Role of Cytochrome P450 Enzyme in Plant Microorganisms’ Communication: A Focus on Grapevine
Abstract
:1. Cytochromes P450 Enzymes: General Features
2. Cytochrome P450 Reactivity
3. The Role of Cytochromes P450 in Plants
4. Cytochrome P450 Enzyme in Plant–Microorganism Interaction
4.1. CYPs in Plant–Bacteria Interaction
4.2. Cytochrome P450 Enzyme in Plant–Fungi Interaction
5. Cytochrome P450 Enzyme in Vitis vinifera
5.1. Role of Cytochrome P450 in Vitis vinifera
5.2. Cytochromes P450 in Vitis vinifera Interaction with Microorganisms
6. Future Directions and Concluding Remarks
Author Contributions
Funding
Conflicts of Interest
References
- Garfinkel, D. Studies on Pig Liver Microsomes. I. Enzymic and Pigment Composition of Different Microsomal Fractions. Arch. Biochem. Biophys. 1958, 77, 493–509. [Google Scholar] [CrossRef]
- Irmler, S.; Schröder, G.; St-Pierre, B.; Crouch, N.P.; Hotze, M.; Schmidt, J.; Strack, D.; Matern, U.; Schröder, J. Indole Alkaloid Biosynthesis in Catharanthus Roseus: New Enzyme Activities and Identification of Cytochrome P450 CYP72A1 as Secologanin Synthase. Plant J. 2000, 24, 797–804. [Google Scholar] [CrossRef] [PubMed]
- Bak, S.; Kahn, R.A.; Olsen, C.E.; Halkier, B.A. Cloning and Expression in Escherichia Coli of the Obtusifoliol 14α-demethylase of Sorghum bicolor (L.) Moench, a Cytochrome P450 Orthologous to the Sterol 14α-demethylases (CYP51) from Fungi and Mammals. Plant J. 1997, 11, 191–201. [Google Scholar] [CrossRef] [PubMed]
- Morikawa, T.; Mizutani, M.; Aoki, N.; Watanabe, B.; Saga, H.; Saito, S.; Oikawa, A.; Suzuki, H.; Sakurai, N.; Shibata, D. Cytochrome P450 CYP710A Encodes the Sterol C-22 Desaturase in Arabidopsis and Tomato. Plant Cell 2006, 18, 1008–1022. [Google Scholar] [CrossRef] [Green Version]
- Hansen, C.C.; Sørensen, M.; Veiga, T.A.M.; Zibrandtsen, J.F.S.; Heskes, A.M.; Olsen, C.E.; Boughton, B.A.; Møller, B.L.; Neilson, E.H.J. Reconfigured Cyanogenic Glucoside Biosynthesis in Eucalyptus Cladocalyx Involves a Cytochrome P450 CYP706C55. Plant Physiol. 2018, 178, 1081–1095. [Google Scholar] [CrossRef] [Green Version]
- Nasomjai, P.; Reed, D.W.; Tozer, D.J.; Peach, M.J.G.; Slawin, A.M.Z.; Covello, P.S.; O’Hagan, D. Mechanistic Insights into the Cytochrome P450-mediated Oxidation and Rearrangement of Littorine in Tropane Alkaloid Biosynthesis. ChemBioChem 2009, 10, 2382–2393. [Google Scholar] [CrossRef] [PubMed]
- Koch, B.M.; Sibbesen, O.; Halkier, B.A.; Svendsen, I.; Møller, B.L. The Primary Sequence of Cytochrome P450tyr, the MultifunctionalN-Hydroxylase Catalyzing the Conversion OfL-Tyrosine Top-Hydroxyphenylacetaldehyde Oxime in the Biosynthesis of the Cyanogenic Glucoside Dhurrin in Sorghum bicolor (L.) Moench. Arch. Biochem. Biophys. 1995, 323, 177–186. [Google Scholar] [CrossRef]
- Klingenberg, M. Pigments of Rat Liver Microsomes. Arch. Biochem. Biophys. 1958, 75, 376–386. [Google Scholar] [CrossRef] [PubMed]
- Omura, T.; Sato, R. The Carbon Monoxide-Binding Pigment of Liver Microsomes: II. Solubilization, Purification, and Properties. J. Biol. Chem. 1964, 239, 2379–2385. [Google Scholar] [CrossRef]
- Lamb, D.C.; Lei, L.; Warrilow, A.G.S.; Lepesheva, G.I.; Mullins, J.G.L.; Waterman, M.R.; Kelly, S.L. The First Virally Encoded Cytochrome P450. J. Virol. 2009, 83, 8266–8269. [Google Scholar] [CrossRef] [Green Version]
- Paquette, S.M.; Bak, S.; Feyereisen, R. Intron–Exon Organization and Phylogeny in a Large Superfamily, the Paralogous Cytochrome P450 Genes of Arabidopsis Thaliana. DNA Cell Biol. 2000, 19, 307–317. [Google Scholar] [CrossRef] [PubMed]
- Durst, F.; Nelson, D.R. Diversity and Evolution of Plant P450 and P450-Reductases. Drug Metab. Drug Interact. 1995, 12, 189–206. [Google Scholar] [CrossRef] [PubMed]
- Feldmann, K.A. Cytochrome P450s as Genes for Crop Improvement. Curr. Opin. Plant Biol. 2001, 4, 162–167. [Google Scholar] [CrossRef] [PubMed]
- Nelson, D.R. The Cytochrome P450 Homepage. Hum. Genom. 2009, 4, 59. [Google Scholar] [CrossRef] [Green Version]
- Pikuleva, I.A.; Waterman, M.R. Cytochromes P450: Roles in Diseases. J. Biol. Chem. 2013, 288, 17091–17098. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hannemann, F.; Bichet, A.; Ewen, K.M.; Bernhardt, R. Cytochrome P450 Systems—Biological Variations of Electron Transport Chains. Biochim. Et Biophys. Acta (BBA)-Gen. Subj. 2007, 1770, 330–344. [Google Scholar] [CrossRef]
- Guengerich, F.P. Mechanisms of Cytochrome P450-Catalyzed Oxidations. ACS Catal. 2018, 8, 10964–10976. [Google Scholar] [CrossRef] [PubMed]
- Morant, M.; Bak, S.; Møller, B.L.; Werck-Reichhart, D. Plant Cytochromes P450: Tools for Pharmacology, Plant Protection and Phytoremediation. Curr. Opin. Biotechnol. 2003, 14, 151–162. [Google Scholar] [CrossRef]
- Laffaru Singpho, N.; Sharma, J.G. Importance of Cytochrome P450 Gene Family from Metabolite Biosynthesis to Stress Tolerance: A Review. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Jakarta, Indonesia, 25–26 September 2021; Volume 775, p. 012012. [Google Scholar]
- Nelson, D.; Werck-Reichhart, D. A P450-centric View of Plant Evolution. Plant J. 2011, 66, 194–211. [Google Scholar] [CrossRef]
- Jain, K.S.; Khedkar, V.M.; Arya, N.; Rane, P.V.; Chaskar, P.K.; Coutinho, E.C. Design, Synthesis & Evaluation of Condensed 2H-4-Arylaminopyrimidines as Novel Antifungal Agents. Eur. J. Med. Chem. 2014, 77, 166–175. [Google Scholar]
- Geisler, K.; Hughes, R.K.; Sainsbury, F.; Lomonossoff, G.P.; Rejzek, M.; Fairhurst, S.; Olsen, C.-E.; Motawia, M.S.; Melton, R.E.; Hemmings, A.M. Biochemical Analysis of a Multifunctional Cytochrome P450 (CYP51) Enzyme Required for Synthesis of Antimicrobial Triterpenes in Plants. Proc. Natl. Acad. Sci. USA 2013, 110, E3360–E3367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.; Wu, X.T.; Xu, Y.Q.; Zhong, Y.; Li, Y.X.; Chen, J.K.; Li, X.; Nan, P. Global transcriptome analysis profiles metabolic pathways in traditional herb Astragalus membranaceus Bge. var. mongolicus (Bge.) Hsiao. BMC Genom. 2015, 16, S15. [Google Scholar]
- Williams, D.; De Luca, V. Plant cytochrome P450s directing monoterpene indole alkaloid (MIA) and benzylisoquinoline alkaloid (BIA) biosynthesis. Phytochem. Rev. 2022, 1–30. [Google Scholar] [CrossRef]
- Magome, H.; Nomura, T.; Hanada, A.; Takeda-Kamiya, N.; Ohnishi, T.; Shinma, Y.; Katsumata, T.; Kawaide, H.; Kamiya, Y.; Yamaguchi, S. CYP714B1 and CYP714B2 Encode Gibberellin 13-Oxidases That Reduce Gibberellin Activity in Rice. Proc. Natl. Acad. Sci. USA 2013, 110, 1947–1952. [Google Scholar] [CrossRef] [Green Version]
- Hoffmann, I.; Jernerén, F.; Oliw, E.H. Expression of Fusion Proteins of Aspergillus Terreus Reveals a Novel Allene Oxide Synthase. J. Biol. Chem. 2013, 288, 11459–11469. [Google Scholar] [CrossRef] [Green Version]
- Yoeun, S.; Rakwal, R.; Han, O. Dual Positional Substrate Specificity of Rice Allene Oxide Synthase-1: Insight into Mechanism of Inhibition by Type II Ligand Imidazole. BMB Rep. 2013, 46, 151. [Google Scholar] [CrossRef] [Green Version]
- Ohnishi, T.; Watanabe, B.; Sakata, K.; Mizutani, M. CYP724B2 and CYP90B3 Function in the Early C-22 Hydroxylation Steps of Brassinosteroid Biosynthetic Pathway in Tomato. Biosci. Biotechnol. Biochem. 2006, 70, 2071–2080. [Google Scholar] [CrossRef] [Green Version]
- Delventhal, R.; Falter, C.; Strugala, R.; Zellerhoff, N.; Schaffrath, U. Ectoparasitic Growth of Magnaporthe on Barley Triggers Expression of the Putative Barley Wax Biosynthesis Gene CYP96B22 Which Is Involved in Penetration Resistance. BMC Plant Biol. 2014, 14, 26. [Google Scholar] [CrossRef] [Green Version]
- Cui, H.; Yu, X.; Wang, Y.; Cui, Y.; Li, X.; Liu, Z.; Qin, S. Evolutionary Origins, Molecular Cloning and Expression of Carotenoid Hydroxylases in Eukaryotic Photosynthetic Algae. BMC Genom. 2013, 14, 457. [Google Scholar] [CrossRef] [Green Version]
- Vasav, A.P.; Barvkar, V.T. Phylogenomic Analysis of Cytochrome P450 Multigene Family and Their Differential Expression Analysis in Solanum Lycopersicum L. Suggested Tissue Specific Promoters. BMC Genom. 2019, 20, 116. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.-E.; Cheng, K.M.; Craft, N.E.; Hamberger, B.; Douglas, C.J. Over-Expression of Arabidopsis Thaliana Carotenoid Hydroxylases Individually and in Combination with a β-Carotene Ketolase Provides Insight into in Vivo Functions. Phytochemistry 2010, 71, 168–178. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, T.; Mogi, S.; Kaneko, T.; Kojima, H.; Katoh, S.; Sano, A.; Kojima, S. Relationship between Tissue Hydroxyl Radical and Oxidatively Modified Macromolecule Levels. Geriatr. Gerontol. Int. 2014, 14, 498–507. [Google Scholar] [CrossRef] [PubMed]
- Mao, G.; Seebeck, T.; Schrenker, D.; Yu, O. CYP709B3, a Cytochrome P450 Monooxygenase Gene Involved in Salt Tolerance in Arabidopsis thaliana. BMC Plant Biol. 2013, 13, 169. [Google Scholar] [CrossRef] [Green Version]
- Iquebal, M.A.; Soren, K.R.; Gangwar, P.; Shanmugavadivel, P.S.; Aravind, K.; Singla, D.; Jaiswal, S.; Jasrotia, R.S.; Chaturvedi, S.K.; Singh, N.P. Discovery of Putative Herbicide Resistance Genes and Its Regulatory Network in Chickpea Using Transcriptome Sequencing. Front. Plant Sci. 2017, 8, 958. [Google Scholar] [CrossRef] [PubMed]
- Dimaano, N.G.; Iwakami, S. Cytochrome P450-mediated Herbicide Metabolism in Plants: Current Understanding and Prospects. Pest Manag. Sci. 2021, 77, 22–32. [Google Scholar] [CrossRef] [PubMed]
- Grausem, B.; Widemann, E.; Verdier, G.; Nosbüsch, D.; Aubert, Y.; Beisson, F.; Schreiber, L.; Franke, R.; Pinot, F. CYP 77 A 19 and CYP 77 A 20 Characterized from Solanum Tuberosum Oxidize Fatty Acids in Vitro and Partially Restore the Wild Phenotype in an A Rabidopsis Thaliana Cutin Mutant. Plant Cell Environ. 2014, 37, 2102–2115. [Google Scholar] [CrossRef]
- Fiore, A.; Dall’Osto, L.; Cazzaniga, S.; Diretto, G.; Giuliano, G.; Bassi, R. A Quadruple Mutant of Arabidopsis Reveals a β-Carotene Hydroxylation Activity for LUT1/CYP97C1 and a Regulatory Role of Xanthophylls on Determination of the PSI/PSII Ratio. BMC Plant Biol. 2012, 12, 50. [Google Scholar] [CrossRef] [Green Version]
- Chakrabarti, M.; Zhang, N.A.; Sauvage, C.; Muños, S.; Blanca, J.; Cañizares, J.; Diez, M.J.; Schneider, R.; Mazourek, M.; McClead, J. A Cytochrome P450 Regulates a Domestication Trait in Cultivated Tomato. Proc. Natl. Acad. Sci. USA 2013, 110, 17125–17130. [Google Scholar] [CrossRef] [Green Version]
- Umemoto, N.; Nakayasu, M.; Ohyama, K.; Yotsu-Yamashita, M.; Mizutani, M.; Seki, H.; Saito, K.; Muranaka, T. Two Cytochrome P450 Monooxygenases Catalyze Early Hydroxylation Steps in the Potato Steroid Glycoalkaloid Biosynthetic Pathway. Plant Physiol. 2016, 171, 2458–2467. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Wu, D.I.; Shi, J.; He, Y.I.; Pinot, F.; Grausem, B.; Yin, C.; Zhu, L.; Chen, M.; Luo, Z. Rice CYP703A3, a Cytochrome P450 Hydroxylase, Is Essential for Development of Anther Cuticle and Pollen Exine. J. Integr. Plant Biol. 2014, 56, 979–994. [Google Scholar] [CrossRef]
- Shang, Y.; Ma, Y.; Zhou, Y.; Zhang, H.; Duan, L.; Chen, H.; Zeng, J.; Zhou, Q.; Wang, S.; Gu, W. Biosynthesis, Regulation, and Domestication of Bitterness in Cucumber. Science 2014, 346, 1084–1088. [Google Scholar] [CrossRef]
- Zhou, Y.; Ma, Y.; Zeng, J.; Duan, L.; Xue, X.; Wang, H.; Lin, T.; Liu, Z.; Zeng, K.; Zhong, Y. Convergence and Divergence of Bitterness Biosynthesis and Regulation in Cucurbitaceae. Nat. Plants 2016, 2, 16183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moses, T.; Pollier, J.; Faizal, A.; Apers, S.; Pieters, L.; Thevelein, J.M.; Geelen, D.; Goossens, A. Unraveling the Triterpenoid Saponin Biosynthesis of the African Shrub Maesa Lanceolata. Mol. Plant 2015, 8, 122–135. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-López, C.E.; Hong, B.; Paetz, C.; Nakamura, Y.; Koudounas, K.; Passeri, V.; Baldoni, L.; Alagna, F.; Calderini, O.; O’Connor, S.E. Two Bi-functional Cytochrome P450 CYP72 Enzymes from Olive (Olea europaea) Catalyze the Oxidative C-C Bond Cleavage in the Biosynthesis of Secoxy-iridoids–Flavor and Quality Determinants in Olive Oil. New Phytol. 2021, 229, 2288–2301. [Google Scholar] [CrossRef] [PubMed]
- Andre, C.M.; Legay, S.; Deleruelle, A.; Nieuwenhuizen, N.; Punter, M.; Brendolise, C.; Cooney, J.M.; Lateur, M.; Hausman, J.; Larondelle, Y. Multifunctional Oxidosqualene Cyclases and Cytochrome P450 Involved in the Biosynthesis of Apple Fruit Triterpenic Acids. New Phytol. 2016, 211, 1279–1294. [Google Scholar] [CrossRef] [Green Version]
- Takase, S.; Kera, K.; Nagashima, Y.; Mannen, K.; Hosouchi, T.; Shinpo, S.; Kawashima, M.; Kotake, Y.; Yamada, H.; Saga, Y. Allylic Hydroxylation of Triterpenoids by a Plant Cytochrome P450 Triggers Key Chemical Transformations That Produce a Variety of Bitter Compounds. J. Biol. Chem. 2019, 294, 18662–18673. [Google Scholar] [CrossRef]
- Zhang, J.; Dai, L.; Yang, J.; Liu, C.; Men, Y.; Zeng, Y.; Cai, Y.; Zhu, Y.; Sun, Y. Oxidation of Cucurbitadienol Catalyzed by CYP87D18 in the Biosynthesis of Mogrosides from Siraitia Grosvenorii. Plant Cell Physiol. 2016, 57, 1000–1007. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ikezawa, N.; Tanaka, M.; Nagayoshi, M.; Shinkyo, R.; Sakaki, T.; Inouye, K.; Sato, F. Molecular Cloning and Characterization of CYP719, a Methylenedioxy Bridge-Forming Enzyme That Belongs to a Novel P450 Family, from Cultured Coptis Japonica Cells. J. Biol. Chem. 2003, 278, 38557–38565. [Google Scholar] [CrossRef] [Green Version]
- Stumpe, M.; Kandzia, R.; Göbel, C.; Rosahl, S.; Feussner, I. A Pathogen-Inducible Divinyl Ether Synthase (CYP74D) from Elicitor-Treated Potato Suspension Cells. FEBS Lett. 2001, 507, 371–376. [Google Scholar] [CrossRef] [Green Version]
- Godiard, L.; Sauviac, L.; Dalbin, N.; Liaubet, L.; Callard, D.; Czernic, P.; Marco, Y. CYP76C2, an Arabidopsis Thaliana Cytochrome P450 Gene Expressed during Hypersensitive and Developmental Cell Death. FEBS Lett. 1998, 438, 245–249. [Google Scholar] [CrossRef] [Green Version]
- Balint-Kurti, P. The Plant Hypersensitive Response: Concepts, Control and Consequences. Mol. Plant Pathol. 2019, 20, 1163–1178. [Google Scholar] [CrossRef] [Green Version]
- Höfer, R.; Boachon, B.; Renault, H.; Gavira, C.; Miesch, L.; Iglesias, J.; Ginglinger, J.-F.; Allouche, L.; Miesch, M.; Grec, S. Dual Function of the Cytochrome P450 CYP76 Family from Arabidopsis Thaliana in the Metabolism of Monoterpenols and Phenylurea Herbicides. Plant Physiol. 2014, 166, 1149–1161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oh, B.-J.; Ko, M.K.; Kim, Y.S.; Kim, K.S.; Kostenyuk, I.; Kee, H.K. A Cytochrome P450 Gene Is Differentially Expressed in Compatible and Incompatible Interactions between Pepper (Capsicum annuum) and the Anthracnose Fungus, Colletotrichum Gloeosporioides. Mol. Plant-Microbe Interact. 1999, 12, 1044–1052. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, Y.-C.; Kim, S.-Y.; Paek, K.-H.; Choi, D.; Park, J.M. Suppression of CaCYP1, a Novel Cytochrome P450 Gene, Compromises the Basal Pathogen Defense Response of Pepper Plants. Biochem. Biophys. Res. Commun. 2006, 345, 638–645. [Google Scholar] [CrossRef] [PubMed]
- Dixon, R.A. Isoflavonoids: Biochemistry, Molecular Biology and Biological Functions. Compr. Nat. Prod. Chem. 1999, 1, 773–823. [Google Scholar]
- Dixon, R.A.; Sumner, L.W. Legume Natural Products: Understanding and Manipulating Complex Pathways for Human and Animal Health. Plant Physiol. 2003, 131, 878–885. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Huhman, D.; Sumner, L.W.; Dixon, R.A. Regiospecific Hydroxylation of Isoflavones by Cytochrome P450 81E Enzymes from Medicago Truncatula. Plant J. 2003, 36, 471–484. [Google Scholar] [CrossRef] [Green Version]
- Akashi, T.; Aoki, T.; Ayabe, S. CYP81E1, a Cytochrome P450 CDNA of Licorice (Glycyrrhiza echinata L.), Encodes Isoflavone 2′-Hydroxylase. Biochem. Biophys. Res. Commun. 1998, 251, 67–70. [Google Scholar] [CrossRef] [PubMed]
- Overkamp, S.; Hein, F.; Barz, W. Cloning and Characterization of Eight Cytochrome P450 CDNAs from Chickpea (Cicer arietinum L.) Cell Suspension Cultures. Plant Sci. 2000, 155, 101–108. [Google Scholar] [CrossRef]
- Kelly, D.E.; Kraševec, N.; Mullins, J.; Nelson, D.R. The CYPome (Cytochrome P450 Complement) of Aspergillus Nidulans. Fungal Genet. Biol. 2009, 46, S53–S61. [Google Scholar] [CrossRef]
- Becher, R.; Wirsel, S.G.R. Fungal Cytochrome P450 Sterol 14α-Demethylase (CYP51) and Azole Resistance in Plant and Human Pathogens. Appl. Microbiol. Biotechnol. 2012, 95, 825–840. [Google Scholar] [CrossRef]
- Soanes, D.M.; Alam, I.; Cornell, M.; Wong, H.M.; Hedeler, C.; Paton, N.W.; Rattray, M.; Hubbard, S.J.; Oliver, S.G.; Talbot, N.J. Comparative Genome Analysis of Filamentous Fungi Reveals Gene Family Expansions Associated with Fungal Pathogenesis. PLoS ONE 2008, 3, e2300. [Google Scholar] [CrossRef] [Green Version]
- Leal, G.A.; Gomes, L.H.; Albuquerque, P.S.B.; Tavares, F.C.A.; Figueira, A. Searching for Moniliophthora Perniciosa Pathogenicity Genes. Fungal Biol. 2010, 114, 842–854. [Google Scholar] [CrossRef]
- George, H.L.; VanEtten, H.D. Characterization of Pisatin-Inducible Cytochrome P450s in Fungal Pathogens of Pea That Detoxify the Pea Phytoalexin Pisatin. Fungal Genet. Biol. 2001, 33, 37–48. [Google Scholar] [CrossRef]
- Luo, P.; Wang, Y.; Wang, G.; Essenberg, M.; Chen, X. Molecular Cloning and Functional Identification of (+)-δ-cadinene-8-hydroxylase, a Cytochrome P450 Mono-oxygenase (CYP706B1) of Cotton Sesquiterpene Biosynthesis. Plant J. 2001, 28, 95–104. [Google Scholar] [CrossRef] [Green Version]
- Armstrong, G.M.; Armstrong, J.K. Formae Speciales and Races of Fusarium Oxysporum Causing Wilt Diseases. In Fusarium: Disease, Biology, and Taxonomy; Nelson, P.E., Toussoun, T.A., Cook., R.J., Eds.; Pennsylvania State University, University Park: State College, PA, USA, 1981; pp. 391–399. [Google Scholar]
- Lemanceau, P.; Bakker, P.A.H.M.; de Kogel, W.J.; Alabouvette, C.; Schippers, B. Antagonistic Effect of Nonpathogenic Fusarium Oxysporum Fo47 and Pseudobactin 358 upon Pathogenic Fusarium Oxysporum f. Sp. Dianthi. Appl. Env. Microbiol. 1993, 59, 74–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakayama, N.; Takemae, A.; Shoun, H. Cytochrome P450foxy, a Catalytically Self-Sufficient Fatty Acid Hydroxylase of the Fungus Fusarium Oxysporum. J. Biochem. 1996, 119, 435–440. [Google Scholar] [CrossRef] [PubMed]
- Kitazume, T.; Tanaka, A.; Takaya, N.; Nakamura, A.; Matsuyama, S.; Suzuki, T.; Shoun, H. Kinetic Analysis of Hydroxylation of Saturated Fatty Acids by Recombinant P450foxy Produced by an Escherichia Coli Expression System. Eur. J. Biochem. 2002, 269, 2075–2082. [Google Scholar] [CrossRef]
- Kachroo, A.; Kachroo, P. Fatty Acid-Derived Signals in Plant Defense. Annu. Rev. Phytopathol. 2009, 47, 153–176. [Google Scholar] [CrossRef] [PubMed]
- Fauth, M.; Schweizer, P.; Buchala, A.; Markstädter, C.; Riederer, M.; Kato, T.; Kauss, H. Cutin Monomers and Surface Wax Constituents Elicit H2O2 in Conditioned Cucumber Hypocotyl Segments and Enhance the Activity of Other H2O2Elicitors. Plant Physiol. 1998, 117, 1373–1380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Minerdi, D.; Sadeghi, S.J.; Pautasso, L.; Morra, S.; Aigotti, R.; Medana, C.; Gilardi, G.; Gullino, M.L.; Gilardi, G. Expression and Role of CYP505A1 in Pathogenicity of Fusarium Oxysporum f. Sp. Lactucae. Biochim. Et Biophys. Acta (BBA)-Proteins Proteom. 2020, 1868, 140268. [Google Scholar] [CrossRef] [PubMed]
- Takaoka, S.; Kurata, M.; Harimoto, Y.; Hatta, R.; Yamamoto, M.; Akimitsu, K.; Tsuge, T. Complex Regulation of Secondary Metabolism Controlling Pathogenicity in the Phytopathogenic Fungus Alternaria Alternata. New Phytol. 2014, 202, 1297–1309. [Google Scholar] [CrossRef]
- Karlsson, B.; Tsopelas, P.; Zamponi, L.; Capretti, P.; Soulioti, N.; Swedjemark, G. Susceptibility to Heterobasidion Parviporum in Picea Abies Clones Grown in Different Environments. For. Pathol. 2008, 38, 83–89. [Google Scholar] [CrossRef]
- Siewers, V.; Viaud, M.; Jimenez-Teja, D.; Collado, I.G.; Gronover, C.S.; Pradier, J.-M.; Tudzynsk, B.; Tudzynski, P. Functional Analysis of the Cytochrome P450 Monooxygenase Gene Bcbot1 of Botrytis Cinerea Indicates That Botrydial Is a Strain-Specific Virulence Factor. Mol. Plant-Microbe Interact. 2005, 18, 602–612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Myburg, A.A.; van den Berg, N.; Viljoen, A. Pathogenicity Associated Genes in Fusarium oxysporum f. sp. cubense Race 4. S. Afr. J. Sci. 2013, 109, 5. [Google Scholar]
- López-Berges, M.S.; Rispail, N.; Prados-Rosales, R.C.; di Pietro, A. A Nitrogen Response Pathway Regulates Virulence Functions in Fusarium Oxysporum via the Protein Kinase TOR and the BZIP Protein MeaB. Plant Cell 2010, 22, 2459–2475. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.-W.; Jia, L.-J.; Zhang, Y.; Jiang, G.; Li, X.; Zhang, D.; Tang, W.-H. In Planta Stage-Specific Fungal Gene Profiling Elucidates the Molecular Strategies of Fusarium Graminearum Growing inside Wheat Coleoptiles. Plant Cell 2012, 24, 5159–5176. [Google Scholar] [CrossRef] [Green Version]
- Schubler, A. The Glomeromycota: A Species List with New Families and New Genera. 2010. Available online: http://www.amf-phylogeny.com (accessed on 15 November 2022).
- Handa, Y.; Nishide, H.; Takeda, N.; Suzuki, Y.; Kawaguchi, M.; Saito, K. RNA-Seq Transcriptional Profiling of an Arbuscular Mycorrhiza Provides Insights into Regulated and Coordinated Gene Expression in Lotus Japonicus and Rhizophagus Irregularis. Plant Cell Physiol. 2015, 56, 1490–1511. [Google Scholar] [CrossRef] [Green Version]
- Bokulich, N.A.; Thorngate, J.H.; Richardson, P.M.; Mills, D.A. Microbial Biogeography of Wine Grapes Is Conditioned by Cultivar, Vintage, and Climate. Proc. Natl. Acad. Sci. USA 2014, 111, E139–E148. [Google Scholar] [CrossRef] [Green Version]
- Ilc, T.; Arista, G.; Tavares, R.; Navrot, N.; Duchene, E.; Velt, A.; Choulet, F.; Paux, E.; Fischer, M.; Nelson, D.R. Annotation, Classification, Genomic Organization and Expression of the Vitis Vinifera CYPome. PLoS ONE 2018, 13, e0199902. [Google Scholar] [CrossRef]
- Martin, D.M.; Aubourg, S.; Schouwey, M.B.; Daviet, L.; Schalk, M.; Toub, O.; Lund, S.T.; Bohlmann, J. Functional Annotation, Genome Organization and Phylogeny of the Grapevine (Vitis vinifera) Terpene Synthase Gene Family Based on Genome Assembly, FLcDNA Cloning, and Enzyme Assays. BMC Plant Biol. 2010, 10, 226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parage, C.; Tavares, R.; Réty, S.; Baltenweck-Guyot, R.; Poutaraud, A.; Renault, L.; Heintz, D.; Lugan, R.; Marais, G.A.B.; Aubourg, S. Structural, Functional, and Evolutionary Analysis of the Unusually Large Stilbene Synthase Gene Family in Grapevine. Plant Physiol. 2012, 160, 1407–1419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Francis, I.L.; Newton, J.L. Determining Wine Aroma from Compositional Data. Aust. J. Grape Wine Res. 2005, 11, 114–126. [Google Scholar] [CrossRef]
- Guth, H. Determination of the Configuration of Wine Lactone. Helv. Chim. Acta 1996, 79, 1559–1571. [Google Scholar] [CrossRef]
- D’Ambrosio, M.; Harghel, P.; Guantieri, V. Isolation of Intact Glycosidic Aroma Precursors from Grape Juice by Hydrophilic Interaction Liquid Chromatography. Aust. J. Grape Wine Res. 2013, 19, 189–192. [Google Scholar] [CrossRef]
- Cheng, D.W.; Lin, H.; Takahashi, Y.; Walker, M.A.; Civerolo, E.L.; Stenger, D.C. Transcriptional Regulation of the Grape Cytochrome P450 Monooxygenase Gene CYP736B Expression in Response to Xylella Fastidiosa Infection. BMC Plant Biol. 2010, 10, 135. [Google Scholar] [CrossRef] [Green Version]
- Škrlj, B.; Novak, M.P.; Brader, G.; Anžič, B.; Ramšak, Ž.; Gruden, K.; Kralj, J.; Kladnik, A.; Lavrač, N.; Roitsch, T. New Cross-Talks between Pathways Involved in Grapevine Infection with ‘Candidatus Phytoplasma Solani’Revealed by Temporal Network Modelling. Plants 2021, 10, 646. [Google Scholar] [CrossRef]
- Bertazzon, N.; Bagnaresi, P.; Forte, V.; Mazzucotelli, E.; Filippin, L.; Guerra, D.; Zechini, A.; Cattivelli, L.; Angelini, E. Grapevine Comparative Early Transcriptomic Profiling Suggests That Flavescence Dorée Phytoplasma Represses Plant Responses Induced by Vector Feeding in Susceptible Varieties. BMC Genom. 2019, 20, 526. [Google Scholar] [CrossRef] [Green Version]
- Berendsen, R.L.; Pieterse, C.M.J.; Bakker, P.A.H.M. The Rhizosphere Microbiome and Plant Health. Trends Plant Sci. 2012, 17, 478–486. [Google Scholar] [CrossRef]
- Bloemberg, G.V.; Lugtenberg, B.J.J. Molecular Basis of Plant Growth Promotion and Biocontrol by Rhizobacteria. Curr. Opin. Plant Biol. 2001, 4, 343–350. [Google Scholar] [CrossRef]
- Bakker, M.G.; Manter, D.K.; Sheflin, A.M.; Weir, T.L.; Vivanco, J.M. Harnessing the Rhizosphere Microbiome through Plant Breeding and Agricultural Management. Plant Soil 2012, 360, 1–13. [Google Scholar] [CrossRef]
- Adesemoye, A.O.; Torbert, H.A.; Kloepper, J.W. Plant Growth-Promoting Rhizobacteria Allow Reduced Application Rates of Chemical Fertilizers. Microb. Ecol. 2009, 58, 921–929. [Google Scholar] [CrossRef] [Green Version]
- Singh, A.; Kumar, M.; Verma, S.; Choudhary, P.; Chakdar, H. Plant Microbiome: Trends and Prospects for Sustainable Agriculture. In Plant Microbe Symbiosis; Springer: Berlin/Heidelberg, Germany, 2020; pp. 129–151. [Google Scholar]
Plant | P450 | Function | Reference |
---|---|---|---|
Solanum lycopersicum | CYP789A | Fruit size Plant architecture | [39] |
Solanum tuberosum | CYP72A208 CYP188 | Glycolakaloid biosynthesis | [40] |
Oryza sativa | CYP703A3 | Male fertility | [41] |
Cucumis sativus | CYP88L2 CYP81Q58 CYP78D20 | Synthesis of cucurbitacin | [42,43] |
Maesa lanceolata | CYP72A CYP76A | Synthesis of triterpenes | [22,44] |
Olea europea | CYP72 | Synthesis of secoxy-iridoids | [45] |
Malus domestica | CYP716A CYP175 | Synthesis of triterpenic acids | [46] |
Sorghum bicolor | CYP97C1 CYPP97A3 | Synthesis of lutein | [32] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Minerdi, D.; Savoi, S.; Sabbatini, P. Role of Cytochrome P450 Enzyme in Plant Microorganisms’ Communication: A Focus on Grapevine. Int. J. Mol. Sci. 2023, 24, 4695. https://doi.org/10.3390/ijms24054695
Minerdi D, Savoi S, Sabbatini P. Role of Cytochrome P450 Enzyme in Plant Microorganisms’ Communication: A Focus on Grapevine. International Journal of Molecular Sciences. 2023; 24(5):4695. https://doi.org/10.3390/ijms24054695
Chicago/Turabian StyleMinerdi, Daniela, Stefania Savoi, and Paolo Sabbatini. 2023. "Role of Cytochrome P450 Enzyme in Plant Microorganisms’ Communication: A Focus on Grapevine" International Journal of Molecular Sciences 24, no. 5: 4695. https://doi.org/10.3390/ijms24054695
APA StyleMinerdi, D., Savoi, S., & Sabbatini, P. (2023). Role of Cytochrome P450 Enzyme in Plant Microorganisms’ Communication: A Focus on Grapevine. International Journal of Molecular Sciences, 24(5), 4695. https://doi.org/10.3390/ijms24054695