ZnO Tetrapods for Label-Free Optical Biosensing: Physicochemical Characterization and Functionalization Strategies
Abstract
:1. Introduction
2. Results and Discussion
2.1. Physicochemical Characterization of Bare ZnO-Ts
2.2. Nucleotides Conjugation to ZnO-Ts by Phosphonamidite Chemistry and Quantification of Reactive Hydroxyl Groups on ZnO-T Surface
2.3. Biofunctionalization of ZnO-Ts Surface and Sensing Experiment
3. Materials and Methods
3.1. Materials and Reagents
3.2. ZnO Tetrapods (ZnO-Ts) Synthesis
3.3. ZnO-Ts Characterization
3.4. Quantum Yield (QY) Calculation
3.5. Quantification of -OH Groups
3.6. ZnO-Ts Stability at Different pH Conditions
3.7. ZnO-Ts Functionalization
3.8. Sensing Experiment
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Holzinger, M.; Le Goff, A.; Cosnier, S. Nanomaterials for Biosensing Applications: A Review. Front. Chem. 2014, 2, 63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moretta, R.; De Stefano, L.; Terracciano, M.; Rea, I. Porous Silicon Optical Devices: Recent Advances in Biosensing Applications. Sensors 2021, 21, 1336. [Google Scholar] [CrossRef] [PubMed]
- Naresh, V.; Lee, N. A Review on Biosensors and Recent Development of Nanostructured Materials-Enabled Biosensors. Sensors 2021, 21, 1109. [Google Scholar] [CrossRef] [PubMed]
- Mardosaitė, R.; Jurkevičiūtė, A.; Račkauskas, S. Superhydrophobic ZnO Nanowires: Wettability Mechanisms and Functional Applications. Cryst. Growth Des. 2021, 21, 4765–4779. [Google Scholar] [CrossRef]
- Račkauskas, S.; Barbero, N.; Barolo, C.; Viscardi, G. ZnO Nanowire Application in Chemoresistive Sensing: A Review. Nanomaterials 2017, 7, 381. [Google Scholar] [CrossRef] [Green Version]
- Tereshchenko, A.; Bechelany, M.; Viter, R.; Khranovskyy, V.; Smyntyna, V.; Starodub, N.; Yakimova, R. Optical Biosensors Based on ZnO Nanostructures: Advantages and Perspectives. A Review. Sens. Actuator B-Chem. 2016, 229, 664–677. [Google Scholar] [CrossRef] [Green Version]
- Crisci, T.; Falanga, A.P.; Casalino, M.; Borbone, N.; Terracciano, M.; Chianese, G.; Gioffrè, M.; D’Errico, S.; Marzano, M.; Rea, I.; et al. Bioconjugation of a PNA Probe to Zinc Oxide Nanowires for Label-Free Sensing. Nanomaterials 2021, 11, 523. [Google Scholar] [CrossRef]
- Rana, A.U.H.S.; Chang, S.-B.; Kim, H.-S. NH4OH-Oriented and pH-Dependent Growth of ZnO Nanostructures via Microwave-Assisted Growth Method. J. Nanosci. Nanotechnol. 2018, 18, 2125–2127. [Google Scholar] [CrossRef]
- Arya, S.K.; Saha, S.; Ramirez-Vick, J.E.; Gupta, V.; Bhansali, S.; Singh, S.P. Recent Advances in ZnO Nanostructures and Thin Films for Biosensor Applications: Review. Anal. Chim. Acta 2012, 737, 1–21. [Google Scholar] [CrossRef]
- Sulciute, A.; Nishimura, K.; Gilshtein, E.; Cesano, F.; Viscardi, G.; Nasibulin, A.G.; Ohno, Y.; Račkauskas, S. ZnO Nanostructures Application in Electrochemistry: Influence of Morphology. J. Phys. Chem. C 2021, 125, 1472–1482. [Google Scholar] [CrossRef]
- Moretta, R.; Terracciano, M.; Dardano, P.; Casalino, M.; De Stefano, L.; Schiattarella, C.; Rea, I. Toward Multi-Parametric Porous Silicon Transducers Based on Covalent Grafting of Graphene Oxide for Biosensing Applications. Front. Chem. 2018, 6, 583. [Google Scholar] [CrossRef] [PubMed]
- Terracciano, M.; Rea, I.; Borbone, N.; Moretta, R.; Oliviero, G.; Piccialli, G.; De Stefano, L. Porous Silicon-Based Aptasensors: The next Generation of Label-Free Devices for Health Monitoring. Molecules 2019, 24, 2216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chianese, G.; Terracciano, M.; Moretta, R.; Cappiello, P.; Vitiello, G.; Aronne, A.; Schiattarella, C.; De Stefano, L.; Rea, I. Synthesis and Surface Modification of Nanostructured F-Doped ZnO: Toward a Transducer for Label-Free Optical Biosensing. Appl. Sci. 2019, 9, 3380. [Google Scholar] [CrossRef] [Green Version]
- Moretta, R.; Terracciano, M.; Borbone, N.; Oliviero, G.; Schiattarella, C.; Piccialli, G.; Falanga, A.P.; Marzano, M.; Dardano, P.; De Stefano, L.; et al. PNA-Based Graphene Oxide/Porous Silicon Hybrid Biosensor: Towards a Label-Free Optical Assay for Brugada Syndrome. Nanomaterials 2020, 10, 2233. [Google Scholar] [CrossRef] [PubMed]
- Terracciano, M.; Galstyan, V.; Rea, I.; Casalino, M.; De Stefano, L.; Sbervegleri, G. Chemical Modification of TiO2 Nanotube Arrays for Label-Free Optical Biosensing Applications. Appl. Surf. Sci. 2017, 419, 235–240. [Google Scholar] [CrossRef]
- Martucci, N.M.; Rea, I.; Ruggiero, I.; Terracciano, M.; De Stefano, L.; Migliaccio, N.; Palmieri, C.; Scala, G.; Arcari, P.; Rendina, I.; et al. A New Strategy for Label-Free Detection of Lymphoma Cancer Cells. Biomed. Opt. Express 2015, 6, 1353–1362. [Google Scholar] [CrossRef] [Green Version]
- Terracciano, M.; De Stefano, L.; Borbone, N.; Politi, J.; Oliviero, G.; Nici, F.; Casalino, M.; Piccialli, G.; Dardano, P.; Varra, M.; et al. Solid Phase Synthesis of a Thrombin Binding Aptamer on Macroporous Silica for Label Free Optical Quantification of Thrombin. RSC Adv. 2016, 6, 86762–86769. [Google Scholar] [CrossRef]
- Zhang, S.; Geryak, R.; Geldmeier, J.; Kim, S.; Tsukruk, V.V. Synthesis, Assembly, and Applications of Hybrid Nanostructures for Biosensing. Chem. Rev. 2017, 117, 12942–13038. [Google Scholar] [CrossRef]
- Fatehah, M.O.; Aziz, H.A.; Stoll, S. Stability of ZnO Nanoparticles in Solution. Influence of pH, Dissolution, Aggregation and Disaggregation Effects. J. Colloid Sci. Biotechnol. 2014, 3, 75–84. [Google Scholar] [CrossRef]
- Terracciano, M.; Tramontano, C.; Moretta, R.; Miranda, B.; Borbone, N.; De Stefano, L.; Rea, I. Protein-Modified Porous Silicon Optical Devices for Biosensing. In Porous Silicon for Biomedical Applications; Elsevier: Amsterdam, The Netherlands, 2021; pp. 113–148. [Google Scholar]
- De Stefano, L.; Oliviero, G.; Amato, J.; Borbone, N.; Piccialli, G.; Mayol, L.; Rendina, I.; Terracciano, M.; Rea, I. Aminosilane Functionalizations of Mesoporous Oxidized Silicon for Oligonucleotide Synthesis and Detection. J. R. Soc. Interface 2013, 10, 20130160. [Google Scholar] [CrossRef] [Green Version]
- Terracciano, M.; Fontana, F.; Falanga, A.P.; D’Errico, S.; Torrieri, G.; Greco, F.; Tramontano, C.; Rea, I.; Piccialli, G.; De Stefano, L.; et al. Development of Surface Chemical Strategies for Synthesizing Redox-Responsive Diatomite Nanoparticles as a Green Platform for On-Demand Intracellular Release of an Antisense Peptide Nucleic Acid Anticancer Agent. Small 2022, 18, 2204732. [Google Scholar] [CrossRef] [PubMed]
- Miranda, B.; Moretta, R.; Dardano, P.; Rea, I.; Forestiere, C.; De Stefano, L. H3 (Hydrogel-Based, High-Sensitivity, Hybrid) Plasmonic Transducers for Biomolecular Interactions Monitoring. Adv. Mater. Technol. 2022, 7, 2101425. [Google Scholar] [CrossRef]
- Tramontano, C.; Martins, J.P.; De Stefano, L.; Kemell, M.; Correia, A.; Terracciano, M.; Borbone, N.; Rea, I.; Santos, H.A. Microfluidic-Assisted Production of Gastro-Resistant Active-Targeted Diatomite Nanoparticles for the Local Release of Galunisertib in Metastatic Colorectal Cancer Cells. Adv. Healthc. Mater. 2022, 2202672. [Google Scholar] [CrossRef] [PubMed]
- Xiong, G.; Pal, U.; Serrano, J.G.; Ucer, K.B.; Williams, R.T. Photoluminescence and FTIR Study of ZnO Nanoparticles: The Impurity and Defect Perspective. Phys. Stat. Sol. C 2006, 3, 3577–3581. [Google Scholar]
- Thongam, D.D.; Gupta, J.; Sahu, N.K. Effect of Induced Defects on the Properties of ZnO Nanocrystals: Surfactant Role and Spectroscopic Analysis. SN Appl. Sci. 2019, 1, 1030. [Google Scholar] [CrossRef] [Green Version]
- Riahimadvar, M.S.; Tajaldini, M. Fast and One-Step Synthesis of Small ZnO Nano-Tetrapods Using CO2 Laser in Ambient Air: Physical Properties. Phys. Scr. 2022, 97, 105811. [Google Scholar] [CrossRef]
- Khorsand Zak, A.; Majid, W.A.; Mahmoudian, M.R.; Darroudi, M.; Yousefi, R. Starch-Stabilized Synthesis of ZnO Nanopowders at Low Temperature and Optical Properties Study. Adv. Powder Technol. 2013, 24, 618–624. [Google Scholar] [CrossRef]
- Papari, G.P.; Silvestri, B.; Vitiello, G.; De Stefano, L.; Rea, I.; Luciani, G.; Aronne, A.; Andreone, A. Morphological, Structural, and Charge Transfer Properties of F-Doped ZnO: A Spectroscopic Investigation. J. Phys. Chem. C 2017, 121, 16012–16020. [Google Scholar] [CrossRef]
- Gonzalez-Hernandez, R.; Martinez, A.I.; Falcony, C.; Lopez, A.A.; Pech-Canul, M.I.; Hdz-Garcia, H.M. Study of the Properties of Undoped and Fluorine Doped Zinc Oxide Nanoparticles. Mater. Lett. 2010, 64, 1493–1495. [Google Scholar] [CrossRef]
- Zeng, H.; Duan, G.; Li, Y.; Yang, S.; Xu, X.; Cai, W. Blue Luminescence of ZnO Nanoparticles Based on Non-Equilibrium Processes: Defect Origins and Emission Controls. Adv. Funct. Mater. 2010, 20, 561–572. [Google Scholar] [CrossRef]
- Schiattarella, C.; Terracciano, M.; Defforge, T.; Gautier, G.; Della Ventura, B.; Moretta, R.; De Stefano, L.; Velotta, R.; Rea, I. Photoemissive Properties and Stability of Undecylenic Acid-Modified Porous Silicon Nanoparticles in Physiological Medium. Appl. Phys. Lett. 2019, 114, 113701. [Google Scholar] [CrossRef]
- Hard, T.; Fan, P.; Kearns, D.R. A Fluorescence Study of the Binding of Hoechst 33258 and DAPI to Halogenated DNAs. Photochem. Photobiol. 1990, 51, 77–86. [Google Scholar] [CrossRef]
- Rea, I.; Oliviero, G.; Amato, J.; Borbone, N.; Piccialli, G.; Rendina, I.; De Stefano, L. Direct Synthesis of Oligonucleotides on Nanostructured Silica Multilayers. J. Phys. Chem. C 2010, 114, 2617–2621. [Google Scholar] [CrossRef]
- Fekete, M.; Riedel, W.; Patti, A.F.; Spiccia, L. Photoelectrochemical Water Oxidation by Screen Printed ZnO Nanoparticle Films: Effect of pH on Catalytic Activity and Stability. Nanoscale 2014, 6, 7585–7593. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, J.; Pereira, S.O.; Zanoni, J.; Falcão, B.P.; Santos, N.F.; Moura, J.P.; Soares, M.R.; Rino, L.; Costa, F.M.; Monteiro, T. The Impact of Physiological Buffer Solutions on Zinc Oxide Nanostructures: Zinc Phosphate Conversion. Mater. Today Chem. 2022, 23, 100629. [Google Scholar] [CrossRef]
- Moretta, R.; Terracciano, M.; Dardano, P.; Casalino, M.; Rea, I.; De Stefano, L. Covalent Grafting of Graphene Oxide on Functionalized Macroporous Silicon. Open Mater. Sci. 2018, 4, 15–22. [Google Scholar] [CrossRef]
- Norberg, N.S.; Gamelin, D.R. Influence of Surface Modification on the Luminescence of Colloidal ZnO Nanocrystals. J. Phys. Chem. B 2005, 109, 20810–20816. [Google Scholar] [CrossRef]
- Politi, J.; Dardano, P.; Caliò, A.; Iodice, M.; Rea, I.; De Stefano, L. Reversible Sensing of Heavy Metal Ions Using Lysine Modified Oligopeptides on Porous Silicon and Gold. Sensor. Actuat. B-Chem. 2017, 244, 142–150. [Google Scholar] [CrossRef]
- Mondal, K.; Islam, M.; Singh, S.; Sharma, A. Fabrication of High Surface Area Microporous ZnO from ZnO/Carbon Sacrificial Composite Monolith Template. Micromachines 2022, 13, 335. [Google Scholar] [CrossRef]
- Račkauskas, S.; Klimova, O.; Jiang, H.; Nikitenko, A.; Chernenko, K.A.; Shandakov, S.D.; Kauppinen, E.I.; Tolochko, O.V.; Nasibulin, A.G. A Novel Method for Continuous Synthesis of ZnO Tetrapods. J. Phys. Chem. C 2015, 119, 16366–16373. [Google Scholar] [CrossRef]
- Terracciano, M.; Shahbazi, M.A.; Correia, A.; Rea, I.; Lamberti, A.; De Stefano, L.; Santos, H.A. Surface Bioengineering of Diatomite Based Nanovectors for Efficient Intracellular Uptake and Drug Delivery. Nanoscale 2015, 7, 20063–20074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Sample | Size (nm) | PdI | Zeta Pot (mV) |
---|---|---|---|
SH0 | 330 ± 120 | 0.3 | −47 ± 5 |
SH1 | 470 ± 100 | 0.5 | −40 ± 5 |
SH2 | 600 ± 250 | 0.4 | −43 ± 4 |
Sample | QY% |
---|---|
SH0 | 4.7 ± 0.6 |
SH1 | 14 ± 1 |
SH2 | 6 ± 1 |
Sample | –OH (µmol mg−1) |
---|---|
SH0 | 3.9 ± 0.2 |
SH1 | 3.5 ± 0.6 |
SH2 | 1.8 ± 0.5 |
ZnO-Ts Sample | Fabrication Procedure |
---|---|
SH0 | as-obtained ZnO-Ts |
SH1 | SH0 dispersed in IPA, sonicated for 1 h, and centrifuged at 1000 rpm, with the sediment collected and marked as SH1 |
SH2 | The supernatant of SH1 centrifuged at 3000 rpm, with the sediment collected and marked as SH2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Terracciano, M.; Račkauskas, S.; Falanga, A.P.; Martino, S.; Chianese, G.; Greco, F.; Piccialli, G.; Viscardi, G.; De Stefano, L.; Oliviero, G.; et al. ZnO Tetrapods for Label-Free Optical Biosensing: Physicochemical Characterization and Functionalization Strategies. Int. J. Mol. Sci. 2023, 24, 4449. https://doi.org/10.3390/ijms24054449
Terracciano M, Račkauskas S, Falanga AP, Martino S, Chianese G, Greco F, Piccialli G, Viscardi G, De Stefano L, Oliviero G, et al. ZnO Tetrapods for Label-Free Optical Biosensing: Physicochemical Characterization and Functionalization Strategies. International Journal of Molecular Sciences. 2023; 24(5):4449. https://doi.org/10.3390/ijms24054449
Chicago/Turabian StyleTerracciano, Monica, Simas Račkauskas, Andrea Patrizia Falanga, Sara Martino, Giovanna Chianese, Francesca Greco, Gennaro Piccialli, Guido Viscardi, Luca De Stefano, Giorgia Oliviero, and et al. 2023. "ZnO Tetrapods for Label-Free Optical Biosensing: Physicochemical Characterization and Functionalization Strategies" International Journal of Molecular Sciences 24, no. 5: 4449. https://doi.org/10.3390/ijms24054449
APA StyleTerracciano, M., Račkauskas, S., Falanga, A. P., Martino, S., Chianese, G., Greco, F., Piccialli, G., Viscardi, G., De Stefano, L., Oliviero, G., Borbone, N., & Rea, I. (2023). ZnO Tetrapods for Label-Free Optical Biosensing: Physicochemical Characterization and Functionalization Strategies. International Journal of Molecular Sciences, 24(5), 4449. https://doi.org/10.3390/ijms24054449