Meningiomas and Somatostatin Analogs: A Systematic Scoping Review on Current Insights and Future Perspectives
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. The Included Papers
3.2. Characteristics of Sources of Evidence
3.3. Summary of Sources
3.4. Critical Appraisal within Sources of Evidence
3.5. The Molecular Mechanisms of Somatostatin Analogs
3.6. Efficiacy of Somatostatin Analogs
3.7. Somatostatin Analogs and Previous Treatment
3.8. Side Effects
3.9. Theranostics Utilizing SSTRs
3.10. Strenghts and Limitations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ostrom, Q.T.; Patil, N.; Cioffi, G.; Waite, K.; Kruchko, C.; Barnholtz-Sloan, J.S. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2013–2017. Neuro-Oncology 2020, 22, iv1–iv96. [Google Scholar] [CrossRef] [PubMed]
- Vernooij, M.W.; Ikram, M.A.; Tanghe, H.L.; Vincent, A.J.P.E.; Hofman, A.; Krestin, G.P.; Niessen, W.J.; Breteler, M.M.B.; van der Lugt, A. Incidental Findings on Brain MRI in the General Population. N. Engl. J. Med. 2007, 357, 1821–1828. [Google Scholar] [CrossRef] [PubMed]
- Sheehan, J.; Pikis, S.; Islim, A.I.; Chen, C.-J.; Bunevicius, A.; Peker, S.; Samanci, Y.; Nabeel, A.M.; Reda, W.A.; Tawadros, S.R.; et al. An International Multicenter Matched Cohort Analysis of Incidental Meningioma Progression during Active Surveillance or after Stereotactic Radiosurgery: The IMPASSE Study. Neuro. Oncol. 2022, 24, 116–124. [Google Scholar] [CrossRef]
- Buerki, R.A.; Horbinski, C.M.; Kruser, T.; Horowitz, P.M.; James, C.D.; Lukas, R.V. An Overview of Meningiomas. Future Oncol. 2018, 14, 2161–2177. [Google Scholar] [CrossRef]
- Ostrom, Q.T.; Price, M.; Neff, C.; Cioffi, G.; Waite, K.A.; Kruchko, C.; Barnholtz-Sloan, J.S. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2015–2019. Neuro-Oncology 2022, 24, v1–v95. [Google Scholar] [CrossRef]
- Chapter 7: Meningioma. In WHO Classificaton of Tumours Editorial Board: Central Nervous System Tumours; Louis, D.N. (Ed.) International Agency for Research on Cancer 2021: Lyon, France, 2021; Volume 6, pp. 283–299. [Google Scholar]
- Goldbrunner, R.; Stavrinou, P.; Jenkinson, M.D.; Sahm, F.; Mawrin, C.; Weber, D.C.; Preusser, M.; Minniti, G.; Lund-Johansen, M.; Lefranc, F.; et al. EANO Guideline on the Diagnosis and Management of Meningiomas. Neuro. Oncol. 2021, 23, 1821–1834. [Google Scholar] [CrossRef] [PubMed]
- Huntoon, K.; Toland, A.M.S.; Dahiya, S. Meningioma: A Review of Clinicopathological and Molecular Aspects. Front. Oncol. 2020, 10, 579599. [Google Scholar] [CrossRef]
- Rogers, L.; Barani, I.; Chamberlain, M.; Kaley, T.J.; McDermott, M.; Raizer, J.; Schiff, D.; Weber, D.C.; Wen, P.Y.; Vogelbaum, M.A. Meningiomas: Knowledge Base, Treatment Outcomes, and Uncertainties. A RANO Review. J. Neurosurg. 2015, 122, 4–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, L.; Zhao, W.; Hou, Y.; Wen, C.; Wang, J.; Wu, P.; Guo, Z. An Overview of Managements in Meningiomas. Front. Oncol. 2020, 10, 1523. [Google Scholar] [CrossRef]
- Andersen, M.S.; Pedersen, C.B.; Mathiesen, T.; Poulsgaard, L.; Kristensen, B.W.; Halle, B.; Poulsen, F.R. Intrakraniale meningeomer. Ugeskr. Laeger. 2019, 181, V07180489. [Google Scholar]
- Harter, P.N.; Braun, Y.; Plate, K.H. Classification of Meningiomas-Advances and Controversies. Chin. Clin. Oncol. 2017, 6, S2. [Google Scholar] [CrossRef] [PubMed]
- Hrachova, M.; Nguyen, E.N.T.; Fu, B.D.; Dandekar, M.J.; Kong, X.-T.; Cadena, G.; Hsu, F.P.K.; Billimek, J.; Taylor, T.H.; Bota, D.A. A Retrospective Interventional Cohort Study to Assess the Safety and Efficacy of Sandostatin LAR for Treatment of Recurrent and/or Refractory Meningiomas. Front. Neurol. 2020, 11, 373. [Google Scholar] [CrossRef] [PubMed]
- Bousquet, C.; Guillermet, J.; Vernejoul, F.; Lahlou, H.; Buscail, L.; Susini, C. Somatostatin Receptors and Regulation of Cell Proliferation. Dig. Liver Dis. 2004, 36, S2–S7. [Google Scholar] [CrossRef] [PubMed]
- Patel, Y.C. Somatostatin and Its Receptor Family. Front. Neuroendocrinol. 1999, 20, 157–198. [Google Scholar] [CrossRef]
- Theodoropoulou, M.; Stalla, G.K. Somatostatin Receptors: From Signaling to Clinical Practice. Front. Neuroendocrinol. 2013, 34, 228–252. [Google Scholar] [CrossRef] [PubMed]
- Patel, Y.C.; Greenwood, M.T.; Panetta, R.; Demchyshyn, L.; Niznik, H.; Srikant, C.B. The Somatostatin Receptor Family. Life Sci. 1995, 57, 1249–1265. [Google Scholar] [CrossRef] [PubMed]
- Ferjoux, G.; Bousquet, C.; Cordelier, P.; Benali, N.; Lopez, F.; Rochaix, P.; Buscail, L.; Susini, C. Signal Transduction of Somatostatin Receptors Negatively Controlling Cell Proliferation. J. Physiol. Paris 2000, 94, 205–210. [Google Scholar] [CrossRef] [PubMed]
- Reubi, J.C.; Kappeler, A.; Waser, B.; Laissue, J.; Hipkin, R.W.; Schonbrunn, A. Immunohistochemical Localization of Somatostatin Receptors Sst2A in Human Tumors. Am. J. Pathol. 1998, 153, 233–245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Oliveira Silva, C.B.; Ongaratti, B.R.; Trott, G.; Haag, T.; Ferreira, N.P.; Leães, C.G.S.; Pereira-Lima, J.F.S.; da Costa Oliveira, M. Expression of Somatostatin Receptors (SSTR1-SSTR5) in Meningiomas and Its Clinicopathological Significance. Int. J. Clin. Exp. Pathol. 2015, 8, 13185–13192. [Google Scholar]
- Tollefsen, S.E.; Jarmund, A.H.; Ytterhus, B.; Salvesen, Ø.; Mjønes, P.; Torp, S.H. Somatostatin Receptors in Human Meningiomas—Clinicopathological Aspects. Cancers 2021, 13, 5704. [Google Scholar] [CrossRef]
- Harris, A.G. Somatostatin and Somatostatin Analogues: Pharmacokinetics and Pharmacodynamic Effects. Gut 1994, 35, S1–S4. [Google Scholar] [CrossRef] [Green Version]
- Lamberts, S.W.J.; Hofland, L.J. ANNIVERSARY REVIEW: Octreotide, 40 Years Later. Eur. J. Endocrinol. 2019, 181, R173–R183. [Google Scholar] [CrossRef] [Green Version]
- Goldbrunner, R.; Minniti, G.; Preusser, M.; Jenkinson, M.D.; Sallabanda, K.; Houdart, E.; von Deimling, A.; Stavrinou, P.; Lefranc, F.; Lund-Johansen, M.; et al. EANO Guidelines for the Diagnosis and Treatment of Meningiomas. Lancet Oncol. 2016, 17, e383–e391. [Google Scholar] [CrossRef] [Green Version]
- Helsedirektoratet Nasjonalt Handlingsprogram Med Retningslinjer for Diagnostikk, Behandling og Oppfølging av Meningeomer. 2020. Available online: https://www.helsedirektoratet.no/retningslinjer/meningeomer-handlingsprogram (accessed on 24 February 2023).
- Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.J.; Horsley, T.; Weeks, L.; et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joanna Briggs Institute Critical-Appraisal-Tools-Critical Appraisal Tools, Joanna Briggs Institute. Available online: https://jbi.global/critical-appraisal-tools (accessed on 6 May 2021).
- Ortolá Buigues, A.; Crespo Hernández, I.; Jorquera Moya, M.; Díaz Pérez, J.Á. Unresectable Recurrent Multiple Meningioma: A Case Report with Radiological Response to Somatostatin Analogues. Case Rep. Oncol. 2016, 9, 520–525. [Google Scholar] [CrossRef]
- García-Luna, P.P.; Relimpio, F.; Pumar, A.; Pereira, J.L.; Leal-Cerro, A.; Trujillo, F.; Cortés, A.; Astorga, R. Clinical Use of Octreotide in Unresectable Meningiomas. A Report of Three Cases. J. Neurosurg. Sci. 1993, 37, 237–241. [Google Scholar]
- Jaffrain-Rea, M.L.; Minniti, G.; Santoro, A.; Bastianello, S.; Tamburrano, G.; Gulino, A.; Cantore, G. Visual Improvement during Octreotide Therapy in a Case of Episellar Meningioma. Clin. Neurol. Neurosurg. 1998, 100, 40–43. [Google Scholar] [CrossRef] [PubMed]
- Rammo, R.; Rock, A.; Transou, A.; Raghunathan, A.; Rock, J. Anaplastic Meningioma: Octreotide Therapy for a Case of Recurrent and Progressive Intracranial Disease. J. Neurosurg. 2016, 124, 496–500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schreglmann, S.R.; Jelčić, I.; Taegtmeyer, A.B.; Linnebank, M.; Weller, M. Multifocal CNS Demyelination after Octreotide Treatment for Metastatic Meningioma. Clin. Neurol. Neurosurg. 2013, 115, 817–819. [Google Scholar] [CrossRef] [Green Version]
- Cardona, A.F.; Ruiz-Patiño, A.; Zatarain-Barrón, Z.L.; Hakim, F.; Jiménez, E.; Mejía, J.A.; Ramón, J.F.; Useche, N.; Bermúdez, S.; Pineda, D.; et al. Systemic Management of Malignant Meningiomas: A Comparative Survival and Molecular Marker Analysis between Octreotide in Combination with Everolimus and Sunitinib. PLoS ONE 2019, 14, e0217340. [Google Scholar] [CrossRef]
- Furtner, J.; Schöpf, V.; Seystahl, K.; Le Rhun, E.; Rudà, R.; Roelcke, U.; Koeppen, S.; Berghoff, A.S.; Marosi, C.; Clement, P.; et al. Kinetics of Tumor Size and Peritumoral Brain Edema before, during, and after Systemic Therapy in Recurrent WHO Grade II or III Meningioma. Neuro. Oncol. 2016, 18, 401–407. [Google Scholar] [CrossRef] [Green Version]
- Le Van, T.; Graillon, T.; Jacob, J.; Vauleon, E.; Feuvret, L.; Boch, A.-L.; Boetto, J.; Boone, M.; Bronnimann, C.; Caire, F.; et al. Multimodal Management of Surgery- and Radiation-Refractory Meningiomas: An Analysis of the French National Tumor Board Meeting on Meningiomas Cohort. J. Neurooncol. 2021, 153, 55–64. [Google Scholar] [CrossRef] [PubMed]
- Chamberlain, M.; Fadul, C.; Glantz, M. Recurrent Meningioma: Salvage Therapy with Long-Acting Somatostatin Analogue. Neuro-Oncology 2007, 9, 526. [Google Scholar] [CrossRef] [PubMed]
- Johnson, D.R.; Kimmel, D.W.; Burch, P.A.; Cascino, T.L.; Giannini, C.; Wu, W.; Buckner, J.C. Phase II Study of Subcutaneous Octreotide in Adults with Recurrent or Progressive Meningioma and Meningeal Hemangiopericytoma. Neuro-Oncology 2011, 13, 530–535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Norden, A.D. Phase II Study of Monthly Pasireotide LAR (SOM230C) for Recurrent or Progressive Meningioma. Neurology 2015, 84, 280–286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simó, M.; Argyriou, A.A.; Macià, M.; Plans, G.; Majós, C.; Vidal, N.; Gil, M.; Bruna, J. Recurrent High-Grade Meningioma: A Phase II Trial with Somatostatin Analogue Therapy. Cancer Chemother. Pharmacol. 2014, 73, 919–923. [Google Scholar] [CrossRef] [PubMed]
- Graillon, T.; Sanson, M.; Campello, C.; Idbaih, A.; Peyre, M.; Peyrière, H.; Basset, N.; Autran, D.; Roche, C.; Kalamarides, M.; et al. Everolimus and Octreotide for Patients with Recurrent Meningioma: Results from the Phase II CEVOREM Trial. Clin. Cancer Res. 2020, 26, 552–557. [Google Scholar] [CrossRef]
- Graillon, T.; Defilles, C.; Mohamed, A.; Lisbonis, C.; Germanetti, A.-L.; Chinot, O.; Figarella-Branger, D.; Roche, P.-H.; Adetchessi, T.; Fuentes, S.; et al. Combined Treatment by Octreotide and Everolimus: Octreotide Enhances Inhibitory Effect of Everolimus in Aggressive Meningiomas. J. Neurooncol. 2015, 124, 33–43. [Google Scholar] [CrossRef]
- Graillon, T.; Romano, D.; Defilles, C.; Lisbonis, C.; Saveanu, A.; Figarella-Branger, D.; Roche, P.-H.; Fuentes, S.; Chinot, O.; Dufour, H.; et al. Pasireotide Is More Effective than Octreotide, Alone or Combined with Everolimus on Human Meningioma in vitro. Oncotarget 2017, 8, 55361–55373. [Google Scholar] [CrossRef] [Green Version]
- Graillon, T.; Romano, D.; Defilles, C.; Saveanu, A.; Mohamed, A.; Figarella-Branger, D.; Roche, P.-H.; Fuentes, S.; Chinot, O.; Dufour, H.; et al. Octreotide Therapy in Meningiomas: In Vitro Study, Clinical Correlation, and Literature Review. J. Neurosurg. 2017, 127, 660–669. [Google Scholar] [CrossRef]
- Koper, J.W.; Markstein, R.; Kohler, C.; Kwekkeboom, D.J.; Avezaat, C.J.; Lamberts, S.W.; Reubi, J.C. Somatostatin Inhibits the Activity of Adenylate Cyclase in Cultured Human Meningioma Cells and Stimulates Their Growth. J. Clin. Endocrinol. Metab. 1992, 74, 543–547. [Google Scholar] [CrossRef] [PubMed]
- Hofland, L.J.; Lamberts, S.W. Somatostatin Receptors and Disease: Role of Receptor Subtypes. Bailliere’s Clin. Endocrinol. Metab. 1996, 10, 163–176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- PubChem Lanreotide. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/6918011 (accessed on 7 May 2021).
- Schulz, S.; Pauli, S.U.; Schulz, S.; Händel, M.; Dietzmann, K.; Firsching, R.; Höllt, V. Immunohistochemical Determination of Five Somatostatin Receptors in Meningioma Reveals Frequent Overexpression of Somatostatin Receptor Subtype Sst2A. Clin. Cancer Res. 2000, 6, 1865–1874. [Google Scholar] [PubMed]
- Arena, S.; Barbieri, F.; Thellung, S.; Pirani, P.; Corsaro, A.; Villa, V.; Dadati, P.; Dorcaratto, A.; Lapertosa, G.; Ravetti, J.-L.; et al. Expression of Somatostatin Receptor MRNA in Human Meningiomas and Their Implication in in Vitro Antiproliferative Activity. J. Neurooncol. 2004, 66, 155–166. [Google Scholar] [CrossRef] [PubMed]
- Kaley, T.; Barani, I.; Chamberlain, M.; McDermott, M.; Panageas, K.; Raizer, J.; Rogers, L.; Schiff, D.; Vogelbaum, M.; Weber, D.; et al. Historical Benchmarks for Medical Therapy Trials in Surgery- and Radiation-Refractory Meningioma: A RANO Review. Neuro. Oncol. 2014, 16, 829–840. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faggiano, A.; Malandrino, P.; Modica, R.; Agrimi, D.; Aversano, M.; Bassi, V.; Giordano, E.A.; Guarnotta, V.; Logoluso, F.A.; Messina, E.; et al. Efficacy and Safety of Everolimus in Extrapancreatic Neuroendocrine Tumor: A Comprehensive Review of Literature. Oncologist 2016, 21, 875–886. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bjornsti, M.-A.; Houghton, P.J. The Tor Pathway: A Target for Cancer Therapy. Nat. Rev. Cancer 2004, 4, 335–348. [Google Scholar] [CrossRef]
- U.S. Food and Drug Administration Everolimus (Afinitor). FDA. 2016. Available online: https://www.fda.gov/drugs/resources-information-approved-drugs/everolimus-afinitor (accessed on 24 February 2023).
- Fougner, S.L.; Bollerslev, J.; Svartberg, J.; Øksnes, M.; Cooper, J.; Carlsen, S.M. Preoperative Octreotide Treatment of Acromegaly: Long-Term Results of a Randomised Controlled Trial. Eur J Endocrinol 2014, 171, 229–235. [Google Scholar] [CrossRef] [Green Version]
- Lamberts, S.W.J.; van der Lely, A.-J.; de Herder, W.W.; Hofland, L.J. Octreotide. N. Engl. J. Med. 1996, 334, 246–254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Filippi, L.; Palumbo, I.; Bagni, O.; Schillaci, O.; Aristei, C.; Palumbo, B. Somatostatin Receptor Targeted PET-Imaging for Diagnosis, Radiotherapy Planning and Theranostics of Meningiomas: A Systematic Review of the Literature. Diagnostics 2022, 12, 1666. [Google Scholar] [CrossRef] [PubMed]
- Marincek, N.; Radojewski, P.; Dumont, R.A.; Brunner, P.; Müller-Brand, J.; Maecke, H.R.; Briel, M.; Walter, M.A. Somatostatin Receptor-Targeted Radiopeptide Therapy with 90Y-DOTATOC and 177Lu-DOTATOC in Progressive Meningioma: Long-Term Results of a Phase II Clinical Trial. J. Nucl. Med. 2015, 56, 171–176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gerster-Gilliéron, K.; Forrer, F.; Maecke, H.; Mueller-Brand, J.; Merlo, A.; Cordier, D. 90Y-DOTATOC as a Therapeutic Option for Complex Recurrent or Progressive Meningiomas. J. Nucl. Med. 2015, 56, 1748–1751. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fodi, C.-K.; Schittenhelm, J.; Honegger, J.; Castaneda-Vega, S.G.; Behling, F. The Current Role of Peptide Receptor Radionuclide Therapy in Meningiomas. J. Clin. Med. 2022, 11, 2364. [Google Scholar] [CrossRef]
- Mirian, C.; Duun-Henriksen, A.K.; Maier, A.; Pedersen, M.M.; Jensen, L.R.; Bashir, A.; Graillon, T.; Hrachova, M.; Bota, D.; van Essen, M.; et al. Somatostatin Receptor-Targeted Radiopeptide Therapy in Treatment-Refractory Meningioma: Individual Patient Data Meta-Analysis. J. Nucl. Med. 2021, 62, 507–513. [Google Scholar] [CrossRef] [PubMed]
- Salgues, B.; Graillon, T.; Horowitz, T.; Chinot, O.; Padovani, L.; Taïeb, D.; Guedj, E. Somatostatin Receptor Theranostics for Refractory Meningiomas. Curr. Oncol. 2022, 29, 5550–5565. [Google Scholar] [CrossRef]
- Seystahl, K.; Stoecklein, V.; Schüller, U.; Rushing, E.; Nicolas, G.; Schäfer, N.; Ilhan, H.; Pangalu, A.; Weller, M.; Tonn, J.-C.; et al. Somatostatin Receptor-Targeted Radionuclide Therapy for Progressive Meningioma: Benefit Linked to 68Ga-DOTATATE/-TOC Uptake. Neuro. Oncol. 2016, 18, 1538–1547. [Google Scholar] [CrossRef] [Green Version]
- Jensen, L.R.; Maier, A.D.; Lomstein, A.; Graillon, T.; Hrachova, M.; Bota, D.; Ruiz-Patiño, A.; Arrieta, O.; Cardona, A.F.; Rudà, R.; et al. Somatostatin Analogues in Treatment-Refractory Meningioma: A Systematic Review with Meta-Analysis of Individual Patient Data. Neurosurg. Rev. 2022, 45, 3067–3081. [Google Scholar] [CrossRef] [PubMed]
Author, Year, Location [Ref] | Number of Patients | CNS WHO Grade and/or Subtype | Treatment | Clinical Response, PFS-6 | Radiological Response | SSTR Status | Adverse Effects |
---|---|---|---|---|---|---|---|
Case Reports (n = 5) | |||||||
Buigues, 2016, Spain [28] | 1 | Meningothelial meningioma | Lanreotide sc | None, PFS > 2 years | Improvement | OctreoScan positive | Not reported |
García-Luna, 1993, Spain [29] | 3 | Meningothelial and papillomatous meningioma | Octreotide sc | No lasting response | None | SSTRs confirmed in one case, otherwise unknown | None/mild adverse effects |
Jaffrain-Rea, 1998, Italy [30] | 1 | Transitional meningioma | Octreotide sc | Clinical improvement | None | Not reported | Not reported |
Rammo, 2016, USA [31] | 1 | Grade 3 | Octreotide | Remission for 3.5 years | Not reported | Octreotide receptor 2a present | Not reported |
Schreglmann, 2013, Switzerland [32] | 1 | WHO grade 1, meningotheliomatous, Pulmonary metastases | Octreotide sc | Not reported | New tumor lesions | Octreotide scintigraphy positive | Autoimmune-mediated focal demyelination. Polyallergic patient |
Prospective Studies (n = 5) | |||||||
Chamberlain, 2007, USA [36] | 16 | WHO grade 1, 2, and 3 | Sandostatin LAR im | PFS-6 *: 44% | Partial radiological response: 31% of patients | Octreotide scintigraphy positive | Minimal toxicity |
Graillon, 2020, France [40] | 20 | WHO grade 1, 2, and 3 | Everolimus po + octreotide LAR im | PFS-6: 55% | Anti-tumor activity (3D tumor growth rate) | SSTR2a detected in most patients using IHC | Stomatitis in 55% of patients, discontinuations of two patients |
Johnson, 2011, USA [37] | 11 | WHO grade 1, 2, and 3 | Octreotide sc | None | None | SSTR status partly known | Mild adverse effects: diarrhea, nausea, anorexia, transaminitis |
Norden, 2015, USA [38] | 34 | WHO grade 1, 2, and 3 | Pasireotide LAR im | WHO grade 1: 50% WHO grade 2 + 3: 17% | None | High octreotide uptake | Treatment well tolerated |
Simó, 2014, Spain [39] | 9 | WHO grade 2 and 3 | Octreotide im | PFS-6: 44.4% | None | Positive octreotide SPECT scanning | Minimal toxicity reported |
Retrospective Studies (n = 3) | |||||||
Cardona, 2019, Colombia [33] | 15 received octreotide | WHO grade 2 or 3 | Octreotide ± everolimus | No difference in survival when comparing everolimus ± octreotide, and sunitinib | Not reported | Confirmed overexpression of SSTR2 | Fatigue and oedema |
Furtner, 2016, Austria [34] | 9 received somatostatin analog | WHO grade 2 and 3 | Somatostatin analog | Not reported | No reduction in peritumoral edema or tumor size | SSTR status not reported | Not reported |
Le Van, 2021, France [35] | 8 | WHO grade 1, 2, and 3 | Everolimus + octreotide | PFS-6 *: 60%, combination of octreotide + everolimus | Not reported | SSTR status not reported | Not reported |
Author, Year, Location [Ref] | Aims | Results |
---|---|---|
Graillon, 2015, France [41] | Activity of octreotide, everolimus, BKM-120 and BEZ-235 (new Pi3K/Akt/mTOR inhibitors), and a combined treatment (octreotide plus everolimus) on signaling pathways, cell proliferation, and cell cycle proteins in meningioma primary cells. | n = 23 patients. SSTR2 mRNA expression in all tested cells. Octreotide decreased cell viability. Enhanced decrease with a combined treatment of octreotide and everolimus. |
Graillon, 2017a, France [42] | Comparison of pasireotide and octreotide, both alone and in combination with everolimus, on meningioma primary cell cultures. | Pasireotide induces a higher reduction in cell viability and stronger inhibitory effect on cell proliferation than octreotide, both alone and in combination with everolimus. |
Graillon, 2017b, France [43] | Evaluate the effect of octreotide on meningioma primary cell cultures. | n = 80 meningioma primary cell cultures. Octreotide significantly decreased cell proliferation in the majority of meningiomas but did not induce apoptosis. Improved octreotide effect on cell viability if elevated level of SSTR2. |
Koper, 1992, Netherlands [44] | Effects of somatostatin and octreotide on the growth of cultured human meningioma cells. | Significant stimulation of growth. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tollefsen, S.E.; Solheim, O.; Mjønes, P.; Torp, S.H. Meningiomas and Somatostatin Analogs: A Systematic Scoping Review on Current Insights and Future Perspectives. Int. J. Mol. Sci. 2023, 24, 4793. https://doi.org/10.3390/ijms24054793
Tollefsen SE, Solheim O, Mjønes P, Torp SH. Meningiomas and Somatostatin Analogs: A Systematic Scoping Review on Current Insights and Future Perspectives. International Journal of Molecular Sciences. 2023; 24(5):4793. https://doi.org/10.3390/ijms24054793
Chicago/Turabian StyleTollefsen, Sofie Eline, Ole Solheim, Patricia Mjønes, and Sverre Helge Torp. 2023. "Meningiomas and Somatostatin Analogs: A Systematic Scoping Review on Current Insights and Future Perspectives" International Journal of Molecular Sciences 24, no. 5: 4793. https://doi.org/10.3390/ijms24054793