||||
145 | |||||||
365 | |||||||
425 | |||||||
133a | |||||||
15a | |||||||
18a | |||||||
Mar-Aguilar F, 2014 [38] | Mexico | Validation | Serum | 61 | 10 | 21 | MIR18S |
145 | |||||||
155 | |||||||
191 | |||||||
382 | |||||||
10b | |||||||
125b | |||||||
McDermott AM, 2014 [39] | Ireland | Validation | Serum | 44 | 46 | 223 | MIR16 |
652 | |||||||
181a | |||||||
29a | |||||||
Shen J, 2014 [40] | USA | Validation | Plasma | 50 | 50 | 409 | MIR93 |
133a | |||||||
148b | |||||||
Sochor M, 2014 [41] | Chez Republic | Candidate | Serum | 63 | 21 | 24 | Let-7a |
155 | |||||||
181b | |||||||
19a | |||||||
Zearo S, 2014 [42] | Australia | Validation | Serum | 98 | 25 | 484 | |
Zhao FL, 2014 [43] | China | Candidate | Serum | 210 | 102 | 195 | MIR16 |
Antolin S, 2015 [44] | Spain | Candidate | Blood, serum and plasma | 57 | 20 | 141 | 5S, U6 sn |
200c | |||||||
Li XX, 2015 [45] | China | Candidate | Serum | 90 | 64 | Let-7c | 5SrRNA |
Mangolini A (A), 2015 [46] | Italy | Candidate | Serum | 28 | 27 | 145 | MIR39 |
425 | |||||||
652 | |||||||
10b | |||||||
148b | |||||||
Mangolini A (B), 2015 [46] | USA | Candidate | Serum | 59 | 35 | 145 | MIR39 |
425 | |||||||
652 | |||||||
10b | |||||||
148b | |||||||
Matamala N, 2015 [47] | Spain | Validation | Plasma | 114 | 116 | 21 | MIR103a |
96 | |||||||
505 | |||||||
125b | |||||||
Shaker O, 2015 [48] | Egypt | Candidate | Serum | 100 | 30 | 155 | SNORD |
197 | |||||||
205 | |||||||
29b | |||||||
Zhang L, 2015 [49] | China | Validation | Serum | 76 | 52 | 424 | MIR132 |
199a | |||||||
29c | |||||||
Frères P, 2016 [50] | Belgium | Validation | Plasma | 108 | 88 | 16 | Median of 50 mirna |
22 | |||||||
103 | |||||||
107 | |||||||
148a | |||||||
19b | |||||||
Let-7d | |||||||
Let-7i | |||||||
Fu L, 2016 [51] | China | Candidate | Serum | 100 | 40 | 184 | |
382 | |||||||
598 | |||||||
1246 | |||||||
Hamam R, 2016 [52] | Saudi Arabia | Validation | Serum and Plasma | 46 | 50 | 188 | MIR21 |
1202 | |||||||
1207 | |||||||
1225 | |||||||
1290 | |||||||
3141 | |||||||
4270 | |||||||
4281 | |||||||
642b | |||||||
Hannafon BN, 2016 [53] | USA | Candidate | Plasma | 16 | 42 | 21 | MIR54 |
122 | |||||||
1246 | |||||||
Let-7a | |||||||
Motawi TM, 2016 [54] | Egypt | Candidate | Serum | 50 | 25 | 21 | REF SNORD 62 |
221 | |||||||
Shimomura A, 2016 [55] | Japan | Validation | Serum | 1206 | 1343 | 1246 | MIR149 |
1307 | |||||||
4634 | |||||||
6861 | |||||||
6875 | |||||||
Thakur S, 2016 [56] | India | Candidate | Serum | 85 | 85 | 21 | Sn U6 |
145 | |||||||
195 | |||||||
210 | |||||||
221 | |||||||
Let-7a | |||||||
Gao S, 2017 [57] | USA | Validation | Plasma | 75 | 50 | 155 | RNU6B |
Zhang K, 2017 [58] | China | Validation | Blood | 15 | 13 | 96 | MIR16 |
182 | |||||||
942 | |||||||
30b | |||||||
374b | |||||||
Heydari N, 2018 [59] | Iran | Candidate | Serum | 40 | 40 | 140 | MIR16 |
Zaleski M, 2018 [60] | Germany | Validation | Plasma | 55 | 28 | 21 | MIR16 |
92 | |||||||
155 | |||||||
222 | |||||||
34a | |||||||
Let-7c | |||||||
Kaharam M, 2019 [61] | Germany | Validation | Blood | 21 | 21 | 101-3p | RNU48 |
126-3p | |||||||
126-5p | |||||||
144-3p | |||||||
144-5p | |||||||
301a | |||||||
664b | |||||||
McAnena P, 2019 [62] | Ireland | Validation | Blood | 31 | 34 | 195 | MIR16, MIR425 |
331 | |||||||
181a | |||||||
Peña-Cano MI, 2019 [63] | Mexico | Candidate | Serum | 50 | 50 | 17 | MIR26b |
195 | |||||||
221 | |||||||
Raheem AR, 2019 [64] | Iraq | Candidate | Serum | 30 | 30 | 34a | MIRU6 |
Soleimanpour E, 2019 [65] | Iran | Candidate | Plasma | 30 | 25 | 21 | MIR5s |
155 | |||||||
Anwar SL, 2020 [66] | Indonesia | Candidate | Plasma | 102 | 15 | 155 | Sp6 |
Arabkari V, 2020 [67] | Ireland | Validation | Blood | 38 | 20 | 16 | MIR1, MIR16 |
21 | |||||||
145 | |||||||
155 | |||||||
195 | |||||||
486 | |||||||
181a | |||||||
451a | |||||||
Ashirbekov Y, 2020 [68] | Kazakhstan | Candidate | Plasma | 35 | 33 | 16 | MIR222 |
21 | |||||||
29 | |||||||
145 | |||||||
191 | |||||||
210 | |||||||
222 | |||||||
Guo H, 2020 [69] | China | Validation | Plasma | 39 | 40 | 21 | cel-39 |
1273g | |||||||
Holubekova V, 2020 [70] | Slovakia | Validation | Plasma | 65 | 34 | 484 | MIR16, MIR103a |
1260a | |||||||
130a | |||||||
99a | |||||||
Hosseini Mojahed FH, 2020 [71] | Iran | Candidate | Serum | 36 | 36 | 155 | |
Ibrahim AM, 2020 [72] | Egypt | Candidate | Plasma | 30 | 20 | 21 | MIR16 |
145 | |||||||
10b | |||||||
181a | |||||||
Let-7 | |||||||
Jang JY, 2020 [73] | Korea | Validation | Plasma | 80 | 56 | 21 | |
24 | |||||||
202 | |||||||
206 | |||||||
223 | |||||||
373 | |||||||
1246 | |||||||
6875 | |||||||
219b | |||||||
Kim J, 2020 [74] | South Korea | Candidate | Plasma | 30 | 30 | 202 | |
Pastor-Navarro B, 2020 [75] | Spain | Candidate | Serum | 45 | 16 | 21 | MIR16, MIR1228 |
155 | |||||||
205 | |||||||
Bakr NM, 2021 [76] | Egypt | Validation | Blood | 196 | 49 | 373 | |
Diansyah MN, 2021 [77] | Indonesia | Candidate | Plasma | 26 | 16 | 21 | MIR16 |
Itani MM, 2021 [78] | Lebanon | Candidate | Plasma | 41 | 32 | 21 | |
139 | |||||||
145 | |||||||
155 | |||||||
425 | |||||||
451 | |||||||
130a | |||||||
23a | |||||||
Mohmmed EA, 2021 [79] | Egypt | Candidate | Serum and Plasma | 50 | 30 | 106a | |
Nashtahosseini Z, 2021 [80] | Iran | Candidate | Serum | 40 | 40 | 210 | MIR16 |
660 | |||||||
Zhang K, 2021 [81] | China | Validation | Blood | 68 | 13 | 185 | |
362 | |||||||
106b | |||||||
142-3p | |||||||
142-5p | |||||||
26b | |||||||
Zhao T, 2021 [82] | China | Candidate | Serum | 88 | 40 | 25 | MIR39 |
Li X, 2022 [83] | China | Candidate | Serum | 49 | 49 | 9 | MIR16 |
17 | |||||||
148a | |||||||
Liu H, 2022 [84] | China | Candidate | Serum | 112 | 59 | 103a | U6 sn |
Mohamed AA, 2022 [85] | Egypt | Candidate | Serum | 99 | 40 | 155 | RNU6 |
373 | |||||||
10b | |||||||
34a | |||||||
Zavesky L, 2022 [86] | Czech Republic | Validation | Plasma | 52 | 46 | 451a | MIR590, MIR19a, MIR222 |
548b | |||||||
Zou R, 2022 [87] | Mix | Validation | Serum | 177 | 197 | 24 | MIR128, MIR652, MIR106b |
324 | |||||||
377 | |||||||
497 | |||||||
125b | |||||||
133a | |||||||
19b | |||||||
374c |
First Author, Year | Specimen Source | MiR | Direction | Cut_Off (ng/mL) | AUC | Sens | Spec | Fold Change |
---|---|---|---|---|---|---|---|---|
Zhu W, 2009 [13] | Serum | 16 | Up | |||||
145 | Up | |||||||
155 | Down | |||||||
Heneghan H, 2010 [14] | Blood | 21 | Up | |||||
145 | Up | |||||||
155 | Up | |||||||
195 | Up | 0.94 (0.91–0.97) | 87.70 | 91.00 | 25.00 | |||
10b | Down | |||||||
Let-7a | Up | |||||||
Roth C, 2010 [15] | Serum | 141 | ||||||
155 | Up | 1.60 | ||||||
10b | ||||||||
34a | ||||||||
Wang F, 2010 [16] | Serum | 21 | Up | 2.50 | ||||
126 | Down | 2.00 | ||||||
155 | Up | 3.50 | ||||||
335 | Up | 2.00 | ||||||
106a | Up | 1.90 | ||||||
199a | Down | 2.00 | ||||||
Asaga S, 2011 [17] | Serum | 21 | Up | 3.30 | 0.72 | 75.00 | 67.00 | |
Guo LJ, 2012 [18] | Serum | 181a | Down | 0.74 | 0.67 (0.60–0.74) | 70.70 | 59.90 | 0.36 |
Schrauder MG, 2012 [19] | Serum | 202 | Up | 0.68 | 19.38 | |||
718 | Down | 0.77 | 5.44 | |||||
Schwarzenbach H, 2012 [20] | Serum | 21 | 0.85 (0.78–0.91) | |||||
214 | 0.92 (0.88–0.97) | |||||||
19a | ||||||||
20a | 0.68 (0.59–0.77) | |||||||
Sun Y, 2012 [21] | Serum | 155 | Up | 1.91 | 0.80 (0.65–0.82) | 65.00 | 81.80 | 2.94 |
van Schooneveld E, 2012 [22] | Serum | 215 | Up | |||||
299 | Down | |||||||
411 | Down | |||||||
452 | Down | |||||||
Wu Q, 2012 [23] | Serum | 222 | Up | 0.01 | 0.67 (0.57–0.78) | 74.00 | 60.00 | |
Zhao FL, 2012 [24] | Serum | 10b | Up | |||||
Chan M, 2013 [25] | Serum | 1 | Up | 2.67 | ||||
133a | Up | 2.62 | ||||||
133b | Up | 2.41 | ||||||
92a | Up | 1.32 | ||||||
Cuk K, 2013 [26] | Plasma | 409 | Up | 0.66 (0.59–0.74) | ||||
801 | Up | 0.64 (0.56–0.72) | ||||||
148b | Up | 0.65 (0.58–0.73) | ||||||
376c | Up | 0.66 (0.59–0.74) | ||||||
Eichelser C, 2013 [27] | Serum | 17 | Down | 0.68 | 18.80 | 100.00 | ||
93 | Up | 0.70 | 44.90 | 100.00 | ||||
155 | Up | 0.78 | 70.60 | 42.70 | ||||
373 | Up | 0.88 | 76.60 | 100.00 | ||||
10b | Up | 21.80 | 92.10 | |||||
34a | Up | 0.64 | 59.80 | 76.00 | ||||
Godfrey AC, 2013 [28] | Serum | 222 | Down | |||||
181a | Up | |||||||
18a | Up | |||||||
Kumar S, 2013 [29] | Plasma | 21 | Up | |||||
146a | Up | |||||||
Ng EKO, 2013 [30] | Plasma | 16 | Up | 0.91 (0.87–0.95) | ||||
21 | Up | 0.81 (0.74–0.88) | ||||||
145 | Down | 0.63 (0.52–0.74) | ||||||
451 | Up | 0.94 (0.91–1.00) | ||||||
Si H, 2013 [31] | Serum | 21 | Up | 0.93 (0.89–0.92) | ||||
92a | Down | 0.92 (0.87–0.97) | ||||||
Wang PY, 2013 [32] | Serum | 182 | Up | |||||
Zeng RC, 2013 [33] | Plasma | 30a | Down | 0.01 | 0.76 (0.68–0.83) | 74.00 | 65.60 | |
Eichelser C, 2014 [34] | Serum | 101 | Up | |||||
372 | Up | |||||||
373 | Up | |||||||
Hamdi K, 2014 [35] | Serum | 24 | Down | |||||
320 | Down | |||||||
335 | Down | |||||||
337 | Down | |||||||
451 | Down | 15.80 | ||||||
486 | Down | |||||||
548 | Down | |||||||
15a | Down | |||||||
29a | Down | |||||||
30b | Down | |||||||
342-3p | Down | |||||||
342-5p | Down | |||||||
Joosse SA, 2014 [36] | Serum | 202 | Up | |||||
Let-7b | Up | |||||||
Kodahl AR, 2014 [37] | Serum | 107 | 0.66 | |||||
139 | 1.44 | |||||||
143 | 1.65 | |||||||
145 | 1.56 | |||||||
365 | 1.88 | |||||||
425 | 0.84 | |||||||
133a | 1.68 | |||||||
15a | 1.84 | |||||||
18a | 0.65 | |||||||
Mar-Aguilar F, 2014 [38] | Serum | 21 | 6.48 | 0.95 (0.91–0.99) | 94.40 | 80.00 | ||
145 | 15.93 | 0.98 (0.95–1.00) | 94.40 | 100.00 | ||||
155 | 7.92 | 0.99 (0.99–1.00) | 94.40 | 100.00 | ||||
191 | 4.85 | 0.79 (0.71–0.88) | 72.20 | 90.00 | ||||
382 | 0.97 (0.94–1.00) | 94.40 | 90.00 | |||||
10b | 59.22 | 0.95 (0.91–0.99) | 83.30 | 100.00 | ||||
125b | 8.46 | 0.95 (0.91–0.99) | 88.90 | 80.00 | ||||
McDermott AM, 2014 [39] | Serum | 223 | Down | |||||
652 | Down | |||||||
181a | Down | |||||||
29a | Down | |||||||
Shen J, 2014 [40] | Plasma | 409 | ||||||
133a | 8.30 | |||||||
148b | 5.10 | |||||||
Sochor M, 2014 [41] | Serum | 24 | Up | |||||
155 | Up | |||||||
181b | Up | |||||||
19a | Up | |||||||
Zearo S, 2014 [42] | Serum | 484 | 1.60 | |||||
Zhao FL, 2014 [43] | Serum | 195 | Down | 0.50 | 0.86 (0.82–0.90) | 69.00 | 89.20 | 2.38 |
Antolin S, 2015 [44] | Blood, serum and plasma | 141 | ||||||
200c | Down | 0.79 | 90.00 | 70.20 | ||||
Li XX, 2015 [45] | Serum | Let-7c | Down | 0.85 (0.79–0.91) | 87.50 | 78.90 | ||
Mangolini A (A), 2015 [46] | Serum | 145 | Down | |||||
425 | Down | |||||||
652 | Down | 0.83 (0.73–0.93) | ||||||
10b | Up | |||||||
148b | Down | 0.74 (0.62–0.86) | ||||||
Mangolini A (B), 2015 [46] | Serum | 145 | Down | |||||
425 | Down | |||||||
652 | Down | 0.69 (0.58–0.80) | ||||||
10b | Up | |||||||
148b | Down | 0.66 (0.51–0.80) | ||||||
Matamala N, 2015 [47] | Plasma | 21 | Up | 0.61 (0.53–0.68) | ||||
96 | Up | 0.72 (0.65–0.78) | 73.00 | 66.00 | ||||
505 | Up | 0.72 (0.66–0.79) | 75.00 | 60.00 | ||||
125b | Up | 0.64 (0.56–0.71) | ||||||
Shaker O, 2015 [48] | Serum | 155 | Up | 39.57 | 0.99 (0.99–1.00) | 94.10 | 100.00 | 39.57 |
197 | Up | 29.80 | 0.98 (0.95–1.00) | 95.30 | 100.00 | 29.80 | ||
205 | Up | 27.48 | 0.99 (0.98–1.00) | 98.80 | 100.00 | 27.48 | ||
29b | Up | 41.94 | 0.99 (0.98–1.00) | 98.80 | 100.00 | 41.94 | ||
Zhang L, 2015 [49] | Serum | 424 | Up | 0.75 (0.67–0.84) | 1.77 | |||
199a | Up | 0.92 (0.87–0.96) | 2.65 | |||||
29c | Up | 0.72 (0.64–0.81) | 1.97 | |||||
Frères P, 2016 [50] | Plasma | 16 | 1.70 | |||||
22 | 1.00 | |||||||
103 | 0.80 | |||||||
107 | 0.80 | |||||||
148a | 1.40 | |||||||
19b | 1.20 | |||||||
Let-7d | 0.90 | |||||||
Let-7i | 0.70 | |||||||
Fu L, 2016 [51] | Serum | 184 | Down | 0.48 | 0.74 (0.66–0.82) | 87.50 | 71.00 | |
382 | Up | 1.32 | 0.90 (0.85–0.96) | 93.00 | 75.00 | |||
598 | Down | 1.61 | 0.74 (0.66–0.82) | 52.00 | 92.50 | |||
1246 | Up | 0.55 | 0.94 (0.90–0.98) | 95.00 | 85.00 | |||
Hamam R, 2016 [52] | Serum and Plasma | 188 | Up | |||||
1202 | Up | |||||||
1207 | Up | |||||||
1225 | Up | |||||||
1290 | Up | |||||||
3141 | Up | |||||||
4270 | Up | |||||||
4281 | Up | |||||||
642b | Up | |||||||
Hannafon BN, 2016 [53] | Plasma | 21 | Up | 0.69 (0.49–0.89) | ||||
122 | Up | |||||||
1246 | Up | 0.69 (0.50–0.88) | ||||||
Let-7a | Up | |||||||
Motawi TM, 2016 [54] | Serum | 21 | 1.14 | 0.98 (0.96–1.00) | 96.00 | 94.00 | 2.20 | |
221 | 1.21 | 0.97 (0.94–1.00) | 92.00 | 88.00 | 2.09 | |||
Shimomura A, 2016 [55] | Serum | 1246 | 88.30 | 93.40 | ||||
1307 | 100.00 | 53.10 | ||||||
4634 | 3.40 | 73.60 | ||||||
6861 | 99.80 | 79.40 | ||||||
6875 | 14.70 | 76.80 | ||||||
Thakur S, 2016 [56] | Serum | 21 | Up | 0.79 (0.71–0.86) | 88.00 | 65.00 | ||
145 | Down | 0.73 (0.66–0.81) | 74.00 | 56.00 | ||||
195 | Down | 0.80 (0.74–0.87) | 77.00 | 71.00 | ||||
210 | 0.64 (0.55–0.72) | 78.00 | 61.00 | |||||
221 | 0.63 (0.54–0.71) | 65.00 | 57.00 | |||||
Let-7a | 0.76 (0.69–0.83) | 71.00 | 67.00 | |||||
Gao S, 2017 [57] | Plasma | 155 | Up | 0.77 (0.68–0.86) | ||||
Zhang K, 2017 [58] | Blood | 96 | Up | 2.73 | 0.77 | 53.00 | 100.00 | |
182 | Up | 1.01 | 0.76 | 53.00 | 92.00 | |||
942 | Up | 1.04 | 0.81 | 67.00 | 100.00 | |||
30b | Up | 2.04 | 0.93 | 80.00 | 100.00 | |||
374b | Up | 1.52 | 0.82 | 87.00 | 69.00 | |||
Heydari N, 2018 [59] | Serum | 140 | Up | 0.13 | 0.67 (0.55–0.79) | 70.00 | 50.00 | |
Zaleski M, 2018 [60] | Plasma | 21 | 0.58 (0.46–0.71) | |||||
92 | 0.46 (0.33–0.60) | |||||||
155 | 0.53 (0.36–0.69) | |||||||
222 | 0.53 (0.40–0.67) | |||||||
34a | 0.72 (0.61–0.84) | |||||||
Let-7c | 0.51 (0.38–0.64) | |||||||
Kaharam M, 2019 [61] | Blood | 101-3p | ||||||
126-3p | ||||||||
126-5p | ||||||||
144-3p | ||||||||
144-5p | ||||||||
301a | ||||||||
664b | ||||||||
McAnena P, 2019 [62] | Blood | 195 | 0.73 | |||||
331 | 2.94 | |||||||
181a | 1.19 | |||||||
Peña-Cano MI, 2019 [63] | Serum | 17 | Up | 0.50 | ||||
195 | Up | 0.04 | 0.88 (0.78–0.98) | 83.30 | 78.30 | 4.33 | ||
221 | Down | 0.70 | ||||||
Raheem AR, 2019 [64] | Serum | 34a | Down | 5.05 | 0.67 (0.53–0.81) | 60.00 | 63.00 | |
Soleimanpour E, 2019 [65] | Plasma | 21 | Up | 0.92 | ||||
155 | Up | 0.99 | ||||||
Anwar SL, 2020 [66] | Plasma | 155 | Up | |||||
Arabkari V, 2020 [67] | Blood | 16 | Up | 0.61 (0.47–0.76) | ||||
21 | Up | 0.65 (0.51–0.79) | 1.35 | |||||
145 | Up | 0.83 (0.72–0.94) | 1.61 | |||||
155 | Up | 0.76 (0.66–0.89) | 1.63 | |||||
195 | Down | 0.81 (0.69–0.92) | 0.14 | |||||
486 | Up | 0.90 (0.81–0.97) | 2.25 | |||||
181a | 1.52 | |||||||
451a | Up | 0.73 (0.61–0.86) | 1.62 | |||||
Ashirbekov Y, 2020 [68] | Plasma | 16 | 0.69 | |||||
21 | 1.35 | |||||||
29 | 0.98 | |||||||
145 | 2.36 | |||||||
191 | 1.87 | |||||||
210 | 0.69 | |||||||
222 | 0.98 | |||||||
Guo H, 2020 [69] | Plasma | 21 | 0.66 (0.53–0.78) | |||||
1273g | 0.63 (0.51–0.76) | |||||||
Holubekova V, 2020 [70] | Plasma | 484 | Up | 1.10 | ||||
1260a | Up | 1.22 | ||||||
130a | Up | 1.20 | ||||||
99a | Up | 1.33 | ||||||
Hosseini Mojahed FH, 2020 [71] | Serum | 155 | Up | 1.40 | 0.89 | 77.80 | 88.89 | 1.00 |
Ibrahim AM, 2020 [72] | Plasma | 21 | 4.94 | 0.78 | 63.30 | 100.00 | ||
145 | 0.78 | 0.70 | 45.00 | 83.30 | ||||
10b | 2.52 | 0.73 | 53.30 | 100.00 | ||||
181a | 1.51 | 0.70 | 50.00 | 80.00 | ||||
Let-7 | 0.52 | 0.72 | 50.00 | 93.30 | ||||
Jang JY, 2020 [73] | Plasma | 21 | Down | 0.92 | ||||
24 | Down | 0.96 | 65.00 | 96.00 | ||||
202 | Down | 0.86 | ||||||
206 | Down | 0.94 | 79.00 | 96.00 | ||||
223 | Down | 0.81 | ||||||
373 | Down | 0.96 | ||||||
1246 | Down | 0.93 | 53.00 | 95.00 | ||||
6875 | Down | 0.96 | 86.00 | 96.00 | ||||
219b | Down | 0.88 | ||||||
Kim J, 2020 [74] | Plasma | 202 | Up | 2.10 | 0.95 (0.88–1.02) | 90.00 | 93.30 | 9.60 |
Pastor-Navarro B, 2020 [75] | Serum | 21 | 0.77 (0.68–0.87) | |||||
155 | 0.32 (0.68–0.87) | |||||||
205 | 0.65 (0.68–0.87) | |||||||
Bakr NM, 2021 [76] | Blood | 373 | 360.00 | 0.98 (0.95–0.99) | 90.80 | 98.40 | ||
Diansyah MN, 2021 [77] | Plasma | 21 | 1.66 | 0.92 (0.83–1) | 92.30 | 81.20 | 4.36 | |
Itani MM, 2021 [78] | Plasma | 21 | Up | 4.46 | 0.76 (0.64–0.88) | 73.00 | 81.00 | |
139 | Up | 11.69 | 0.74 (0.62–0.87) | 78.00 | 75.00 | |||
145 | Up | 10.18 | 0.78 (0.66–0.90) | 83.00 | 78.00 | |||
155 | Up | 8.54 | 0.83 (0.71–0.95) | 76.00 | 96.00 | |||
425 | Up | 9.09 | 0.81 (0.69–0.93) | 78.00 | 91.00 | |||
451 | Down | 10.54 | 0.70 (0.57–0.83) | 78.00 | 75.00 | |||
130a | Up | 7.96 | 0.83 (0.72–0.94) | 70.00 | 100.00 | |||
23a | Up | 2.50 | 0.73 (0.61–0.85) | 73.00 | 72.00 | |||
Mohmmed EA, 2021 [79] | Serum and Plasma | 106a | Up | 0.95 | 83.00 | 100.00 | 3.63 | |
Nashtahosseini Z, 2021 [80] | Serum | 210 | Up | 0.82 | 0.72 (0.60–0.83) | 68.00 | 51.00 | 2.72 |
660 | Up | 0.77 | 0.77 (0.66–0.88) | 79.00 | 61.00 | 2.71 | ||
Zhang K, 2021 [81] | Blood | 185 | Up | 1.08 | 0.91 (0.83–0.99) | 91.18 | 76.92 | 4.00 |
362 | Up | 1.53 | 0.93 (0.88–0.99) | 83.82 | 100.00 | 2.97 | ||
106b | Up | 1.26 | 0.82 (0.68–0.95) | 79.41 | 76.92 | 1.89 | ||
142-3p | Up | 6.87 | 0.85 (0.76–0.98) | 97.06 | 61.54 | 3.18 | ||
142-5p | Up | 1.60 | 0.85 (0.71–0.99) | 85.29 | 76.92 | 2.46 | ||
26b | Up | 1.34 | 0.89 (0.81–0.97) | 83.82 | 84.62 | 3.32 | ||
Zhao T, 2021 [82] | Serum | 25 | Up | 0.75 (0.66–0.84) | 57.10 | 95.00 | ||
Li X, 2022 [83] | Serum | 9 | Up | |||||
17 | ||||||||
148a | Up | |||||||
Liu H, 2022 [84] | Serum | 103a | Up | 3.40 | 0.70 (0.62–0.78) | 78.20 | 74.70 | |
Mohamed AA, 2022 [85] | Serum | 155 | Up | 7.50 | 0.94 (0.89–0.98) | 86.90 | 90.00 | |
373 | Up | 10.00 | 0.95 (0.90–0.98) | 85.00 | 100.00 | |||
10b | Up | 9.50 | 0.77 (0.69–0.84) | 60.00 | 93.00 | |||
34a | Down | 10.50 | 0.89 (0.82–0.94) | 91.00 | 75.00 | |||
Zavesky L, 2022 [86] | Plasma | 451a | Down | 1.39 | ||||
548b | Up | 3.60 | ||||||
Zou R, 2022 [87] | Serum | 24 | Up | 0.76 | 0.62 | |||
324 | Down | 0.52 | 0.31 | |||||
377 | Down | 0.73 | 0.67 | |||||
497 | Up | 0.56 | 0.15 | |||||
125b | Up | 0.58 | 0.13 | |||||
133a | Up | 0.63 | 0.41 | |||||
19b | Down | 0.63 | 0.26 | |||||
374c | Down | 0.71 | 0.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Padroni, L.; De Marco, L.; Dansero, L.; Fiano, V.; Milani, L.; Vasapolli, P.; Manfredi, L.; Caini, S.; Agnoli, C.; Ricceri, F.; et al. An Epidemiological Systematic Review with Meta-Analysis on Biomarker Role of Circulating MicroRNAs in Breast Cancer Incidence. Int. J. Mol. Sci. 2023, 24, 3910. https://doi.org/10.3390/ijms24043910
Padroni L, De Marco L, Dansero L, Fiano V, Milani L, Vasapolli P, Manfredi L, Caini S, Agnoli C, Ricceri F, et al. An Epidemiological Systematic Review with Meta-Analysis on Biomarker Role of Circulating MicroRNAs in Breast Cancer Incidence. International Journal of Molecular Sciences. 2023; 24(4):3910. https://doi.org/10.3390/ijms24043910
Chicago/Turabian StylePadroni, Lisa, Laura De Marco, Lucia Dansero, Valentina Fiano, Lorenzo Milani, Paolo Vasapolli, Luca Manfredi, Saverio Caini, Claudia Agnoli, Fulvio Ricceri, and et al. 2023. "An Epidemiological Systematic Review with Meta-Analysis on Biomarker Role of Circulating MicroRNAs in Breast Cancer Incidence" International Journal of Molecular Sciences 24, no. 4: 3910. https://doi.org/10.3390/ijms24043910
APA StylePadroni, L., De Marco, L., Dansero, L., Fiano, V., Milani, L., Vasapolli, P., Manfredi, L., Caini, S., Agnoli, C., Ricceri, F., & Sacerdote, C. (2023). An Epidemiological Systematic Review with Meta-Analysis on Biomarker Role of Circulating MicroRNAs in Breast Cancer Incidence. International Journal of Molecular Sciences, 24(4), 3910. https://doi.org/10.3390/ijms24043910