COVID-19 and Cancer Diseases—The Potential of Coriolus versicolor Mushroom to Combat Global Health Challenges
Abstract
:1. Introduction
2. Active Compounds in CV Extract
2.1. Polysaccharopeptides
2.2. Polysaccharides
2.3. Small Molecules
3. Effect of CV on Immune Cell Properties
3.1. Macrophages
3.2. Peripheral Blood Mononuclear Cells
4. Effect of CV Extract on Viral Infections
5. Effects of CV on Cancer Cells
5.1. CV Activity in Combined Anti-Cancer Treatment
5.2. CV as Monotherapy for Cancer Treatment
CV Compound | Cancer Cell Line | IC50 Value (µg/mL) | References |
---|---|---|---|
ethanol-water whole extract | BT-20 breast cancer cells MDA-MB-231 breast cancer cells MCF-7 breast cancer cells T-47D breast cancer | >800 514.0 271.7 233.3 | Ho et al., 2005 [122] |
aqueous ethanol whole extract | HL-60 leukemia cells | 150.6 | Ho et al., 2006 [136] |
methanol whole extract | B16 melanoma cells | 200 | Harhaji et al., 2010 [120] |
musarin (protein) | T84 colorectal cancer cells | 1.8 | He et al., 2021 [54] |
α-glucans and β-glucans | LoVo colon carcinoma cells | 224.0 | Roca-Lema et al., 2019 [129] |
aqueous ethanol whole extract | HL-60 leukemia cells B-cell lymphoma (Raji) NB-4 leukemia cells | 147.3 253.8 269.3 | Lau et al., 2004 [125] |
small peptide of Coriolus versicolor (SPCV) | HL-60 leukemia cells LS174-T colony cancer cells SMMU-7721 hepatoma cells SCG-7901 stomach cancer cells | 30.0 142.0 138.0 323.0 | Yang et al., 1992 [53] |
Coriolus versicolor polysaccharide (CVP) | 7703 hepatocellular carcinoma cells BCap3 breast cancer cells T-47D breast cancer cells MCF-7 breast cancer cells ZR75-30 breast cancer cells | 18.4 14.4 9.3 39.3 34.6 | Zhou et al., 2007 [145] |
Coriolus versicolor polysaccharide (CVP) | 7703 hepatocellular carcinoma cells | 4.25 | Cai et al., 2010 [146] |
PSK | MCF-7 breast cancer cells | 200 | Aoyagi et al., 1997 [147] |
PSK | hepatocellular carcinoma H4-II-E cells human ovarian cancer cells | 1.5 0.33 | Kobayashi et al., 1994 [148] |
ethanol whole extract | cervix adenocarcinoma HeLa cells colon carcinoma LS174 cells lung adenocarcinoma A549 cells | 42.4 86.1 65.6 | Knežević et al., 2018 [149] |
5.3. CV Extract Affects Cancer Angiogenesis
6. Significance of Fever for Cancer and Infectious Disease: Potential Utility of CV Extract
7. Clinical Trials
8. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pommier, Y.; Leo, E.; Zhang, H.; Marchand, C. DNA Topoisomerases and Their Poisoning by Anticancer and Antibacterial Drugs. Chem. Biol. 2010, 17, 421–433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bjorkholm, M. Etoposide and Teniposide in the Treatment of Acute Leukemia. Med. Oncol. Tumor Pharmacother. 1990, 7, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Alken, S.; Kelly, C.M. Cancer Management and Research Dovepress Benefit Risk Assessment and Update on the Use of Docetaxel in the Management of Breast Cancer. Cancer Manag. Res. 2013, 5, 357–365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Su, X.Z.; Miller, L.H. The Discovery of Artemisinin and the Nobel Prize in Physiology or Medicine. Sci. China Life Sci. 2015, 58, 1175–1179. [Google Scholar] [CrossRef] [Green Version]
- Gargano, M.L.; van Griensven, L.J.L.D.; Isikhuemhen, O.S.; Lindequist, U.; Venturella, G.; Wasser, S.P.; Zervakis, G.I. Medicinal Mushrooms: Valuable Biological Resources of High Exploitation Potential. Plant Biosyst. 2017, 151, 548–565. [Google Scholar] [CrossRef]
- Kirk, P. Species Fungorum for CoL+. In Catalogue of Life Checklist; Bánki, O., Roskov, Y., Döring, M., Ower, G., Vandepitte, L., Hobern, D., Remsen, D., Schalk, P., DeWalt, R., Keping, M., et al., Eds.; Kew Gardens: London, UK, 2020. [Google Scholar] [CrossRef]
- Jing, Y.; Zhang, S.; Li, M.; Ma, Y.; Zheng, Y.; Zhang, D.; Wu, L. Research Progress on the Extraction, Structure, and Bioactivities of Polysaccharides from Coriolus Versicolor. Foods 2022, 11, 2126. [Google Scholar] [CrossRef]
- Bains, A.; Chawla, P.; Kaur, S.; Najda, A.; Fogarasi, M.; Fogarasi, S. Bioactives from Mushroom: Health Attributes and Food Industry Applications. Materials 2021, 14, 7640. [Google Scholar] [CrossRef]
- Standish, L.J.; Wenner, C.A.; Sweet, E.S.; Bridge, C.; Nelson, A.; Martzen, M.; Novack, J.; Torkelson, C. Trametes versicolor mushroom immune therapy in breast cancer. J. Soc. Integr. Oncol. 2008, 6, 122–128. [Google Scholar]
- Maehara, Y.; Tsujitani, S.; Saeki, H.; Oki, E.; Yoshinaga, K.; Emi, Y.; Morita, M.; Kohnoe, S.; Kakeji, Y.; Yano, T.; et al. Biological Mechanism and Clinical Effect of Protein-Bound Polysaccharide K (KRESTIN®): Review of Development and Future Perspectives. Surg. Today 2012, 42, 8–28. [Google Scholar] [CrossRef] [Green Version]
- Zaidman, B.Z.; Yassin, M.; Mahajna, J.; Wasser, S.P. Medicinal Mushroom Modulators of Molecular Targets as Cancer Therapeutics. Appl. Microbiol. Biotechnol. 2005, 67, 453–468. [Google Scholar] [CrossRef]
- Torkelson, C.J.; Sweet, E.; Martzen, M.R.; Sasagawa, M.; Wenner, C.A.; Gay, J.; Putiri, A.; Standish, L.J. Phase 1 Clinical Trial of Trametes Versicolor in Women with Breast Cancer. ISRN Oncol. 2012, 2012, 251632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eliza, W.L.; Fai, C.K.; Chung, L.P. Efficacy of Yun Zhi (Coriolus Versicolor) on Survival in Cancer Patients: Systematic Review and Meta-Analysis. Recent Pat. Inflamm. Allergy Drug Discov. 2012, 6, 78–87. [Google Scholar] [CrossRef] [PubMed]
- Kuan, Y.C.; Wu, Y.J.; Hung, C.L.; Sheu, F. Trametes Versicolor Protein YZP Activates Regulatory B Lymphocytes-Gene Identification through De Novo Assembly and Function Analysis in a Murine Acute Colitis Model. PLoS ONE 2013, 8, e72422. [Google Scholar] [CrossRef] [Green Version]
- Kıvrak, İ.; Kıvrak, Ş.; Karababa, E. Assessment of Bioactive Compounds and Antioxidant Activity of Turkey Tail Medicinal Mushroom Trametes Versicolor,(Agaricomycetes). Int. J. Med. Mushrooms 2020, 22, 559–571. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Sun, Y.; Zhang, Q.; Zhang, H.; Yang, B.; Wang, Z.; Zhu, W.; Li, B.; Wang, Q.; Kuang, H. Screening and Comparison of Antioxidant Activities of Polysaccharides from Coriolus Versicolor. Int. J. Biol. Macromol. 2014, 69, 12–19. [Google Scholar] [CrossRef]
- Yang, S.F.; Zhuang, T.F.; Si, Y.M.; Qi, K.Y.; Zhao, J. Coriolus Versicolor Mushroom Polysaccharides Exert Immunoregulatory Effects on Mouse B Cells via Membrane Ig and TLR-4 to Activate the MAPK and NF-ΚB Signaling Pathways. Mol. Immunol. 2015, 64, 144–151. [Google Scholar] [CrossRef]
- Cui, J.; Chisti, Y. Polysaccharopeptides of Coriolus Versicolor: Physiological Activity, Uses, and Production. Biotechnol. Adv. 2003, 21, 109–122. [Google Scholar] [CrossRef]
- Fisher, M.; Yang, L. Anticancer Effects and Mechanisms of Polysaccharide-K (PSK): Implications of Cancer Immunotherapy. Anticancer Res. 2002, 22, 1737–1754. [Google Scholar]
- Kim, T.; Kim, Y.J.; Sohn, E.H. Effects of Beta-Glucan from Coriolus Versicolor on Scavenger Receptor B1 Expression and Their Involvement of Dectin-1 and Casein Kinase 2. Korean J. Plant Res. 2012, 25, 664–669. [Google Scholar] [CrossRef] [Green Version]
- Shi, S.; Yin, L.; Shen, X.; Dai, Y.; Wang, J.; Yin, D.; Zhang, D.; Pan, X. β-Glucans from Trametes Versicolor (L.) Lloyd Is Effective for Prevention of Influenza Virus Infection. Viruses 2022, 14, 237. [Google Scholar] [CrossRef]
- Miletić, D.; Turło, J.; Podsadni, P.; Sknepnek, A.; Szczepańska, A.; Lević, S.; Nedović, V.; Nikšić, M. Turkey Tail Medicinal Mushroom, Trametes Versicolor (Agaricomycetes), Crude Exopolysaccharides with Antioxidative Activity. Int. J. Med. Mushrooms 2020, 22, 885–895. [Google Scholar] [CrossRef] [PubMed]
- Kamiyama, M.; Shibamoto, T.; Horiuchi, M.; Umano, K.; Kondo, K.; Otsuka, Y. Antioxidant/Anti-Inflammatory Activities and Chemical Composition of Extracts from the Mushroom Trametes Versicolor. Int. J. Food Sci. Nutr. 2013, 2, 85. [Google Scholar] [CrossRef]
- Wan, J.M.; Sit, W.H.; Louie, J.C. Polysaccharopeptide Enhances the Anticancer Activity of Doxorubicin and Etoposide on Human Breast Cancer Cells ZR-75-30. Int. J. Oncol. 2008, 32, 689–699. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://pubchem.ncbi.nlm.nih.gov (accessed on 7 February 2023).
- Habtemariam, S. Trametes versicolor (Synn. Coriolus versicolor) Polysaccharides in Cancer Therapy: Targets and Efficacy. Biomedicines 2020, 8, 135. [Google Scholar] [CrossRef]
- Sivanesan, I.; Muthu, M.; Gopal, J.; Oh, J.W. Mushroom Polysaccharide-Assisted Anticarcinogenic Mycotherapy: Reviewing Its Clinical Trials. Molecules 2022, 27, 4090. [Google Scholar] [CrossRef]
- Dou, H.; Chang, Y.; Zhang, L. Coriolus Versicolor Polysaccharopeptide as an Immunotherapeutic in China. Prog. Mol. Biol. Transl. Sci. 2019, 163, 361–381. [Google Scholar] [CrossRef]
- Chang, Y.; Zhang, M.; Jiang, Y.; Liu, Y.; Luo, H.; Hao, C.; Zeng, P.; Zhang, L. Preclinical and Clinical Studies of Coriolus Versicolor Polysaccharopeptide as an Immunotherapeutic in China. Discov. Med. 2017, 23, 207–219. [Google Scholar]
- Hor, S.Y.; Ahmad, M.; Farsi, E.; Lim, C.P.; Asmawi, M.Z.; Yam, M.F. Acute and Subchronic Oral Toxicity of Coriolus Versicolor Standardized Water Extract in Sprague-Dawley Rats. J. Ethnopharmacol. 2011, 137, 1067–1076. [Google Scholar] [CrossRef]
- Ng, T.B.; Chan, W.Y. Polysaccharopeptide from the Mushroom Coriolus Versicolor Possesses Analgesic Activity but Does Not Produce Adverse Effects on Female Reproductive or Embryonic Development in Mice. Gen. Pharmacol. 1997, 29, 269–273. [Google Scholar] [CrossRef]
- Hsu, W.K.; Hsu, T.H.; Lin, F.Y.; Cheng, Y.K.; Yang, J.P.W. Separation, Purification, and α-Glucosidase Inhibition of Polysaccharides from Coriolus Versicolor LH1 Mycelia. Carbohydr. Polym. 2013, 92, 297–306. [Google Scholar] [CrossRef]
- Paterson, R.R.M.; Lima, N. Biomedical Effects of Mushrooms with Emphasis on Pure Compounds. Biomed. J. 2014, 37, 357–368. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Wang, N.; Hong, M.; Tan, H.Y.; Pan, G.; Feng, Y. Hepatoprotective Effects of a Functional Formula of Three Chinese Medicinal Herbs: Experimental Evidence and Network Pharmacology-Based Identification of Mechanism of Action and Potential Bioactive Components. Molecules 2018, 23, 352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, K.; Wang, Z.; Cui, R.; Chu, H. Polysaccharopeptide from Trametes Versicolor Blocks Inflammatory Osteoarthritis Pain-Morphine Tolerance Effects via Activating Cannabinoid Type 2 Receptor. Int. J. Biol. Macromol. 2019, 126, 805–810. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, H.; Li, Y.; Zhao, Y.; Xiong, F.; Liu, Y.; Xue, H.; Yang, Z.; Ni, S.; Sahil, A.; et al. Coriolus Versicolor Alleviates Diabetic Cardiomyopathy by Inhibiting Cardiac Fibrosis and NLRP3 Inflammasome Activation. Phytother. Res. 2019, 33, 2737–2748. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Jin, X.; Zhang, L.; Yang, L. A Study on the Antioxidant Effect of Coriolus Versicolor Polysaccharide in Rat Brain Tissues. Afr. J. Tradit. Complement. Altern. Med. 2013, 10, 481–484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fang, X.; Jiang, Y.; Ji, H.; Zhao, L.; Xiao, W.; Wang, Z.; Ding, G. The Synergistic Beneficial Effects of Ginkgo Flavonoid and Coriolus Versicolor Polysaccharide for Memory Improvements in a Mouse Model of Dementia. Evid. Based Complement. Alternat. Med. 2015, 2015, 128394. [Google Scholar] [CrossRef] [Green Version]
- Pang, Z.J.; Chen, Y.; Zhou, M. Polysaccharide Krestin Enhances Manganese Superoxide Dismutase Activity and MRNA Expression in Mouse Peritoneal Macrophages. Am. J. Chin. Med. 2000, 28, 331–341. [Google Scholar] [CrossRef]
- Chen, Y.; Yao, F.; Ming, K.; Wang, D.; Hu, Y.; Liu, J. Polysaccharides from Traditional Chinese Medicines: Extraction, Purification, Modification, and Biological Activity. Molecules 2016, 21, 1705. [Google Scholar] [CrossRef]
- Singdevsachan, S.K.; Auroshree, P.; Mishra, J.; Baliyarsingh, B.; Tayung, K.; Thatoi, H. Mushroom Polysaccharides as Potential Prebiotics with Their Antitumor and Immunomodulating Properties: A Review. Bioact. Carbohydr. Diet. Fibre. 2016, 7, 1–14. [Google Scholar] [CrossRef]
- Pallav, K.; Dowd, S.E.; Villafuerte, J.; Yang, X.; Kabbani, T.; Hansen, J.; Dennis, M.; Leffler, D.A.; Kelly, C.P. Effects of Polysaccharopeptide from Trametes Versicolor and Amoxicillin on the Gut Microbiome of Healthy Volunteers: A Randomized Clinical Trial. Gut Microbes 2014, 5, 458–467. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Chen, P.; Zhang, P.; Chang, Y.; Cui, M.; Duan, J. Protein-Bound β-Glucan from Coriolus Versicolor Has Potential for Use Against Obesity. Mol. Nutr. Food Res. 2019, 63, 1801231. [Google Scholar] [CrossRef] [PubMed]
- Awadasseid, A.; Hou, J.; Gamallat, Y.; Xueqi, S.; Eugene, K.D.; Hago, A.M.; Bamba, D.; Meyiah, A.; Gift, C.; Xin, Y. Purification, Characterization, and Antitumor Activity of a Novel Glucan from the Fruiting Bodies of Coriolus Versicolor. PLoS ONE 2017, 12, e0171270. [Google Scholar] [CrossRef] [PubMed]
- Jang, S.A.; Kang, S.C.; Sohn, E.H. Phagocytic Effects of β-Glucans from the Mushroom Coriolus Versicolor Are Related to Dectin-1, NOS, TNF-α Signaling in Macrophages. Biomol. Ther. 2011, 19, 438–444. [Google Scholar] [CrossRef] [Green Version]
- Kang, S.C.; Koo, H.J.; Park, S.; Lim, J.D.; Kim, Y.J.; Kim, T.; Namkoong, S.; Jang, K.H.; Pyo, S.; Jang, S.A.; et al. Effects of β-Glucans from Coriolus Versicolor on Macrophage Phagocytosis Are Related to the Akt and CK2/Ikaros. Int. J. Biol. Macromol. 2013, 57, 9–16. [Google Scholar] [CrossRef]
- Quayle, K.; Coy, C.; Standish, L.; Lu, H. The TLR2 Agonist in Polysaccharide-K Is a Structurally Distinct Lipid Which Acts Synergistically with the Protein-Bound β-Glucan. J. Nat. Med. 2015, 69, 198–208. [Google Scholar] [CrossRef]
- Shi, S.H.; Yang, W.T.; Huang, K.Y.; Jiang, Y.L.; Yang, G.L.; Wang, C.F.; Li, Y. β-Glucans from Coriolus Versicolor Protect Mice against S. Typhimurium Challenge by Activation of Macrophages. Int. J. Biol. Macromol. 2016, 86, 352–361. [Google Scholar] [CrossRef]
- Han, B.; Baruah, K.; Cox, E.; Vanrompay, D.; Bossier, P. Structure-Functional Activity Relationship of β-Glucans From the Perspective of Immunomodulation: A Mini-Review. Front. Immunol. 2020, 11, 658. [Google Scholar] [CrossRef] [Green Version]
- Ikewaki, N.; Iwasaki, M.; Kurosawa, G.; Rao, K.S.; Lakey-Beitia, J.; Preethy, S.; Abraham, S.J.K. β-Glucans: Wide-Spectrum Immune-Balancing Food-Supplement-Based Enteric (β-WIFE) Vaccine Adjuvant Approach to COVID-19. Hum. Vaccin. Immunother. 2021, 17, 2808. [Google Scholar] [CrossRef]
- Wang, S.R.; Zhang, L.; Chen, H.P.; Li, Z.H.; Dong, Z.J.; Wei, K.; Liu, J.K. Four New Spiroaxane Sesquiterpenes and One New Rosenonolactone Derivative from Cultures of Basidiomycete Trametes Versicolor. Fitoterapia 2015, 105, 127–131. [Google Scholar] [CrossRef]
- Janjušević, L.; Karaman, M.; Šibul, F.; Tommonaro, G.; Iodice, C.; Jakovljević, D.; Pejin, B. The Lignicolous Fungus Trametes Versicolor (L.) Lloyd (1920): A Promising Natural Source of Antiradical and AChE Inhibitory Agents. J. Enzyme Inhib. Med. Chem. 2017, 32, 355–362. [Google Scholar] [CrossRef] [Green Version]
- Yang, M.M.; Chen, Z.; Kwok, J.S. The Anti-Tumor Effect of a Small Polypeptide from Coriolus Versicolor (SPCV). Am. J. Chin. Med. 1992, 20, 221–232. [Google Scholar] [CrossRef] [PubMed]
- He, Y.Y.; Liu, S.; Newburg, D.S. Musarin, a Novel Protein with Tyrosine Kinase Inhibitory Activity from Trametes Versicolor, Inhibits Colorectal Cancer Stem Cell Growth. Biomed. Pharmacother. 2021, 144, 112339. [Google Scholar] [CrossRef] [PubMed]
- Yue, G.G.L.; Lau, C.B.S.; Leung, P.C. Medicinal Plants and Mushrooms with Immunomodulatory and Anticancer Properties—A Review on Hong Kong’s Experience. Molecules 2021, 26, 2173. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.K.; Ng, T.B.; Sze, S.F.; Tsui, K.W. Activation of Peritoneal Macrophages by Polysaccharopeptide from the Mushroom, Coriolus Versicolor. Immunopharmacology 1993, 26, 139–146. [Google Scholar] [CrossRef] [PubMed]
- Jędrzejewski, T.; Wrotek, S.; Sobocińska, J.; Pawlikowska, M.; Dzialuk, A. Dual Effect of the Extract from the Fungus Coriolus Versicolor on Lipopolysaccharide-Induced Cytokine Production in RAW 264.7 Macrophages Depending on the Lipopolysaccharide Concentration. J. Inflamm. Res. 2022, 15, 3599. [Google Scholar] [CrossRef] [PubMed]
- Chan, S.L.; Yeung, J.H.K. Polysaccharide Peptides from COV-1 Strain of Coriolus Versicolor Induce Hyperalgesia via Inflammatory Mediator Release in the Mouse. Life Sci. 2006, 78, 2463–2470. [Google Scholar] [CrossRef]
- Price, L.A.; Wenner, C.A.; Sloper, D.T.; Slaton, J.W.; Novack, J.P. Role for Toll-like Receptor 4 in TNF-Alpha Secretion by Murine Macrophages in Response to Polysaccharide Krestin, a Trametes Versicolor Mushroom Extract. Fitoterapia 2010, 81, 914–919. [Google Scholar] [CrossRef]
- Wang, Z.; Dong, B.; Feng, Z.; Yu, S.; Bao, Y. A Study on Immunomodulatory Mechanism of Polysaccharopeptide Mediated by TLR4 Signaling Pathway. BMC Immunol. 2015, 16, 34. [Google Scholar] [CrossRef] [Green Version]
- Coy, C.; Standish, L.J.; Bender, G.; Lu, H. Significant Correlation between TLR2 Agonist Activity and TNF-α Induction in J774.A1 Macrophage Cells by Different Medicinal Mushroom Products. Int. J. Med. Mushrooms 2015, 17, 713–722. [Google Scholar] [CrossRef]
- Lee, C.L.; Yang, X.; Wan, J.M.F. The Culture Duration Affects the Immunomodulatory and Anticancer Effect of Polysaccharopeptide Derived from Coriolus Versicolor. Enzyme Microb. Technol. 2006, 38, 14–21. [Google Scholar] [CrossRef]
- Jędrzejewski, T.; Pawlikowska, M.; Piotrowski, J.; Kozak, W. Protein-Bound Polysaccharides from Coriolus Versicolor Attenuate LPS-Induced Synthesis of pro-Inflammatory Cytokines and Stimulate PBMCs Proliferation. Immunol. Lett. 2016, 178, 140–147. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.L.; Jiang, P.; Sit, W.H.; Yang, X.; Wan, J.M.F. Regulatory Properties of Polysaccharopeptide Derived from Coriolus Versicolor and Its Combined Effect with Ciclosporin on the Homeostasis of Human Lymphocytes. J. Pharm. Pharmacol. 2010, 62, 1028–1036. [Google Scholar] [CrossRef] [PubMed]
- Kowalczewska, M.; Piotrowski, J.; Jędrzejewski, T.; Kozak, W. Polysaccharide Peptides from Coriolus Versicolor Exert Differential Immunomodulatory Effects on Blood Lymphocytes and Breast Cancer Cell Line MCF-7 in Vitro. Immunol. Lett. 2016, 174, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Ho, C.Y.; Lau, C.B.S.; Kim, C.F.; Leung, K.N.; Fung, K.P.; Tse, T.F.; Chan, H.H.L.; Chow, M.S.S. Differential Effect of Coriolus Versicolor (Yunzhi) Extract on Cytokine Production by Murine Lymphocytes in Vitro. Int. Immunopharmacol. 2004, 4, 1549–1557. [Google Scholar] [CrossRef]
- Sekhon, B.K.; Sze, D.M.Y.; Chan, W.K.; Fan, K.; Li, G.Q.; Moore, D.E.; Roubin, R.H. PSP Activates Monocytes in Resting Human Peripheral Blood Mononuclear Cells: Immunomodulatory Implications for Cancer Treatment. Food Chem. 2013, 138, 2201–2209. [Google Scholar] [CrossRef]
- Pawlikowska, M.; Jędrzejewski, T.; Piotrowski, J.; Kozak, W. Fever-Range Hyperthermia Inhibits Cells Immune Response to Protein-Bound Polysaccharides Derived from Coriolus Versicolor Extract. Mol. Immunol. 2016, 80, 50–57. [Google Scholar] [CrossRef]
- Li, W.; Liu, M.; Lai, S.; Xu, C.; Lu, F.; Xiao, X.; Bao, Y. Immunomodulatory Effects of Polysaccharopeptide (PSP) in Human PBMC through Regulation of TRAF6/TLR Immunosignal-Transduction Pathways. Immunopharmacol. Immunotoxicol. 2010, 32, 576–584. [Google Scholar] [CrossRef]
- Benson, K.F.; Stamets, P.; Davis, R.; Nally, R.; Taylor, A.; Slater, S.; Jensen, G.S. The Mycelium of the Trametes Versicolor (Turkey Tail) Mushroom and Its Fermented Substrate Each Show Potent and Complementary Immune Activating Properties in Vitro. BMC Complement. Altern. Med. 2019, 19, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Dong, B.; Tan, Y.; Yu, S.; Bao, Y.X. A Study on the Immunomodulation of Polysaccharopeptide through the TLR4-TIRAP/MAL-MyD88 Signaling Pathway in PBMCs from Breast Cancer Patients. Immunopharmacol. Immunotoxicol. 2013, 35, 497–504. [Google Scholar] [CrossRef]
- Lu, H.; Yang, Y.; Gad, E.; Inatsuka, C.; Wenner, C.A.; Disis, M.L.; Standish, L.J. TLR2 Agonist PSK Activates Human NK Cells and Enhances the Antitumor Effect of HER2-Targeted Monoclonal Antibody Therapy. Clin. Cancer Res. 2011, 17, 6742–6753. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Inatsuka, C.; Gad, E.; Disis, M.L.; Standish, L.J.; Pugh, N.; Pasco, D.S.; Lu, H. Protein-Bound Polysaccharide-K Induces IL-1β via TLR2 and NLRP3 Inflammasome Activation. Innate Immun. 2014, 20, 857–866. [Google Scholar] [CrossRef] [Green Version]
- Maruyama, S.; Akasaka, T.; Yamada, K.; Tachibana, H. Protein-Bound Polysaccharide-K (PSK) Directly Enhanced IgM Production in the Human B Cell Line BALL-1. Biomed. Pharmacother. 2009, 63, 409–412. [Google Scholar] [CrossRef] [PubMed]
- Krupodorova, T.; Rybalko, S.; Barshteyn, V. Antiviral Activity of Basidiomycete Mycelia against Influenza Type A (Serotype H1N1) and Herpes Simplex Virus Type 2 in Cell Culture. Virol. Sin. 2014, 29, 284–290. [Google Scholar] [CrossRef] [PubMed]
- Liu, A.; Arbiser, J.L.; Holmgren, A.; Klein, G.; Klein, E. PSK and Trx80 Inhibit B-Cell Growth in EBV-Infected Cord Blood Mononuclear Cells through T Cells Activated by the Monocyte Products IL-15 and IL-12. Blood 2005, 105, 1606–1613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collins, R.A.; Ng, T.B. Polysaccharopeptide from Coriolus Versicolor Has Potential for Use against Human Immunodeficiency Virus Type 1 Infection. Life Sci. 1997, 60, PL383–PL387. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Valentín, M.; López, S.; Rivera, M.; Ríos-Olivares, E.; Cubano, L.; Boukli, N.M. Naturally Derived Anti-HIV Polysaccharide Peptide (PSP) Triggers a Toll-Like Receptor 4-Dependent Antiviral Immune Response. J. Immunol. Res. 2018, 2018, 8741698. [Google Scholar] [CrossRef]
- Criscuolo, A.A.; Sesti, F.; Piccione, E.; Mancino, P.; Belloni, E.; Gullo, C.; Ciotti, M. Therapeutic Efficacy of a Coriolus Versicolor-Based Vaginal Gel in Women with Cervical Uterine High-Risk HPV Infection: A Retrospective Observational Study. Adv. Ther. 2021, 38, 1202–1211. [Google Scholar] [CrossRef]
- Palacios, S.; Losa, F.; Dexeus, D.; Cortés, J. Beneficial Effects of a Coriolus Versicolor-Based Vaginal Gel on Cervical Epithelization, Vaginal Microbiota and Vaginal Health: A Pilot Study in Asymptomatic Women. BMC Womens Health. 2017, 17, 21. [Google Scholar] [CrossRef] [Green Version]
- Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N. Engl. J. Med. 2020, 382, 727–733. [Google Scholar] [CrossRef]
- Dai, W.; Zhang, B.; Jiang, X.M.; Su, H.; Li, J.; Zhao, Y.; Xie, X.; Jin, Z.; Peng, J.; Liu, F.; et al. Structure-Based Design of Antiviral Drug Candidates Targeting the SARS-CoV-2 Main Protease. Science 2020, 368, 1331–1335. [Google Scholar] [CrossRef] [Green Version]
- Jin, Z.; Du, X.; Xu, Y.; Deng, Y.; Liu, M.; Zhao, Y.; Zhang, B.; Li, X.; Zhang, L.; Peng, C.; et al. Structure of M pro from SARS-CoV-2 and Discovery of Its Inhibitors. Nature 2020, 582, 289–293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hetland, G.; Johnson, E.; Bernardshaw, S.V.; Grinde, B. Can Medicinal Mushrooms Have Prophylactic or Therapeutic Effect against COVID-19 and Its Pneumonic Superinfection and Complicating Inflammation? Scand. J. Immunol. 2021, 93, e12937. [Google Scholar] [CrossRef] [PubMed]
- Slomski, A. Trials Test Mushrooms and Herbs as Anti–COVID-19 Agents. JAMA 2021, 326, 1997–1999. [Google Scholar] [CrossRef] [PubMed]
- Rangsinth, P.; Sillapachaiyaporn, C.; Nilkhet, S.; Tencomnao, T.; Ung, A.T.; Chuchawankul, S. Mushroom-Derived Bioactive Compounds Potentially Serve as the Inhibitors of SARS-CoV-2 Main Protease: An in Silico Approach. J. Tradit. Complement. Med. 2021, 11, 158–172. [Google Scholar] [CrossRef]
- Rao, K.S.; Suryaprakash, V.; Senthilkumar, R.; Preethy, S.; Katoh, S.; Ikewaki, N.; Abraham, S.J.K. Role of Immune Dysregulation in Increased Mortality Among a Specific Subset of COVID-19 Patients and Immune-Enhancement Strategies for Combatting Through Nutritional Supplements. Front. Immunol. 2020, 11, 1548. [Google Scholar] [CrossRef]
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical Features of Patients Infected with 2019 Novel Coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Zhao, Y.; Zhang, F.; Wang, Q.; Li, T.; Liu, Z.; Wang, J.; Qin, Y.; Zhang, X.; Yan, X.; et al. The Use of Anti-Inflammatory Drugs in the Treatment of People with Severe Coronavirus Disease 2019 (COVID-19): The Experience of Clinical Immunologists from China. Clin. Immunol. 2020, 214, 108393. [Google Scholar] [CrossRef]
- Asai, Y.; Takaori, K.; Yamamoto, T.; Ogawa, T. Protein-Bound Polysaccharide Isolated from Basidiomycetes Inhibits Endotoxin-Induced Activation by Blocking Lipopolysaccharide-Binding Protein and CD14 Functions. FEMS Immunol. Med. Microbiol. 2005, 43, 91–98. [Google Scholar] [CrossRef] [Green Version]
- Jędrzejewski, T.; Sobocińska, J.; Pawlikowska, M.; Dzialuk, A.; Wrotek, S. Extract from the Coriolus Versicolor Fungus as an Anti-Inflammatory Agent with Cytotoxic Properties against Endothelial Cells and Breast Cancer Cells. Int. J. Mol. Sci. 2020, 21, 9063. [Google Scholar] [CrossRef]
- Impellizzeri, D.; Fusco, R.; Genovese, T.; Cordaro, M.; D’Amico, R.; Trovato Salinaro, A.; Ontario, M.L.; Modafferi, S.; Cuzzocrea, S.; Di Paola, R.; et al. Coriolus Versicolor Downregulates TLR4/NF-κB Signaling Cascade in Dinitrobenzenesulfonic Acid-Treated Mice: A Possible Mechanism for the Anti-Colitis Effect. Antioxidants 2022, 11, 406. [Google Scholar] [CrossRef]
- D’Amico, R.; Trovato Salinaro, A.; Fusco, R.; Cordaro, M.; Impellizzeri, D.; Scuto, M.; Ontario, M.L.; Lo Dico, G.; Cuzzocrea, S.; Di Paola, R.; et al. Hericium erinaceus and Coriolus versicolor Modulate Molecular and Biochemical Changes after Traumatic Brain Injury. Antioxidants 2021, 10, 898. [Google Scholar] [CrossRef]
- Jun, L.; Mei, Z.; Yuan, C. Reversal of Inhibition of Reactive Oxygen Species on Respiratory Burst of Macrophages by Polysaccharide from Coriolus Versicolor. Int. J. Immunopharmacol. 1993, 15, 429–433. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, Y.; Kariya, K.; Saigenji, K.; Nakamura, K. Oxidative Stress Relief for Cancer-Bearing Hosts by the Protein-Bound Polysaccharide of Coriolus Versicolor QUEL with SOD Mimicking Activity. Cancer Biother. 1994, 9, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Kariya, K.; Nakamura, K.; Nomoto, K.; Matama, S.; Saigenji, K. Mimicking of Superoxide Dismutase Activity by Protein-Bound Polysaccharide of Coriolus Versicolor QUEL, and Oxidative Stress Relief for Cancer Patients. Mol. Biother. 1992, 4, 40–46. [Google Scholar] [PubMed]
- Engel, A.L.; Sun, G.C.; Gad, E.; Rastetter, L.R.; Strobe, K.; Yang, Y.; Dang, Y.; Disis, M.L.; Lu, H. Protein-Bound Polysaccharide Activates Dendritic Cells and Enhances OVA-Specific T Cell Response as Vaccine Adjuvant. Immunobiology 2013, 218, 1468–1476. [Google Scholar] [CrossRef] [Green Version]
- Luo, K.W.; Yue, G.G.L.; Ko, C.H.; Lee, J.K.M.; Gao, S.; Li, L.F.; Li, G.; Fung, K.P.; Leung, P.C.; Lau, C.B.S. In Vivo and In Vitro Anti-Tumor and Anti-Metastasis Effects of Coriolus Versicolor Aqueous Extract on Mouse Mammary 4T1 Carcinoma. Phytomedicine 2014, 21, 1078–1087. [Google Scholar] [CrossRef]
- Pramudya, M.; Wahyuningsih, S.P.A. Immunomodulatory Potential of Polysaccharides from Coriolus Versicolor against Intracellular Bacteria Neisseria Gonorrhoeae. Vet. World 2019, 12, 735. [Google Scholar] [CrossRef]
- Galbraith, M.D.; Kinning, K.T.; Sullivan, K.D.; Araya, P.; Smith, K.P.; Granrath, R.E.; Shaw, J.R.; Baxter, R.; Jordan, K.R.; Russell, S.; et al. Specialized Interferon Action in COVID-19. Proc. Natl. Acad. Sci. USA 2022, 119, e2116730119. [Google Scholar] [CrossRef]
- Tjan, L.H.; Furukawa, K.; Nagano, T.; Kiriu, T.; Nishimura, M.; Arii, J.; Hino, Y.; Iwata, S.; Nishimura, Y.; Mori, Y. Early Differences in Cytokine Production by Severity of Coronavirus Disease 2019. J. Infect. Dis. 2021, 223, 1145–1149. [Google Scholar] [CrossRef]
- Yazan, A. Interleukin-2 Level for Normal People and COVID-19 Infection: Is It Our Concern Is COVID-19 Infection or Interleukin-2 Level Before the Infection? Eurasian J. Med. Oncol. 2021, 5, 1–5. [Google Scholar] [CrossRef]
- Kanazawa, M.; Mori, Y.; Yoshihara, K.; Iwadate, M.; Suzuki, S.; Endoh, Y.; Ohki, S.; Takita, K.I.; Sekikawa, K.; Takenoshita, S.I. Effect of PSK on the Maturation of Dendritic Cells Derived from Human Peripheral Blood Monocytes. Immunol. Lett. 2004, 91, 229–238. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.; Meng, Y.; Wang, Z.; Shan, F.; Wang, Q.; Zhang, N. Maturation of Morphology, Phenotype and Functions of Murine Bone Marrow-Derived Dendritic Cells(DCs) Induced by Polysaccharide Kureha(PSK). Hum. Vaccin. Immunother. 2012, 8, 1808. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, T.; Yang, J.; Deng, H.; Chen, D.; Yang, X.P.; Tang, Z.H. Depletion and Dysfunction of Dendritic Cells: Understanding SARS-CoV-2 Infection. Front. Immunol. 2022, 13, 843342. [Google Scholar] [CrossRef]
- Galati, D.; Zanotta, S.; Capitelli, L.; Bocchino, M. A Bird’s Eye View on the Role of Dendritic Cells in SARS-CoV-2 Infection: Perspectives for Immune-Based Vaccines. Allergy 2022, 77, 100–110. [Google Scholar] [CrossRef]
- Jonny, J.; Putranto, T.A.; Sitepu, E.C.; Irfon, R. Dendritic Cell Vaccine as a Potential Strategy to End the COVID-19 Pandemic. Why Should It Be Ex Vivo? Expert Rev. Vaccines 2022, 21, 1111–1120. [Google Scholar] [CrossRef]
- Emran, T.B.; Shahriar, A.; Mahmud, A.R.; Rahman, T.; Hasan Abir, M.; Faijanur, M.; Siddiquee, R.; Ahmed, H.; Rahman, N.; Nainu, F.; et al. Multidrug Resistance in Cancer: Understanding Molecular Mechanisms, Immunoprevention and Therapeutic Approaches. Front. Oncol. 2022, 12, 891652. [Google Scholar] [CrossRef]
- Zahreddine, H.; Borden, K.L.B.; Batist, G.; Wu, J.H.; Witcher, M. Mechanisms and Insights into Drug Resistance in Cancer. Front. Pharmacol. 2013, 4, 28. [Google Scholar] [CrossRef] [Green Version]
- Yeldag, G.; Rice, A.; Hernández, A.d.R. Chemoresistance and the Self-Maintaining Tumor Microenvironment. Cancers 2018, 10, 471. [Google Scholar] [CrossRef] [Green Version]
- Hui, K.P.Y.; Sit, W.H.; Wan, J.M.F. Induction of S Phase Cell Arrest and Caspase Activation by Polysaccharide Peptide Isolated from Coriolus Versicolor Enhanced the Cell Cycle Dependent Activity and Apoptotic Cell Death of Doxorubicin and Etoposide, but Not Cytarabine in HL-60 Cells. Oncol. Rep. 2005, 14, 145–155. [Google Scholar] [CrossRef]
- Wan, J.M.; Sit, W.H.; Yang, X.; Jiang, P.; Wong, L.L. Polysaccharopeptides Derived from Coriolus Versicolor Potentiate the S-Phase Specific Cytotoxicity of Camptothecin (CPT) on Human Leukemia HL-60 Cells. Chin. Med. 2010, 5, 16. [Google Scholar] [CrossRef] [Green Version]
- Wenner, C.A.; Martzen, M.R.; Lu, H.; Verneris, M.R.; Wang, H.; Slaton, J.W. Polysaccharide-K Augments Docetaxel-Induced Tumor Suppression and Antitumor Immune Response in an Immunocompetent Murine Model of Human Prostate Cancer. Int. J. Oncol. 2012, 40, 905–913. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ko, C.H.; Yue, G.G.L.; Gao, S.; Luo, K.W.; Siu, W.S.; Shum, W.T.; Shiu, H.T.; Lee, J.K.M.; Li, G.; Leung, P.C.; et al. Evaluation of the Combined Use of Metronomic Zoledronic Acid and Coriolus Versicolor in Intratibial Breast Cancer Mouse Model. J. Ethnopharmacol. 2017, 204, 77–85. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Sit, W.H.; Chan, D.K.O.; Wan, J.M.F. The Cell Death Process of the Anticancer Agent Polysaccharide-Peptide (PSP) in Human Promyelocytic Leukemic HL-60 Cells. Oncol. Rep. 2005, 13, 1201–1210. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Tao, W.; Wang, Y.; Bikow, J.; Lu, B.; Keating, A.; Verma, S.; Parker, T.G.; Han, R.; Wen, X.Y. Rosuvastatin, Identified From a Zebrafish Chemical Genetic Screen for Antiangiogenic Compounds, Suppresses the Growth of Prostate Cancer. Eur. Urol. 2010, 58, 418–426. [Google Scholar] [CrossRef]
- Kinoshita, J.; Fushida, S.; Harada, S.; Makino, I.; Nakamura, K.; Oyama, K.; Fujita, H.; Ninomiya, I.; Fujimura, T.; Kayahara, M.; et al. PSK Enhances the Efficacy of Docetaxel in Human Gastric Cancer Cells through Inhibition of Nuclear Factor-ΚB Activation and Survivin Expression. Int. J. Oncol. 2010, 36, 593–600. [Google Scholar] [CrossRef] [Green Version]
- Yamasaki, A.; Shoda, M.; Iijma, H.; Nagai, S.; Wada, J.; Suzuki, H.; Chikazawa, N.; Tasaka, T.; Kameda, C.; Tanaka, H.; et al. A Protein-Bound Polysaccharide, PSK, Enhances Tumor Suppression Induced by Docetaxel in a Gastric Cancer Xenograft Model. Anticancer Res. 2009, 29, 843–850. [Google Scholar]
- Cai, X.J.; Wang, Z.; Cao, J.W.; Ni, J.J.; Xu, Y.Y.; Yao, J.; Xu, H.; Liu, F.; Yang, G.-Y. Anti-Angiogenic and Anti-Tumor Effects of Metronomic Use of Novel Liposomal Zoledronic Acid Depletes Tumor-Associated Macrophages in Triple Negative Breast Cancer. Oncotarget 2017, 8, 84248–84257. [Google Scholar] [CrossRef] [Green Version]
- Harhaji, L.; Mijatović, S.; Maksimović-Ivanić, D.; Stojanović, I.; Momčilović, M.; Maksimović, V.; Tufegdžić, S.; Marjanović, Ž.; Mostarica-Stojković, M.; Vučinić, Ž.; et al. Anti-Tumor Effect of Coriolus Versicolor Methanol Extract against Mouse B16 Melanoma Cells: In Vitro and in Vivo Study. Food Chem. Toxicol. 2008, 46, 1825–1833. [Google Scholar] [CrossRef]
- Hirahara, N.; Fujioka, M.; Edamatsu, T.; Fujieda, A.; Serine, F.; Wada, T.; Tanaka, T. Protein-Bound Polysaccharide-K (PSK) Induces Apoptosis and Inhibits Proliferation of Promyelomonocytic Leukemia HL-60 Cells. Anticancer Res. 2011, 31, 2733–2738. [Google Scholar]
- Ho, C.Y.; Kim, C.-F.; Leung, K.N.; Kwok-Pui, F.; Tse, T.-F.; Chan, H.; Bik, C.; Lau, S.; Ho, Y.; Fung, K.-P.; et al. Differential Anti-Tumor Activity of Coriolus Versicolor (Yunzhi) Extract through P53-and/or Bcl-2-Dependent Apoptotic Pathway in Human Breast Cancer Cells Cheong. Cancer Biol. Ther. 2005, 4, 638–644. [Google Scholar] [CrossRef]
- Hsieh, T.C.; Wu, P.; Park, S.; Wu, J.M. Induction of Cell Cycle Changes and Modulation of Apoptogenic/Anti-Apoptotic and Extracellular Signaling Regulatory Protein Expression by Water Extracts of I’m-YunityTM (PSP). BMC Complement. Altern. Med. 2006, 6, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiménez-Medina, E.; Berruguilla, E.; Romero, I.; Algarra, I.; Collado, A.; Garrido, F.; Garcia-Lora, A. The Immunomodulator PSK Induces in Vitro Cytotoxic Activity in Tumour Cell Lines via Arrest of Cell Cycle and Induction of Apoptosis. BMC Cancer 2008, 8, 78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lau, C.B.S.; Ho, C.Y.; Kim, C.F.; Leung, K.N.; Fung, K.P.; Tse, T.F.; Chan, H.H.L.; Chow, M.S.S. Cytotoxic Activities of Coriolus Versicolor (Yunzhi) Extract on Human Leukemia and Lymphoma Cells by Induction of Apoptosis. Life Sci. 2004, 75, 797–808. [Google Scholar] [CrossRef] [PubMed]
- Pawlikowska, M.; Jędrzejewski, T.; Slominski, A.T.; Brożyna, A.A.; Wrotek, S. Pigmentation Levels Affect Melanoma Responses to Coriolus Versicolor Extract and Play a Crucial Role in Melanoma-Mononuclear Cell Crosstalk. Int. J. Mol. Sci. 2021, 22, 5735. [Google Scholar] [CrossRef]
- Pawlikowska, M.; Jędrzejewski, T.; Brożyna, A.A.; Wrotek, S. Protein-Bound Polysaccharides from Coriolus Versicolor Induce RIPK1/RIPK3/MLKL-Mediated Necroptosis in ER-Positive Breast Cancer and Amelanotic Melanoma Cells. Cell. Physiol. Biochem. 2020, 54, 591–604. [Google Scholar] [CrossRef]
- Pawlikowska, M.; Piotrowski, J.; Jędrzejewski, T.; Kozak, W.; Slominski, A.T.; Brożyna, A.A. Coriolus Versicolor-Derived Protein-Bound Polysaccharides Trigger the Caspase-Independent Cell Death Pathway in Amelanotic but Not Melanotic Melanoma Cells. Phytother. Res. 2020, 34, 173–183. [Google Scholar] [CrossRef]
- Roca-Lema, D.; Martinez-Iglesias, O.; Fernández De Ana Portela, C.; Rodríguez-Blanco, A.; Valladares-Ayerbes, M.; Díaz-Díaz, A.; Casas-Pais, A.; Prego, C.; Figueroa, A. In Vitro Anti-Proliferative and Anti-Invasive Effect of Polysaccharide-Rich Extracts from Trametes Versicolor and Grifola Frondosa in Colon Cancer Cells. Int. J. Med. Sci. 2019, 16, 231–240. [Google Scholar] [CrossRef] [Green Version]
- Uwafuji, S.; Goi, T.; Naruse, T.; Kurebayashi, H.; Nakazawa, T.; Hirono, Y.; Yamaguchi, A. Protein-Bound Polysaccharide K Reduced the Invasive Ability of Colon Cancer Cell Lines. Anticancer Res. 2013, 33, 4841–4846. [Google Scholar]
- Wang, D.F.; Lou, N.; Li, X.D. Effect of Coriolus Versicolor Polysaccharide-B on the Biological Characteristics of Human Esophageal Carcinoma Cell Line Eca109. Cancer Biol. Med. 2012, 9, 164–167. [Google Scholar] [CrossRef]
- Yang, C.L.H.; Chik, S.C.C.; Lau, A.S.Y.; Chan, G.C.F. Coriolus Versicolor and Its Bioactive Molecule Are Potential Immunomodulators against Cancer Cell Metastasis via Inactivation of MAPK Pathway. J. Ethnopharmacol. 2023, 301, 115790. [Google Scholar] [CrossRef]
- Zeng, F.; Hon, C.C.; Sit, W.H.; Chow, K.Y.C.; Hui, R.K.H.; Law, I.K.M.; Ng, V.W.L.; Yang, X.T.; Leung, F.C.C.; Wan, J.M.F. Molecular Characterization of Coriolus Versicolor PSP-Induced Apoptosis in Human Promyelotic Leukemic HL-60 Cells Using CDNA Microarray. Int. J. Oncol. 2005, 27, 513–523. [Google Scholar] [CrossRef] [PubMed]
- Hirahara, N.; Edamatsu, T.; Fujieda, A.; Fujioka, M.; Wada, T.; Tajima, Y. Protein-Bound Polysaccharide-K Induces Apoptosis via Mitochondria and P38 Mitogen-Activated Protein Kinase-Dependent Pathways in HL-60 Promyelomonocytic Leukemia Cells. Oncol. Rep. 2013, 30, 99–104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanoh, T.; Matsunaga, K.; Saito, K.; Fujii, T. Suppression of in Vivo Tumor-Induced Angiogenesis by the Protein-Bound Polysaccharide PSK. In Vivo 1994, 8, 247–250. [Google Scholar] [PubMed]
- Ho, C.Y.; Kim, C.F.; Leung, K.N.; Fung, K.P.; Tse, T.F.; Chan, H.; Lau, C.B.S. Coriolus Versicolor (Yunzhi) Extract Attenuates Growth of Human Leukemia Xenografts and Induces Apoptosis through the Mitochondrial Pathway. Oncol. Rep. 2006, 16, 609–616. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, T.C.; Kunicki, J.; Darzynkiewicz, Z.; Wu, J.M. Effects of Extracts of Coriolus Versicolor (I’m-YunityTM) on Cell-Cycle Progression and Expression of Interleukins-1β,-6, and -8 in Promyelocytic HL-60 Leukemic Cells and Mitogenically Stimulated and Nonstimulated Human Lymphocytes. J. Altern. Complement. Med. 2004, 8, 591–602. [Google Scholar] [CrossRef] [PubMed]
- Ricciardi, M.R.; Licchetta, R.; Mirabilii, S.; Scarpari, M.; Parroni, A.; Fabbri, A.A.; Cescutti, P.; Reverberi, M.; Fanelli, C.; Tafuri, A. Preclinical Antileukemia Activity of Tramesan: A Newly Identified Bioactive Fungal Metabolite. Oxid. Med. Cell Longev. 2017, 2017, 5061639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saleh, M.H.; Rashedi, I.; Kschrameating, A. Immunomodulatory Properties of Coriolus Versicolor: The Role of Polysaccharopeptide. Front. Immunol. 2017, 8, 1087. [Google Scholar] [CrossRef] [Green Version]
- Dong, Y.; Yang, M.M.P.; Kwan, C.Y. In Vitro Inhibition of Proliferation of HL-60 Cells by Tetrandrine and Coriolus Versicolor Peptide Derived from Chinese Medicinal Herbs. Life Sci. 1997, 60, PL135–PL140. [Google Scholar] [CrossRef]
- Soengas, M.S.; Lowe, S.W. Apoptosis and Melanoma Chemoresistance. Oncogene 2003, 22, 3138–3151. [Google Scholar] [CrossRef] [Green Version]
- Jędrzejewski, T.; Pawlikowska, M.; Sobocińska, J.; Wrotek, S. Protein-Bound Polysaccharides from Coriolus Versicolor Fungus Disrupt the Crosstalk between Breast Cancer Cells and Macrophages through Inhibition of Angiogenic Cytokines Production and Shifting Tumour-Associated Macrophages from the M2 to M1 Subtype. Cell Physiol. Biochem. 2020, 54, 615–628. [Google Scholar] [CrossRef]
- Zhang, H.; Morisaki, T.; Matsunaga, H.; Sato, N.; Uchiyama, A.; Hashizume, K.-T.; Nagumo, F.; Tadano, J.; Katano, M. Protein-Bound Polysaccharide PSK Inhibits Tumor Invasiveness by down-Regulation of TGF-Β1 and MMPs. Clin. Exp. Metastasis 2000, 18, 343–352. [Google Scholar] [PubMed]
- Matsunaga, K.; Ohhara, M.; Oguchi, Y.; Iijima, H.; Kobayashi, H. Antimetastatic Effect of PSK, a Protein-Bound Polysaccharide, against the B16-BL6 Mouse Melanoma. Invasion Metastasis 1996, 16, 27–38. [Google Scholar] [PubMed]
- Zhou, X.; Jiang, H.; Lin, J.; Tang, K. Cytotoxic activities of Coriolus versicolor (Yunzhi) extracts on human liver cancer and breast cancer cell line. Afr. J. Biotechnol. 2007, 6, 1740–1743. [Google Scholar] [CrossRef]
- Cai, X.; Pi, Y.; Zhou, X.; Tian, L.; Qiao, S.; Lin, Y. Hepatoma Cell Growth Inhibition by Inducing Apoptosis with Polysaccharide Isolated from Turkey Tail Medicinal Mushroom, Trametes versicolor (L.: Fr.) Lloyd (Aphyllophoromycetideae). Int. J. Med. Mushrooms 2010, 12, 257–263. [Google Scholar] [CrossRef]
- Aoyagi, H.; Iino, Y.; Takeo, T.; Horii, Y.; Morishita, Y.; Horiuchi, R. Effects of OK-432 (picibanil) on the estrogen receptors of MCF-7 cells and potentiation of antiproliferative effects of tamoxifen in combination with OK-432. Oncology. 1997, 54, 414–423. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Kariya, K.; Saigenji, K.; Nakamura, K. Enhancement of anti-cancer activity of cisdiaminedichloroplatinum by the protein-bound polysaccharide of Coriolus versicolor QUEL (PS-K) in vitro. Cancer Biother. 1994, 9, 351–358. [Google Scholar] [CrossRef]
- Knežević, A.; Stajić, M.; Sofrenić, I.; Stanojković, T.; Milovanović, I.; Tešević, V.; Vukojević, J. Antioxidative, antifungal, cytotoxic and antineurodegenerative activity of selected Trametes species from Serbia. PLoS ONE 2018, 13, e0203064. [Google Scholar] [CrossRef] [Green Version]
- Folkman, J. Tumor Angiogenesis: Therapeutic Implications. N. Engl. J. Med. 1971, 18, 1182–1186. [Google Scholar] [CrossRef]
- Hanahan, D.; Folkman, J. Patterns and Emerging Mechanisms of the Angiogenic Switch during Tumorigenesis. Cell 1996, 86, 353–364. [Google Scholar] [CrossRef] [Green Version]
- Lopes-Coelho, F.; Martins, F.; Pereira, S.A.; Serpa, J. Anti-Angiogenic Therapy: Current Challenges and Future Perspectives. Int. J. Mol. Sci. 2021, 22, 3765. [Google Scholar] [CrossRef]
- Taylor, A.P.; Rodriguez, M.; Adams, K.; Goldenberg, D.M.; Blumenthal, R.D. Altered Tumor Vessel Maturation and Proliferation in Placenta Growth Factor-Producing Tumors: Potential Relationship to Post-Therapy Tumor Angiogenesis and Recurrence. Int. J. Cancer 2003, 105, 158–164. [Google Scholar] [CrossRef] [PubMed]
- Marrero, A.D.; Quesada, A.R.; Martínez-Poveda, B.; Medina, M.Á. Antiangiogenic Phytochemicals Constituent of Diet as Promising Candidates for Chemoprevention of Cancer. Antioxidants 2022, 11, 302. [Google Scholar] [CrossRef] [PubMed]
- Vafopoulou, P.; Kourti, M. Anti-Angiogenic Drugs in Cancer Therapeutics: A Review of the Latest Preclinical and Clinical Studies of Anti-Angiogenic Agents with Anticancer Potential. J. Cancer Metastasis Treat. 2022, 8, 1–26. [Google Scholar] [CrossRef]
- Wada, T.; Yoko, W.; Kenji, B.; Mariko, K.; Yoshiharu, O.; Kenichi, M.; Takao, A.; Kikuo, N. Suppression Mechanism of Angiogenesis by PSK. Ann. Cancer Res. Ther. 2002, 10, 93–106. [Google Scholar] [CrossRef]
- Ho, J.C.K.; Konerding, M.A.; Gaumann, A.; Groth, M.; Liu, W.K. Fungal Polysaccharopeptide Inhibits Tumor Angiogenesis and Tumor Growth in Mice. Life Sci. 2004, 75, 1343–1356. [Google Scholar] [CrossRef]
- Riabov, V.; Gudima, A.; Wang, N.; Mickley, A.; Orekhov, A.; Kzhyshkowska, J. Role of Tumor Associated Macrophages in Tumor Angiogenesis and Lymphangiogenesis. Front. Physiol. 2014, 5, 75. [Google Scholar] [CrossRef] [Green Version]
- Mabrey, F.L.; Morrell, E.D.; Wurfel, M.M. TLRs in COVID-19: How They Drive Immunopathology and the Rationale for Modulation. Innate Immun. 2021, 27, 503–513. [Google Scholar] [CrossRef]
- Iwanaszko, M.; Kimmel, M. NF-ΚB and IRF Pathways: Cross-Regulation on Target Genes Promoter Level. BMC Genom. 2015, 16, 307. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J.; Ji, P.; Pang, J.; Zhong, Z.; Li, H.; He, C.; Zhang, J.; Zhao, C. Clinical Characteristics of 3062 COVID-19 Patients: A Meta-Analysis. J. Med. Virol. 2020, 92, 1902–1914. [Google Scholar] [CrossRef] [Green Version]
- Wrotek, S.; Legrand, E.K.; Dzialuk, A.; Alcock, J. Let Fever Do Its Job: The Meaning of Fever in the Pandemic Era. Evol. Med. Public Health 2021, 9, 26–35. [Google Scholar] [CrossRef]
- Yamaya, M.; Nishimura, H.; Lusamba Kalonji, N.; Deng, X.; Momma, H.; Shimotai, Y.; Nagatomi, R. Effects of High Temperature on Pandemic and Seasonal Human Influenza Viral Replication and Infection-Induced Damage in Primary Human Tracheal Epithelial Cell Cultures. Heliyon 2019, 5, e01149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herb, M.; Schramm, M. Functions of ROS in Macrophages and Antimicrobial Immunity. Antioxidants 2021, 10, 313. [Google Scholar] [CrossRef] [PubMed]
- Herder, V.; Dee, K.; Wojtus, J.K.; Goldfarb, D.; Rozario, C.; Gu, Q.; Jarrett, R.F.; Epifano, I.; Stevenson, A.; McFarlane, S.; et al. Elevated Temperature Inhibits SARS-CoV-2 Replication in Respiratory Epithelium Independently of the Induction of IFN-Mediated Innate Immune Defences. PLoS Biol. 2020, 19, e3001065. [Google Scholar] [CrossRef]
- Zhou, Z.; Yang, Z.; Ou, J.; Zhang, H.; Zhang, Q.; Dong, M.; Zhang, G. Temperature Dependence of the SARS-CoV-2 Affinity to Human ACE2 Determines COVID-19 Progression and Clinical Outcome. Comput. Struct. Biotechnol. J. 2021, 19, 161–167. [Google Scholar] [CrossRef]
- Wrotek, S.; Kamecki, K.; Kwiatkowski, S.; Kozak, W. Cancer Patients Report a History of Fewer Fevers during Infections than Healthy Controls. J. Pre-Clin. Clin. Res. 2009, 3, 31–35. [Google Scholar]
- Wrotek, S.; Brycht, Ł.; Wrotek, W.; Kozak, W. Fever as a Factor Contributing to Long-Term Survival in a Patient with Metastatic Melanoma: A Case Report. Complement. Ther. Med. 2018, 38, 7–10. [Google Scholar] [CrossRef]
- Radha, G.; Lopus, M. The Spontaneous Remission of Cancer: Current Insights and Therapeutic Significance. Transl. Oncol. 2021, 14, 101166. [Google Scholar] [CrossRef]
- Jedrzejewski, T.; Piotrowski, J.; Kowalczewska, M.; Wrotek, S.; Kozak, W. Polysaccharide Peptide from Coriolus Versicolor Induces Interleukin 6-Related Extension of Endotoxin Fever in Rats. Int. J. Hyperthermia. 2015, 31, 626–634. [Google Scholar] [CrossRef]
- Jedrzejewski, T.; Piotrowski, J.; Wrotek, S.; Kozak, W. Polysaccharide Peptide Induces a Tumor Necrosis Factor-α-Dependent Drop of Body Temperature in Rats. J. Therm. Biol. 2014, 44, 1–4. [Google Scholar] [CrossRef]
- Jędrzejewski, T.; Piotrowski, J.; Pawlikowska, M.; Wrotek, S.; Kozak, W. Extract from Coriolus Versicolor Fungus Partially Prevents Endotoxin Tolerance Development by Maintaining Febrile Response and Increasing IL-6 Generation. J. Therm. Biol. 2019, 83, 69–79. [Google Scholar] [CrossRef]
- Tavares, A.P.M.; Pereira, S.R.; Xavier, A.M.R.B. Biotechnological Applications of Trametes Versicolor and Their Enzymes. Curr. Biotechnol. 2016, 6, 78–88. [Google Scholar] [CrossRef]
- Wong, C.K.; Bao, Y.X.; Wong, E.L.Y.; Leung, P.C.; Fung, K.P.; Lam, C.W.K. Immunomodulatory Activities of Yunzhi and Danshen in Post-Treatment Breast Cancer Patients. Am. J. Chinese Med. 2005, 33, 381–395. [Google Scholar] [CrossRef] [PubMed]
- Tsang, K.W.; Lam, C.L.; Yan, C.; Mak, J.C.; Ooi, G.C.; Ho, J.C.; Lam, B.; Man, R.; Sham, J.S.; Lam, W.K. Coriolus Versicolor Polysaccharide Peptide Slows Progression of Advanced Non-Small Cell Lung Cancer. Respir. Med. 2003, 97, 618–624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bao, Y.X.; Wong, C.K.; Leung, S.F.; Chan, A.T.C.; Li, P.W.; Wong, E.L.Y.; Leung, P.C.; Fung, K.P.; Yin, Y.B.; Lam, C.W.K. Clinical Studies of Immunomodulatory Activities of Yunzhi-Danshen in Patients with Nasopharyngeal Carcinoma. J. Altern. Complement. Med. 2006, 12, 771–776. [Google Scholar] [CrossRef] [PubMed]
- Ng, T.B. A Review of Research on the Protein-Bound Polysaccharide (Polysaccharopeptide, PSP) from the Mushroom Coriolus Versicolor (Basidiomycetes: Polyporaceae). Gen. Pharmacol. 1998, 30, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Ohwada, S.; Ogawa, T.; Makita, F.; Tanahashi, Y.; Ohya, T.; Tomizawa, N.; Satoh, Y.; Kobayashi, I.; Izumi, M.; Takeyoshi, I.; et al. Beneficial Effects of Protein-Bound Polysaccharide K plus Tegafur/Uracil in Patients with Stage II or III Colorectal Cancer: Analysis of Immunological Parameters. Oncol. Rep. 2006, 15, 861–868. [Google Scholar] [CrossRef] [PubMed]
- Chay, W.Y.; Tham, C.K.; Toh, H.C.; Lim, H.Y.; Tan, C.K.; Lim, C.; Wang, W.W.; Choo, S.P. Coriolus Versicolor (Yunzhi) Use as Therapy in Advanced Hepatocellular Carcinoma Patients with Poor Liver Function or Who Are Unfit for Standard Therapy. J. Altern. Complement. Med. 2017, 23, 648–652. [Google Scholar] [CrossRef]
- Donatini, B. Control of Oral Human Papillomavirus (HPV) by Medicinal Mushrooms, Trametes Versicolor and Ganoderma Lucidum: A Preliminary Clinical Trial. Int. J. Med. Mushrooms 2014, 16, 497–498. [Google Scholar] [CrossRef]
- Serrano, L.; López, A.C.; González, S.P.; Palacios, S.; Dexeus, D.; Centeno-Mediavilla, C.; Coronado, P.; de La Fuente, J.; López, J.A.; Vanrell, C.; et al. Efficacy of a Coriolus Versicolor–Based Vaginal Gel in Women With Human Papillomavirus–Dependent Cervical Lesions: The PALOMA Study. J. Low. Genit. Tract. Dis. 2021, 25, 130–136. [Google Scholar] [CrossRef]
- Scuto, M.; di Mauro, P.; Ontario, M.L.; Amato, C.; Modafferi, S.; Ciavardelli, D.; Salinaro, A.T.; Maiolino, L.; Calabrese, V. Nutritional Mushroom Treatment in Meniere’s Disease with Coriolus Versicolor: A Rationale for Therapeutic Intervention in Neuroinflammation and Antineurodegeneration. Int. J. Mol. Sci. 2020, 21, 284. [Google Scholar] [CrossRef] [Green Version]
- Home-ClinicalTrials. Available online: https://www.clinicaltrials.gov/ (accessed on 12 December 2022).
- Wong, C.K.; Tse, P.S.; Wong, E.L.Y.; Leung, P.C.; Fung, K.P.; Lam, C.W.K. Immunomodulatory Effects of Yun Zhi and Danshen Capsules in Health Subjects-a Randomized, Double-Blind, Placebo-Controlled, Crossover Study. Int. Immunopharmacol. 2004, 4, 201–211. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jędrzejewski, T.; Pawlikowska, M.; Sobocińska, J.; Wrotek, S. COVID-19 and Cancer Diseases—The Potential of Coriolus versicolor Mushroom to Combat Global Health Challenges. Int. J. Mol. Sci. 2023, 24, 4864. https://doi.org/10.3390/ijms24054864
Jędrzejewski T, Pawlikowska M, Sobocińska J, Wrotek S. COVID-19 and Cancer Diseases—The Potential of Coriolus versicolor Mushroom to Combat Global Health Challenges. International Journal of Molecular Sciences. 2023; 24(5):4864. https://doi.org/10.3390/ijms24054864
Chicago/Turabian StyleJędrzejewski, Tomasz, Małgorzata Pawlikowska, Justyna Sobocińska, and Sylwia Wrotek. 2023. "COVID-19 and Cancer Diseases—The Potential of Coriolus versicolor Mushroom to Combat Global Health Challenges" International Journal of Molecular Sciences 24, no. 5: 4864. https://doi.org/10.3390/ijms24054864
APA StyleJędrzejewski, T., Pawlikowska, M., Sobocińska, J., & Wrotek, S. (2023). COVID-19 and Cancer Diseases—The Potential of Coriolus versicolor Mushroom to Combat Global Health Challenges. International Journal of Molecular Sciences, 24(5), 4864. https://doi.org/10.3390/ijms24054864