Pediatric Acute Lymphoblastic Leukemia Emerging Therapies—From Pathway to Target
Abstract
:1. Introduction
2. Molecular Targets
2.1. Fusion Genes
2.2. Aurora Kinase Pathway
- NCT01431664, 7 AML+ALL patients with a median age of 3 years; none achieve remission. The current trial represents a first-in-child study of AT9283 in hematological malignancies [59].
2.3. MAPK Pathway
2.4. The Ubiquitin-Proteasomal System (UPS)
3. High-Risk Leukemia Patients without Molecular Targets
- NCT02807883—completed, 23 patients were enrolled, the 1-year overall survival was 85%, progression-free survival (PFS)—71%, and nonrelapse mortality (NRM) rates and 0%, respectively [92];
- NCT01471782—included children and adolescents up to 17 years of age with relapsed/refractory B-cell precursor acute lymphoblastic leukemia (BCP-ALL); 49 patients were treated in phase I and 44 patients in phase II. Among the 70 patients who received the recommended dosage, 27 achieved complete remission within the first two cycles, 14 (52%) of whom achieved a complete minimal residual disease response. This was the first such trial performed on children that evidenced the efficient antileukemic activity of single-agent blinatumomab in achieving a complete MRD response in children with relapsed/refractory BCP-ALL [93];
- NCT04723342—study is still recruiting—the goal of the study is to improve the treatment of patients with primary B-cell precursor acute lymphoblastic leukemia by incorporating monoclonal bispecific antibodies in post-induction treatment while reducing chemotherapy [94];
- NCT02412306—included children and adults. A few serious adverse effects were registered, such as cytokine release syndrome in 1 (6%) pediatric patient (Blinatumomab was discontinued). Eleven (79%) adults achieved complete remission, and also five (29%) pediatric patients, of which two had an MRD response [95];
- NCT02877303—still recruiting; Blinatumomab, Inotuzumab Ozogamicin, and Combination Chemotherapy as Frontline Therapy in Treating Patients With B Acute Lymphoblastic Leukemia—Includes Patients Over 14 Years of age; incorporation of Inotuzumab Ozogamicin, blinatumomab, and venetoclax in frontline ALL [96].
CAR T-Cell Therapy
- -
- NCT02435849—ELIANA trial (global collaborative study) included 75 patients, children and young adults treated with CAR T-cell (CD19). The overall remission rate (OR) was 81%, with all patients being negative for MRD. The event-free survival and overall survival were 73% and 90%, respectively, at 6 months and 50% and 76%, respectively, at 12 months [114];
- -
- NCT03289455—AMELIA trial—a phase 1 trial of 45 children and young adults with relapsed or refractory B-lineage acute lymphoblastic leukemia was conducted using a CD19 CAR-T. The MRD- remission rate was 93% [117];
- -
- NCT02315612—single center phase 1 trial, included 58 children and young adults treated with CD22 CAR T-cell infusion. The CR was 70%, the median OS was 13.4 months and for the patients who achieved a complete response, the median relapse-free survival was 6.0 months [118];
- -
- NCT01860937—multicenter clinical trial that included 25 patients (children and young adults) treated with CD19 CAR T-cell—75% patients achived CR, 89% were MRD negative [119];
- -
- NCT01593696—phase I trial on children and young adults—50 patients were included, treated with CD19 CAR T-cell (autologus). A total of 62.0% patients achieved a complete remission (CR), 90.3% presented MRD negative [120].
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rafei, H.; Kantarjian, H.M.; Jabbour, E.J. Targeted therapy paves the way for the cure of acute lymphoblastic leukaemia. Br. J. Haematol. 2020, 188, 207–223. [Google Scholar] [CrossRef]
- Pui, C.H. Precision medicine in acute lymphoblastic leukemia. Front. Med. 2020, 14, 689–700. [Google Scholar] [CrossRef]
- Tran, T.H.; Hunger, S.P. The genomic landscape of pediatric acute lymphoblastic leukemia and precision medicine opportunities. Semin. Cancer Biol. 2022, 84, 144–152. [Google Scholar] [CrossRef]
- Vellichirammal, N.N.; Chaturvedi, N.K.; Joshi, S.S.; Coulter, D.W.; Guda, C. Fusion genes as biomarkers in pediatric cancers: A review of the current state and applicability in diagnostics and personalized therapy. Cancer Lett. 2021, 499, 24–38. [Google Scholar] [CrossRef] [PubMed]
- Pui, C.H.; Yang, J.J.; Hunger, S.P.; Pieters, R.; Schrappe, M.; Biondi, A.; Vora, A.; Baruchel, A.; Silverman, L.B.; Schmiegelow, K.; et al. Childhood Acute Lymphoblastic Leukemia: Progress Through Collaboration. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2015, 33, 2938–2948. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drozak, P.; Brylinski, L.; Zawitkowska, J. A Comprehensive Overview of Recent Advances in Epigenetics in Pediatric Acute Lymphoblastic Leukemia. Cancers 2022, 14, 5384. [Google Scholar] [CrossRef] [PubMed]
- Tran, T.H.; Shah, A.T.; Loh, M.L. Precision Medicine in Pediatric Oncology: Translating Genomic Discoveries into Optimized Therapies. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2017, 23, 5329–5338. [Google Scholar] [CrossRef] [Green Version]
- Pui, C.H.; Robison, L.L.; Look, A.T. Acute lymphoblastic leukaemia. Lancet 2008, 371, 1030–1043. [Google Scholar] [CrossRef]
- Malard, F.; Mohty, M. Acute lymphoblastic leukaemia. Lancet 2020, 395, 1146–1162. [Google Scholar] [CrossRef]
- Yoshihara, K.; Wang, Q.; Torres-Garcia, W.; Zheng, S.; Vegesna, R.; Kim, H.; Verhaak, R.G. The landscape and therapeutic relevance of cancer-associated transcript fusions. Oncogene 2015, 34, 4845–4854. [Google Scholar] [CrossRef] [Green Version]
- Dupain, C.; Harttrampf, A.C.; Urbinati, G.; Geoerger, B.; Massaad-Massade, L. Relevance of Fusion Genes in Pediatric Cancers: Toward Precision Medicine. Mol. Ther. Nucleic Acids 2017, 6, 315–326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, S.; Razzaq, S.K.; Vo, A.D.; Gautam, M.; Li, H. Identifying fusion transcripts using next generation sequencing. Wiley Interdiscip. Rev. RNA 2016, 7, 811–823. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marincevic-Zuniga, Y.; Dahlberg, J.; Nilsson, S.; Raine, A.; Nystedt, S.; Lindqvist, C.M.; Berglund, E.C.; Abrahamsson, J.; Cavelier, L.; Forestier, E.; et al. Transcriptome sequencing in pediatric acute lymphoblastic leukemia identifies fusion genes associated with distinct DNA methylation profiles. J. Hematol. Oncol. 2017, 10, 148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.F.; Wang, B.Y.; Zhang, W.N.; Huang, J.Y.; Li, B.S.; Zhang, M.; Jiang, L.; Li, J.F.; Wang, M.J.; Dai, Y.J.; et al. Genomic Profiling of Adult and Pediatric B-cell Acute Lymphoblastic Leukemia. EBioMedicine 2016, 8, 173–183. [Google Scholar] [CrossRef] [Green Version]
- Lilljebjorn, H.; Henningsson, R.; Hyrenius-Wittsten, A.; Olsson, L.; Orsmark-Pietras, C.; von Palffy, S.; Askmyr, M.; Rissler, M.; Schrappe, M.; Cario, G.; et al. Identification of ETV6-RUNX1-like and DUX4-rearranged subtypes in paediatric B-cell precursor acute lymphoblastic leukaemia. Nat. Commun. 2016, 7, 11790. [Google Scholar] [CrossRef]
- Aifantis, I.; Raetz, E.; Buonamici, S. Molecular pathogenesis of T-cell leukaemia and lymphoma. Nat. Rev. Immunol. 2008, 8, 380–390. [Google Scholar] [CrossRef]
- Mullighan, C.G. Genomic characterization of childhood acute lymphoblastic leukemia. Semin. Hematol. 2013, 50, 314–324. [Google Scholar] [CrossRef] [Green Version]
- Chen, B.; Jiang, L.; Zhong, M.L.; Li, J.F.; Li, B.S.; Peng, L.J.; Dai, Y.T.; Cui, B.W.; Yan, T.Q.; Zhang, W.N.; et al. Identification of fusion genes and characterization of transcriptome features in T-cell acute lymphoblastic leukemia. Proc. Natl. Acad. Sci. USA 2018, 115, 373–378. [Google Scholar] [CrossRef] [Green Version]
- Sanchez-Martin, M.; Ferrando, A. The NOTCH1-MYC highway toward T-cell acute lymphoblastic leukemia. Blood 2017, 129, 1124–1133. [Google Scholar] [CrossRef] [Green Version]
- Shtivelman, E.; Lifshitz, B.; Gale, R.P.; Canaani, E. Fused transcript of abl and bcr genes in chronic myelogenous leukaemia. Nature 1985, 315, 550–554. [Google Scholar] [CrossRef]
- Ferrando, A.A.; Look, A.T. Clinical implications of recurring chromosomal and associated molecular abnormalities in acute lymphoblastic leukemia. Semin. Hematol. 2000, 37, 381–395. [Google Scholar] [CrossRef] [PubMed]
- Malczewska, M.; Kosmider, K.; Bednarz, K.; Ostapinska, K.; Lejman, M.; Zawitkowska, J. Recent Advances in Treatment Options for Childhood Acute Lymphoblastic Leukemia. Cancers 2022, 14, 2021. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, U.; Ahmed, D.; Awan, M.N.; Ahmad, U.; Ahsan, B.; Iftikhar, R.; Mir, M.A.; Bokhari, S.W. Outcomes of Philadelphia Positive Acute Lymphoblastic Leukemia in Adolescent and Young Adults. Cureus 2022, 14, e32467. [Google Scholar] [CrossRef]
- Kaczmarska, A.; Sliwa, P.; Lejman, M.; Zawitkowska, J. The Use of Inhibitors of Tyrosine Kinase in Paediatric Haemato-Oncology-When and Why? Int. J. Mol. Sci. 2021, 22, 12089. [Google Scholar] [CrossRef] [PubMed]
- Schultz, K.R.; Prestidge, T.; Camitta, B. Philadelphia chromosome-positive acute lymphoblastic leukemia in children: New and emerging treatment options. Expert Rev. Hematol. 2010, 3, 731–742. [Google Scholar] [CrossRef] [PubMed]
- Brave, M.; Goodman, V.; Kaminskas, E.; Farrell, A.; Timmer, W.; Pope, S.; Harapanhalli, R.; Saber, H.; Morse, D.; Bullock, J.; et al. Sprycel for chronic myeloid leukemia and Philadelphia chromosome-positive acute lymphoblastic leukemia resistant to or intolerant of imatinib mesylate. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2008, 14, 352–359. [Google Scholar] [CrossRef] [Green Version]
- Biondi, A.; Gandemer, V.; De Lorenzo, P.; Cario, G.; Campbell, M.; Castor, A.; Pieters, R.; Baruchel, A.; Vora, A.; Leoni, V.; et al. Imatinib treatment of paediatric Philadelphia chromosome-positive acute lymphoblastic leukaemia (EsPhALL2010): A prospective, intergroup, open-label, single-arm clinical trial. Lancet. Haematol. 2018, 5, e641–e652. [Google Scholar] [CrossRef] [Green Version]
- O’Hare, T.; Walters, D.K.; Stoffregen, E.P.; Jia, T.; Manley, P.W.; Mestan, J.; Cowan-Jacob, S.W.; Lee, F.Y.; Heinrich, M.C.; Deininger, M.W.; et al. In vitro activity of Bcr-Abl inhibitors AMN107 and BMS-354825 against clinically relevant imatinib-resistant Abl kinase domain mutants. Cancer Res. 2005, 65, 4500–4505. [Google Scholar] [CrossRef] [Green Version]
- Foa, R.; Bassan, R.; Vitale, A.; Elia, L.; Piciocchi, A.; Puzzolo, M.C.; Canichella, M.; Viero, P.; Ferrara, F.; Lunghi, M.; et al. Dasatinib-Blinatumomab for Ph-Positive Acute Lymphoblastic Leukemia in Adults. N. Engl. J. Med. 2020, 383, 1613–1623. [Google Scholar] [CrossRef]
- Shen, S.; Chen, X.; Cai, J.; Yu, J.; Gao, J.; Hu, S.; Zhai, X.; Liang, C.; Ju, X.; Jiang, H.; et al. Effect of Dasatinib vs Imatinib in the Treatment of Pediatric Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia: A Randomized Clinical Trial. JAMA Oncol. 2020, 6, 358–366. [Google Scholar] [CrossRef]
- ClinicalTrials.gov. A Study of Ponatinib With Chemotherapy in Children, Teenagers, and Adults With Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia. Available online: https://clinicaltrials.gov/ct2/show/NCT04501614?term=ponatinib&cond=Acute+Lymphoblastic+Leukemia&age=0&draw=2&rank=1 (accessed on 30 January 2023).
- ClinicalTrials.gov. Safety and Efficacy of Ponatinib for Treatment of Pediatric Recurrent or Refractory Leukemias, Lymphomas or Solid Tumors. Available online: https://clinicaltrials.gov/ct2/show/NCT03934372?term=ponatinib&cond=Acute+Lymphoblastic+Leukemia&age=0&draw=2&rank=2 (accessed on 10 January 2023).
- Tasian, S.K.; Peters, C. Targeted Therapy or Transplantation for Paediatric ABL-class Ph-like Acute Lymphocytic Leukaemia? Lancet. Haematol. 2020, 7, e858–e859. [Google Scholar] [CrossRef]
- ClinicalTrials.gov. Pediatric Philadelphia Positive Acute Lymphoblastic Leukemia. Available online: https://clinicaltrials.gov/ct2/show/NCT01460160?cond=Acute+Lymphoblastic+Leukemia&intr=Dasatinib&age=0&draw=2&rank=1 (accessed on 3 February 2023).
- ClinicalTrials.gov. Dasatinib and Combination Chemotherapy in Treating Young Patients with Newly Diagnosed Acute Lymphoblastic Leukemia. Available online: https://clinicaltrials.gov/ct2/show/NCT00720109?cond=Acute+Lymphoblastic+Leukemia&intr=Dasatinib&age=0&draw=2&rank=3 (accessed on 3 February 2023).
- Slayton, W.B.; Schultz, K.R.; Kairalla, J.A.; Devidas, M.; Mi, X.; Pulsipher, M.A.; Chang, B.H.; Mullighan, C.; Iacobucci, I.; Silverman, L.B.; et al. Dasatinib Plus Intensive Chemotherapy in Children, Adolescents, and Young Adults With Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia: Results of Children′s Oncology Group Trial AALL0622. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2018, 36, 2306–2314. [Google Scholar] [CrossRef] [PubMed]
- ClinicalTrials.gov. A Pharmacokinetic (PK) Study of Nilotinib in Pediatric Patients With Philadelphia Chromosome-positive (Ph+) Chronic Myelogenous Leukemia (CML) or Acute Lymphoblastic Leukemia (ALL). Available online: https://clinicaltrials.gov/ct2/show/NCT01077544?cond=Acute+Lymphoblastic+Leukemia&intr=Nilotinib&age=0&draw=2&rank=1 (accessed on 3 February 2023).
- Hijiya, N.; Zwaan, C.M.; Rizzari, C.; Foa, R.; Abbink, F.; Lancaster, D.; Landman-Parker, J.; Millot, F.; Moppett, J.; Nelken, B.; et al. Pharmacokinetics of Nilotinib in Pediatric Patients with Philadelphia Chromosome-Positive Chronic Myeloid Leukemia or Acute Lymphoblastic Leukemia. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2020, 26, 812–820. [Google Scholar] [CrossRef] [PubMed]
- Slattery, S.D.; Mancini, M.A.; Brinkley, B.R.; Hall, R.M. Aurora-C kinase supports mitotic progression in the absence of Aurora-B. Cell Cycle 2009, 8, 2984–2994. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Willems, E.; Dedobbeleer, M.; Digregorio, M.; Lombard, A.; Lumapat, P.N.; Rogister, B. The functional diversity of Aurora kinases: A comprehensive review. Cell Div. 2018, 13, 7. [Google Scholar] [CrossRef] [Green Version]
- Goldenson, B.; Crispino, J.D. The aurora kinases in cell cycle and leukemia. Oncogene 2015, 34, 537–545. [Google Scholar] [CrossRef] [Green Version]
- Fu, J.; Bian, M.; Jiang, Q.; Zhang, C. Roles of Aurora Kinases in Mitosis and Tumorigenesis. Mol. Cancer Res. 2007, 5, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Damodaran, A.P.; Vaufrey, L.; Gavard, O.; Prigent, C. Aurora A Kinase Is a Priority Pharmaceutical Target for the Treatment of Cancers. Trends Pharmacol. Sci. 2017, 38, 687–700. [Google Scholar] [CrossRef]
- Sasai, K.; Katayama, H.; Stenoien, D.; Fujii, S.; Honda, R.; Kimura, M.; Okano, Y.; Tatsuka, M.; Suzuki, F.; Nigg, E.; et al. Aurora-C kinase is a novel chromosomal passenger protein that can complement Aurora-B kinase function in mitotic cells. Cell Motil. Cytoskelet. 2004, 59, 249–263. [Google Scholar] [CrossRef]
- D′Assoro, A.B.; Haddad, T.; Galanis, E. Aurora-A Kinase as a Promising Therapeutic Target in Cancer. Front. Oncol. 2015, 5, 295. [Google Scholar] [CrossRef] [Green Version]
- Lee-Sherick, A.B.; Linger, R.M.; Gore, L.; Keating, A.K.; Graham, D.K. Targeting paediatric acute lymphoblastic leukaemia: Novel therapies currently in development. Br. J. Haematol. 2010, 151, 295–311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Warecki, B.; Sullivan, W. Micronuclei Formation Is Prevented by Aurora B-Mediated Exclusion of HP1a from Late-Segregating Chromatin in Drosophila. Genetics 2018, 210, 171–187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moreira-Nunes, C.A.; Mesquita, F.P.; Portilho, A.J.d.S.; Mello Júnior, F.A.R.; Maués, J.H.d.S.; Pantoja, L.d.C.; Wanderley, A.V.; Khayat, A.S.; Zuercher, W.J.; Montenegro, R.C.; et al. Targeting aurora kinases as a potential prognostic and therapeutical biomarkers in pediatric acute lymphoblastic leukaemia. Sci. Rep. 2020, 10, 21272. [Google Scholar] [CrossRef] [PubMed]
- Chieffi, P. Aurora B: A new promising therapeutic target in cancer. Intractable Rare Dis. Res. 2018, 7, 141–144. [Google Scholar] [CrossRef] [Green Version]
- Moore, A.S.; Blagg, J.; Linardopoulos, S.; Pearson, A.D. Aurora kinase inhibitors: Novel small molecules with promising activity in acute myeloid and Philadelphia-positive leukemias. Leukemia 2010, 24, 671–678. [Google Scholar] [CrossRef] [Green Version]
- Yee, K.W.; Chen, H.W.; Hedley, D.W.; Chow, S.; Brandwein, J.; Schuh, A.C.; Schimmer, A.D.; Gupta, V.; Sanfelice, D.; Johnson, T.; et al. A phase I trial of the aurora kinase inhibitor, ENMD-2076, in patients with relapsed or refractory acute myeloid leukemia or chronic myelomonocytic leukemia. Investig. New Drugs 2016, 34, 614–624. [Google Scholar] [CrossRef]
- Du, R.; Huang, C.; Liu, K.; Li, X.; Dong, Z. Targeting AURKA in Cancer: Molecular mechanisms and opportunities for Cancer therapy. Mol. Cancer 2021, 20, 15. [Google Scholar] [CrossRef]
- ClinicalTrials.gov. Phase II Trial of Alisertib With Induction Chemotherapy in High-Risk AML. Available online: https://clinicaltrials.gov/ct2/show/NCT02560025?term=NCT02560025&draw=2&rank=1 (accessed on 10 January 2023).
- Brunner, A.M.; Blonquist, T.M.; DeAngelo, D.J.; McMasters, M.; Fell, G.; Hermance, N.M.; Winer, E.S.; Lindsley, R.C.; Hobbs, G.S.; Amrein, P.C.; et al. Alisertib plus induction chemotherapy in previously untreated patients with high-risk, acute myeloid leukaemia: A single-arm, phase 2 trial. Lancet. Haematol. 2020, 7, e122–e133. [Google Scholar] [CrossRef]
- ClinicalTrials.gov. Alisertib for Acute Myeloid Leukemia. Available online: https://clinicaltrials.gov/ct2/show/NCT01779843?cond=NCT01779843&draw=2&rank=1 (accessed on 12 January 2023).
- Fathi, A.T.; Wander, S.A.; Blonquist, T.M.; Brunner, A.M.; Amrein, P.C.; Supko, J.; Hermance, N.M.; Manning, A.L.; Sadrzadeh, H.; Ballen, K.K.; et al. Phase I study of the aurora A kinase inhibitor alisertib with induction chemotherapy in patients with acute myeloid leukemia. Haematologica 2017, 102, 719–727. [Google Scholar] [CrossRef]
- Kantarjian, H.M.; Schuster, M.W.; Jain, N.; Advani, A.; Jabbour, E.; Gamelin, E.; Rasmussen, E.; Juan, G.; Anderson, A.; Chow, V.F.; et al. A phase 1 study of AMG 900, an orally administered pan-aurora kinase inhibitor, in adult patients with acute myeloid leukemia. Am. J. Hematol. 2017, 92, 660–667. [Google Scholar] [CrossRef] [Green Version]
- ClinicalTrials.gov. Study Evaluating Orally Administered AMG 900 in Adult Subjects With Acute Myeloid Leukemia. Available online: https://clinicaltrials.gov/ct2/show/NCT01380756 (accessed on 12 January 2023).
- Machado, C.B.; DA Silva, E.L.; Dias Nogueira, B.M.; DA Silva, J.B.S.; DE Moraes Filho, M.O.; Montenegro, R.C.; DE Moraes, M.E.A.; Moreira-Nunes, C.A. The Relevance of Aurora Kinase Inhibition in Hematological Malignancies. Cancer Diagn. Progn. 2021, 1, 111–126. [Google Scholar] [CrossRef]
- Zhou, X.; Mould, D.R. Population Pharmacokinetics and Exposure-Safety Relationships of Alisertib in Children and Adolescents With Advanced Malignancies. J. Clin. Pharmacol. 2022, 62, 206–219. [Google Scholar] [CrossRef]
- Mossé, Y.P.; Fox, E.; Teachey, D.T. A Phase II Study of Alisertib in Children with Recurrent/Refractory Solid Tumors or Leukemia: Children’s Oncology Group Phase I and Pilot Consortium (ADVL0921). Clin. Cancer Res. 2019, 25, 3229–3238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muta, Y.; Matsuda, M.; Imajo, M. Divergent Dynamics and Functions of ERK MAP Kinase Signaling in Development, Homeostasis and Cancer: Lessons from Fluorescent Bioimaging. Cancers 2019, 11, 513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, Y.J.; Pan, W.W.; Liu, S.B.; Shen, Z.F.; Xu, Y.; Hu, L.L. ERK/MAPK signalling pathway and tumorigenesis. Exp. Ther. Med. 2020, 19, 1997–2007. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernandez-Medarde, A.; Santos, E. Ras in cancer and developmental diseases. Genes Cancer 2011, 2, 344–358. [Google Scholar] [CrossRef] [Green Version]
- Knight, T.; Irving, J.A. Ras/Raf/MEK/ERK Pathway Activation in Childhood Acute Lymphoblastic Leukemia and Its Therapeutic Targeting. Front. Oncol. 2014, 4, 160. [Google Scholar] [CrossRef]
- Samatar, A.A.; Poulikakos, P.I. Targeting RAS-ERK signalling in cancer: Promises and challenges. Nat. Rev. Drug Discov. 2014, 13, 928–942. [Google Scholar] [CrossRef]
- Davidsson, J.; Paulsson, K.; Lindgren, D.; Lilljebjorn, H.; Chaplin, T.; Forestier, E.; Andersen, M.K.; Nordgren, A.; Rosenquist, R.; Fioretos, T.; et al. Relapsed childhood high hyperdiploid acute lymphoblastic leukemia: Presence of preleukemic ancestral clones and the secondary nature of microdeletions and RTK-RAS mutations. Leukemia 2010, 24, 924–931. [Google Scholar] [CrossRef] [Green Version]
- Moorman, A.V.; Richards, S.M.; Martineau, M.; Cheung, K.L.; Robinson, H.M.; Jalali, G.R.; Broadfield, Z.J.; Harris, R.L.; Taylor, K.E.; Gibson, B.E.; et al. Outcome heterogeneity in childhood high-hyperdiploid acute lymphoblastic leukemia. Blood 2003, 102, 2756–2762. [Google Scholar] [CrossRef]
- Case, M.; Matheson, E.; Minto, L.; Hassan, R.; Harrison, C.J.; Bown, N.; Bailey, S.; Vormoor, J.; Hall, A.G.; Irving, J.A. Mutation of genes affecting the RAS pathway is common in childhood acute lymphoblastic leukemia. Cancer Res. 2008, 68, 6803–6809. [Google Scholar] [CrossRef] [Green Version]
- van der Zwet, J.C.G.; Buijs-Gladdines, J.G.C.A.M.; Cordo’, V.; Debets, D.O.; Smits, W.K.; Chen, Z.; Dylus, J.; Zaman, G.J.R.; Altelaar, M.; Oshima, K.; et al. MAPK-ERK is a central pathway in T-cell acute lymphoblastic leukemia that drives steroid resistance. Leukemia 2021, 35, 3394–3405. [Google Scholar] [CrossRef] [PubMed]
- Jones, C.L.; Gearheart, C.M.; Fosmire, S.; Delgado-Martin, C.; Evensen, N.A.; Bride, K.; Waanders, A.J.; Pais, F.; Wang, J.; Bhatla, T.; et al. MAPK signaling cascades mediate distinct glucocorticoid resistance mechanisms in pediatric leukemia. Blood 2015, 126, 2202–2212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, X.; Zhou, C.; Li, Y.; Deng, Y.; Lu, W.; Li, J. Upregulation of circ-0000745 in acute lymphoblastic leukemia enhanced cell proliferation by activating ERK pathway. Gene 2020, 751, 144726. [Google Scholar] [CrossRef] [PubMed]
- Pierro, J.; Hogan, L.E.; Bhatla, T.; Carroll, W.L. New targeted therapies for relapsed pediatric acute lymphoblastic leukemia. Expert Rev. Anticancer Ther. 2017, 17, 725–736. [Google Scholar] [CrossRef] [PubMed]
- Montano, A.; Forero-Castro, M.; Marchena-Mendoza, D.; Benito, R.; Hernandez-Rivas, J.M. New Challenges in Targeting Signaling Pathways in Acute Lymphoblastic Leukemia by NGS Approaches: An Update. Cancers 2018, 10, 110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matheson, E.C.; Thomas, H.; Case, M.; Blair, H.; Jackson, R.K.; Masic, D.; Veal, G.; Halsey, C.; Newell, D.R.; Vormoor, J.; et al. Glucocorticoids and selumetinib are highly synergistic in RAS pathway-mutated childhood acute lymphoblastic leukemia through upregulation of BIM. Haematologica 2019, 104, 1804–1811. [Google Scholar] [CrossRef] [Green Version]
- ClinicalTrials.gov. International Trial of Selumetinib in Combination With Dexamethasone for the Treatment of Acute Lymphoblastic Leukaemia (SeluDex). Available online: https://clinicaltrials.gov/ct2/show/NCT03705507 (accessed on 11 January 2023).
- Ciechanover, A. The ubiquitin-proteasome pathway: On protein death and cell life. EMBO J. 1998, 17, 7151–7160. [Google Scholar] [CrossRef] [Green Version]
- Zheng, N.; Shabek, N. Ubiquitin Ligases: Structure, Function, and Regulation. Annu. Rev. Biochem. 2017, 86, 129–157. [Google Scholar] [CrossRef]
- Colland, F. The therapeutic potential of deubiquitinating enzyme inhibitors. Biochem. Soc. Trans. 2010, 38, 137–143. [Google Scholar] [CrossRef] [Green Version]
- Swatek, K.N.; Komander, D. Ubiquitin modifications. Cell Res. 2016, 26, 399–422. [Google Scholar] [CrossRef] [Green Version]
- Heinemeyer, W.; Fischer, M.; Krimmer, T.; Stachon, U.; Wolf, D.H. The active sites of the eukaryotic 20 S proteasome and their involvement in subunit precursor processing. J. Biol. Chem. 1997, 272, 25200–25209. [Google Scholar] [CrossRef] [Green Version]
- Grice, G.L.; Nathan, J.A. The recognition of ubiquitinated proteins by the proteasome. Cell. Mol. Life Sci. CMLS 2016, 73, 3497–3506. [Google Scholar] [CrossRef] [Green Version]
- Peth, A.; Uchiki, T.; Goldberg, A.L. ATP-dependent steps in the binding of ubiquitin conjugates to the 26S proteasome that commit to degradation. Mol. Cell 2010, 40, 671–681. [Google Scholar] [CrossRef] [Green Version]
- Lu, S.; Wang, J. The resistance mechanisms of proteasome inhibitor bortezomib. Biomark. Res. 2013, 1, 13. [Google Scholar] [CrossRef] [Green Version]
- Szczepanek, J.; Pogorzala, M.; Konatkowska, B.; Juraszewska, E.; Badowska, W.; Olejnik, I.; Kuzmicz, M.; Stanczak, E.; Malinowska, I.; Stefaniak, J.; et al. Differential ex vivo activity of bortezomib in newly diagnosed paediatric acute lymphoblastic and myeloblastic leukaemia. Anticancer Res. 2010, 30, 2119–2124. [Google Scholar] [PubMed]
- Kumatori, A.; Tanaka, K.; Inamura, N.; Sone, S.; Ogura, T.; Matsumoto, T.; Tachikawa, T.; Shin, S.; Ichihara, A. Abnormally high expression of proteasomes in human leukemic cells. Proc. Natl. Acad. Sci. USA 1990, 87, 7071–7075. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, C.R.C.; Abdul-Majeed, S.; Cael, B.; Barta, S.K. Clinical Pharmacokinetics and Pharmacodynamics of Bortezomib. Clin. Pharmacokinet. 2019, 58, 157–168. [Google Scholar] [CrossRef]
- Lejman, M.; Kusmierczuk, K.; Bednarz, K.; Ostapinska, K.; Zawitkowska, J. Targeted Therapy in the Treatment of Pediatric Acute Lymphoblastic Leukemia-Therapy and Toxicity Mechanisms. Int. J. Mol. Sci. 2021, 22, 9827. [Google Scholar] [CrossRef] [PubMed]
- Queudeville, M.; Ebinger, M. Blinatumomab in Pediatric Acute Lymphoblastic Leukemia-From Salvage to First Line Therapy (A Systematic Review). J. Clin. Med. 2021, 10, 2544. [Google Scholar] [CrossRef] [PubMed]
- Godwin, C.D.; Gale, R.P.; Walter, R.B. Gemtuzumab ozogamicin in acute myeloid leukemia. Leukemia 2017, 31, 1855–1868. [Google Scholar] [CrossRef] [PubMed]
- Newman, H.; Teachey, D.T. A Bright Horizon: Immunotherapy for Pediatric T-Cell Malignancies. Int. J. Mol. Sci. 2022, 23, 8600. [Google Scholar] [CrossRef] [PubMed]
- Gaballa, M.R.; Banerjee, P.; Milton, D.R.; Jiang, X.; Ganesh, C.; Khazal, S.; Nandivada, V.; Islam, S.; Kaplan, M.; Daher, M.; et al. Blinatumomab maintenance after allogeneic hematopoietic cell transplantation for B-lineage acute lymphoblastic leukemia. Blood 2022, 139, 1908–1919. [Google Scholar] [CrossRef] [PubMed]
- von Stackelberg, A.; Locatelli, F.; Zugmaier, G.; Handgretinger, R.; Trippett, T.M.; Rizzari, C.; Bader, P.; O’Brien, M.M.; Brethon, B.; Bhojwani, D.; et al. Phase I/Phase II Study of Blinatumomab in Pediatric Patients With Relapsed/Refractory Acute Lymphoblastic Leukemia. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2016, 34, 4381–4389. [Google Scholar] [CrossRef] [Green Version]
- ClinicalTrials.gov. Acute Lymphoblastic Leukemia Treatment Protocol Moscow-Berlin 2019 Pilot. Available online: https://clinicaltrials.gov/ct2/show/NCT04723342?term=NCT04723342&draw=2&rank=1 (accessed on 15 January 2023).
- Goto, H.; Ogawa, C.; Iida, H.; Horibe, K.; Oh, I.; Takada, S.; Maeda, Y.; Minami, H.; Nakashima, Y.; Morris, J.D.; et al. Safety and Efficacy of Blinatumomab in Japanese Adult and Pediatric Patients with Relapsed/Refractory B-Cell Precursor Acute Lymphoblastic Leukemia: Final Results from an Expansion Cohort. Acta Haematol. 2022, 145, 592–602. [Google Scholar] [CrossRef]
- Jabbour, E.; Kantarjian, H. The Hyper-CVAD Regimen is an Optimal Pediatric-inspired Regimen for Adolescents and Adults With Acute Lymphoblastic Leukemia. Clin. Lymphoma Myeloma Leuk. 2021, 21, 63–65. [Google Scholar] [CrossRef]
- Locatelli, F.; Zugmaier, G.; Mergen, N.; Bader, P.; Jeha, S.; Schlegel, P.G.; Bourquin, J.P.; Handgretinger, R.; Brethon, B.; Rossig, C.; et al. Correction: Blinatumomab in pediatric patients with relapsed/refractory acute lymphoblastic leukemia: Results of the RIALTO trial, an expanded access study. Blood Cancer J. 2021, 11, 173. [Google Scholar] [CrossRef]
- Newman, M.J.; Benani, D.J. A review of blinatumomab, a novel immunotherapy. J. Oncol. Pharm. Pract. Off. Publ. Int. Soc. Oncol. Pharm. Pract. 2016, 22, 639–645. [Google Scholar] [CrossRef]
- Hoffman, L.M.; Gore, L. Blinatumomab, a Bi-Specific Anti-CD19/CD3 BiTE((R)) Antibody for the Treatment of Acute Lymphoblastic Leukemia: Perspectives and Current Pediatric Applications. Front. Oncol. 2014, 4, 63. [Google Scholar] [CrossRef] [Green Version]
- Braig, F.; Brandt, A.; Goebeler, M.; Tony, H.P.; Kurze, A.K.; Nollau, P.; Bumm, T.; Bottcher, S.; Bargou, R.C.; Binder, M. Resistance to anti-CD19/CD3 BiTE in acute lymphoblastic leukemia may be mediated by disrupted CD19 membrane trafficking. Blood 2017, 129, 100–104. [Google Scholar] [CrossRef] [Green Version]
- ClinicalTrials.gov. Blinatumomab and Pembrolizumab for Adults With Relapsed/Refractory B-cell Acute Lymphoblastic Leukemia With High Marrow Lymphoblasts. Available online: https://clinicaltrials.gov/ct2/show/NCT03160079?term=NCT03160079&draw=2&rank=1 (accessed on 15 January 2023).
- de Vries, J.F.; Zwaan, C.M.; De Bie, M.; Voerman, J.S.; den Boer, M.L.; van Dongen, J.J.; van der Velden, V.H. The novel calicheamicin-conjugated CD22 antibody inotuzumab ozogamicin (CMC-544) effectively kills primary pediatric acute lymphoblastic leukemia cells. Leukemia 2012, 26, 255–264. [Google Scholar] [CrossRef]
- Shi, Z.; Zhu, Y.; Zhang, J.; Chen, B. Monoclonal antibodies: New chance in the management of B-cell acute lymphoblastic leukemia. Hematology 2022, 27, 642–652. [Google Scholar] [CrossRef]
- Kantarjian, H.M.; DeAngelo, D.J.; Stelljes, M.; Liedtke, M.; Stock, W.; Gokbuget, N.; O’Brien, S.M.; Jabbour, E.; Wang, T.; Liang White, J.; et al. Inotuzumab ozogamicin versus standard of care in relapsed or refractory acute lymphoblastic leukemia: Final report and long-term survival follow-up from the randomized, phase 3 INO-VATE study. Cancer 2019, 125, 2474–2487. [Google Scholar] [CrossRef] [Green Version]
- Rytting, M.; Triche, L.; Thomas, D.; O’Brien, S.; Kantarjian, H. Initial experience with CMC-544 (inotuzumab ozogamicin) in pediatric patients with relapsed B-cell acute lymphoblastic leukemia. Pediatr. Blood Cancer 2014, 61, 369–372. [Google Scholar] [CrossRef] [Green Version]
- Bhojwani, D.; Sposto, R.; Shah, N.N.; Rodriguez, V.; Yuan, C.; Stetler-Stevenson, M.; O’Brien, M.M.; McNeer, J.L.; Quereshi, A.; Cabannes, A.; et al. Inotuzumab ozogamicin in pediatric patients with relapsed/refractory acute lymphoblastic leukemia. Leukemia 2019, 33, 884, reprinted in Leukemia 2019, 33, 1061–1062. https://doi.org/10.1038/s41375-019-0426-8. [Google Scholar] [CrossRef]
- Calvo, C.; Cabannes-Hamy, A.; Adjaoud, D.; Bruno, B.; Blanc, L.; Boissel, N.; Tabone, M.D.; Willson-Plat, G.; Villemonteix, J.; Baruchel, A.; et al. Inotuzumab ozogamicin compassionate use for French paediatric patients with relapsed or refractory CD22-positive B-cell acute lymphoblastic leukaemia. Br. J. Haematol. 2020, 190, e53–e56. [Google Scholar] [CrossRef] [PubMed]
- Im, A.; Pavletic, S.Z. Immunotherapy in hematologic malignancies: Past, present, and future. J. Hematol. Oncol. 2017, 10, 94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maus, M.V.; Grupp, S.A.; Porter, D.L.; June, C.H. Antibody-modified T cells: CARs take the front seat for hematologic malignancies. Blood 2014, 123, 2625–2635. [Google Scholar] [CrossRef] [Green Version]
- Maude, S.L.; Teachey, D.T.; Porter, D.L.; Grupp, S.A. CD19-targeted chimeric antigen receptor T-cell therapy for acute lymphoblastic leukemia. Blood 2015, 125, 4017–4023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jasinski, S.; De Los Reyes, F.A.; Yametti, G.C.; Pierro, J.; Raetz, E.; Carroll, W.L. Immunotherapy in Pediatric B-Cell Acute Lymphoblastic Leukemia: Advances and Ongoing Challenges. Paediatr. Drugs 2020, 22, 485–499. [Google Scholar] [CrossRef]
- Liu, E.; Marin, D.; Banerjee, P.; Macapinlac, H.A.; Thompson, P.; Basar, R.; Nassif Kerbauy, L.; Overman, B.; Thall, P.; Kaplan, M.; et al. Use of CAR-Transduced Natural Killer Cells in CD19-Positive Lymphoid Tumors. N. Engl. J. Med. 2020, 382, 545–553. [Google Scholar] [CrossRef] [PubMed]
- Graham, C.; Jozwik, A.; Quartey-Papafio, R.; Ioannou, N.; Metelo, A.M.; Scala, C.; Dickson, G.; Stewart, O.; Almena-Carrasco, M.; Peranzoni, E.; et al. Allogeneic Anti-CD19 CAR T Cells Manufactured from Healthy Donors Provide a Unique Cellular Product with Distinct Phenotypic Characteristics Compared to CAR T Cells Generated from Patients with Mature B Cell Malignancies. Blood 2019, 134, 3228. [Google Scholar] [CrossRef]
- Maude, S.L.; Laetsch, T.W.; Buechner, J.; Rives, S.; Boyer, M.; Bittencourt, H.; Bader, P.; Verneris, M.R.; Stefanski, H.E.; Myers, G.D.; et al. Tisagenlecleucel in Children and Young Adults with B-Cell Lymphoblastic Leukemia. N. Engl. J. Med. 2018, 378, 439–448. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.W.; Kochenderfer, J.N.; Stetler-Stevenson, M.; Cui, Y.K.; Delbrook, C.; Feldman, S.A.; Fry, T.J.; Orentas, R.; Sabatino, M.; Shah, N.N.; et al. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: A phase 1 dose-escalation trial. Lancet 2015, 385, 517–528. [Google Scholar] [CrossRef]
- Grupp, S.A.; Kalos, M.; Barrett, D.; Aplenc, R.; Porter, D.L.; Rheingold, S.R.; Teachey, D.T.; Chew, A.; Hauck, B.; Wright, J.F.; et al. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N. Engl. J. Med. 2013, 368, 1509–1518. [Google Scholar] [CrossRef] [Green Version]
- Gardner, R.A.; Finney, O.; Annesley, C.; Brakke, H.; Summers, C.; Leger, K.; Bleakley, M.; Brown, C.; Mgebroff, S.; Kelly-Spratt, K.S.; et al. Intent-to-treat leukemia remission by CD19 CAR T cells of defined formulation and dose in children and young adults. Blood 2017, 129, 3322–3331. [Google Scholar] [CrossRef]
- Shah, N.N.; Highfill, S.L.; Shalabi, H.; Yates, B.; Jin, J.; Wolters, P.L.; Ombrello, A.; Steinberg, S.M.; Martin, S.; Delbrook, C.; et al. CD4/CD8 T-Cell Selection Affects Chimeric Antigen Receptor (CAR) T-Cell Potency and Toxicity: Updated Results From a Phase I Anti-CD22 CAR T-Cell Trial. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2020, 38, 1938–1950. [Google Scholar] [CrossRef]
- Curran, K.J.; Margossian, S.P.; Kernan, N.A.; Silverman, L.B.; Williams, D.A.; Shukla, N.; Kobos, R.; Forlenza, C.J.; Steinherz, P.; Prockop, S.; et al. Toxicity and response after CD19-specific CAR T-cell therapy in pediatric/young adult relapsed/refractory B-ALL. Blood 2019, 134, 2361–2368. [Google Scholar] [CrossRef]
- Shah, N.N.; Lee, D.W.; Yates, B.; Yuan, C.M.; Shalabi, H.; Martin, S.; Wolters, P.L.; Steinberg, S.M.; Baker, E.H.; Delbrook, C.P.; et al. Long-Term Follow-Up of CD19-CAR T-Cell Therapy in Children and Young Adults With B-ALL. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2021, 39, 1650–1659. [Google Scholar] [CrossRef]
Study Number | Patients | Drug | Results | Reference |
---|---|---|---|---|
NCT01460160 | 106 pediatric patients Ph+ALL | Dasatinib Standard chemotherapy | 53.1% 5-year EFS | [33,34] |
NCT00720109 | 63 participants (53 pediatric and 7 adult patients) Ph+ALL | Dasatinib Standard chemotherapy | 60% 5-year EFS 86% 5-year OS | [35,36] |
NCT01077544 | 15 pediatric patients 11 diagnosed with CML/4 diagnosed with Ph+ALL | Nilotinib Standard chemotherapy | Ph+ALL: 75% complete remission, 25% stable disease | [37,38] |
NCT04501614 | Estimated 60 pediatric patients Ph+ALL/MPAL/Ph-like ALL | Ponatinib | No results/active, not recruiting | [5] |
NCT03934372 | Estimated 60 pediatric patients CML/ALL/Lymphoma/Solid tumors | Ponatinib | Still recruiting | [32] |
Study Number | Patients | Drug | Results | References |
---|---|---|---|---|
NCT02560025 | 39 AML patients, adults, median age 67 | Alisertib (+chemotherapy) | 65% CR | [53] |
NCT01779843 | 22 AML patients, adults, median age 62.7 | Alisertib (+chemotherapy) | 86% CR | [55] |
NCT01380756 | 35 AML patients, median age 69 | AURKA and AURKB inhibitors | 9% CR | [57,58] |
NCT01431664 | 7 AML+ALL patients, median age 3 years | AURKA and AURKB inhibitors | 0% R | [59] |
NCT01154816 | 118 children with relapsed/refractory solid malignancies or acute leukemias. | Alisertib | <5% R | [60,61] |
Study Number | Patients | Drug | Results | Reference |
---|---|---|---|---|
NCT02807883 | 23 ALL patients (children + adults) | Blinatumomab (following HCT) | OS 85%, PFS 71%, NRM 0% | [92] |
NCT01471782 | 93 ALL patients (children < 17 years) | Blinatumomab | 52% CR | [93] |
NCT04723342 | 180 estimated participants | Blinatumomab (post-induction) | Still recruiting | [94] |
NCT02412306 | 66 elapsed/refractory ALL patients (Children + adults) | Blinatumomab (consolidation) | 11 adults, 5 children CR | [95] |
NCT02877303 | 80 estimated participants > 14 years | Blinatumomab, Inotuzumab Ozogamicin and Combination Chemotherapy | Still recruiting | [96] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ivanov, A.V.; Alecsa, M.S.; Popescu, R.; Starcea, M.I.; Mocanu, A.M.; Rusu, C.; Miron, I.C. Pediatric Acute Lymphoblastic Leukemia Emerging Therapies—From Pathway to Target. Int. J. Mol. Sci. 2023, 24, 4661. https://doi.org/10.3390/ijms24054661
Ivanov AV, Alecsa MS, Popescu R, Starcea MI, Mocanu AM, Rusu C, Miron IC. Pediatric Acute Lymphoblastic Leukemia Emerging Therapies—From Pathway to Target. International Journal of Molecular Sciences. 2023; 24(5):4661. https://doi.org/10.3390/ijms24054661
Chicago/Turabian StyleIvanov, Anca Viorica, Mirabela Smaranda Alecsa, Roxana Popescu, Magdalena Iuliana Starcea, Adriana Maria Mocanu, Cristina Rusu, and Ingrith Crenguta Miron. 2023. "Pediatric Acute Lymphoblastic Leukemia Emerging Therapies—From Pathway to Target" International Journal of Molecular Sciences 24, no. 5: 4661. https://doi.org/10.3390/ijms24054661
APA StyleIvanov, A. V., Alecsa, M. S., Popescu, R., Starcea, M. I., Mocanu, A. M., Rusu, C., & Miron, I. C. (2023). Pediatric Acute Lymphoblastic Leukemia Emerging Therapies—From Pathway to Target. International Journal of Molecular Sciences, 24(5), 4661. https://doi.org/10.3390/ijms24054661