Beyond the Clinic: The Activation of Diverse Cellular and Humoral Factors Shapes the Immunological Status of Patients with Active Tuberculosis
Abstract
:1. Introduction
2. Clinical and Immunological Characterization of Patients with Active TB
3. On the Road to Discover Categorization Systems That Guide TB Host Directed Therapy (HDT)
4. Empowering Immune Endotypes That Endorse the Clinical Phenotypes of TB Patients during Active Mtb Infection
5. Differential Clinical Outcomes among TB Endotypes: Activation of Myeloid and Lymphocytic Immune Cells from Patients to Fight Mtb
6. Extrapulmonary TB: A Special Case of Active TB
7. Immunotherapy Research in Tuberculosis
8. Concluding Remarks and Future Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ADCC | antibody-dependent cell-mediated cytotoxicity |
AFB | acid-fast bacilli |
EPTB | extrapulmonary tuberculosis |
HDT | Host Directed Therapy |
HLH | hemophagocytic lymphohistiocytosis |
HR | High responder |
ICOS | inducible T-cell co-stimulator |
IFN-γ | Interferon gamma |
IFN-γr | Interferon gamma Receptor |
IL | interleukin |
LR | Low responder |
mAb | monoclonal antibody |
M-MDSC | monocyte-like myeloid-derived suppressor cells |
Mtb | Mycobacterium tuberculosis |
Mtb-Ag | Mtb antigens |
mTOR | mechanistic target of rapamycin |
NETs | Neutrophil extracellular traps |
NK | Natural killer cell |
PD-1 | Programmed cell death protein 1 |
PHA | Phytohemagglutinin |
PMN-MDSC | polymorphonuclear-like myeloid-derived suppressor cells |
RIF | Rifampicin |
ROS | reactive oxygen species |
SLAMF1 | Signaling Lymphocytic Activation Molecule Family 1 |
STAT1 | signal transducer and activator of transcription 1 |
TB | Tuberculosis |
TCR | T cell receptor |
Th1 | T cell helper-1 |
TNF | tumor necrosis factor |
References
- World Health Organization. Global Tuberculosis Report 2022; World Health Organization: Geneva, Switzerland, 2022. [Google Scholar]
- Drain, P.K.; Bajema, K.L.; Dowdy, D.; Dheda, K.; Naidoo, K.; Schumacher, S.G.; Ma, S.; Meermeier, E.; Lewinsohn, D.M.; Sherman, D.R. Incipient and Subclinical Tuberculosis: A Clinical Review of Early Stages and Progression of Infection. Clin. Microbiol. Rev. 2018, 31, e00021-18. [Google Scholar] [CrossRef] [Green Version]
- Imperial, M.Z.; Nahid, P.; Phillips, P.P.J.; Davies, G.R.; Fielding, K.; Hanna, D.; Hermann, D.; Wallis, R.S.; Johnson, J.L.; Lienhardt, C.; et al. A Patient-Level Pooled Analysis of Treatment-Shortening Regimens for Drug-Susceptible Pulmonary Tuberculosis. Nat. Med. 2018, 24, 1708–1715. [Google Scholar] [CrossRef]
- Lange, C.; Aarnoutse, R.; Chesov, D.; van Crevel, R.; Gillespie, S.H.; Grobbel, H.-P.; Kalsdorf, B.; Kontsevaya, I.; van Laarhoven, A.; Nishiguchi, T.; et al. Perspective for Precision Medicine for Tuberculosis. Front. Immunol. 2020, 11, 566608. [Google Scholar] [CrossRef] [PubMed]
- DiNardo, A.R.; Nishiguchi, T.; Grimm, S.L.; Schlesinger, L.S.; Graviss, E.A.; Cirillo, J.D.; Coarfa, C.; Mandalakas, A.M.; Heyckendorf, J.; Kaufmann, S.H.E.; et al. Tuberculosis Endotypes to Guide Stratified Host-Directed Therapy. Med 2021, 2, 217–232. [Google Scholar] [CrossRef]
- Rai, D.K.; Kirti, R.; Kumar, S.; Karmakar, S.; Thakur, S. Radiological Difference between New Sputum-Positive and Sputum-Negative Pulmonary Tuberculosis. J. Fam. Med. Prim. Care 2019, 8, 2810–2813. [Google Scholar] [CrossRef] [PubMed]
- Jurado, J.O.; Pasquinelli, V.; Alvarez, I.B.; Peña, D.; Rovetta, A.I.; Tateosian, N.L.; Romeo, H.E.; Musella, R.M.; Palmero, D.; Chuluyán, H.E.; et al. IL-17 and IFN-γ Expression in Lymphocytes from Patients with Active Tuberculosis Correlates with the Severity of the Disease. J. Leukoc. Biol. 2012, 91, 991–1002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dlugovitzky, D.; Torres-Morales, A.; Rateni, L.; Farroni, M.A.; Largacha, C.; Molteni, O.; Bottasso, O. Circulating Profile of Th1 and Th2 Cytokines in Tuberculosis Patients with Different Degrees of Pulmonary Involvement. FEMS Immunol. Med. Microbiol. 1997, 18, 203–207. [Google Scholar] [CrossRef]
- Rolandelli, A.; Hernández Del Pino, R.E.; Pellegrini, J.M.; Tateosian, N.L.; Amiano, N.O.; de la Barrera, S.; Casco, N.; Gutiérrez, M.; Palmero, D.J.; García, V.E. The IL-17A Rs2275913 Single Nucleotide Polymorphism Is Associated with Protection to Tuberculosis but Related to Higher Disease Severity in Argentina. Sci. Rep. 2017, 7, 40666. [Google Scholar] [CrossRef]
- Flynn, J.L.; Chan, J.; Triebold, K.J.; Dalton, D.K.; Stewart, T.A.; Bloom, B.R. An Essential Role for Interferon Gamma in Resistance to Mycobacterium Tuberculosis Infection. J. Exp. Med. 1993, 178, 2249–2254. [Google Scholar] [CrossRef] [Green Version]
- Newport, M.J.; Huxley, C.M.; Huston, S.; Hawrylowicz, C.M.; Oostra, B.A.; Williamson, R.; Levin, M. A Mutation in the Interferon-Gamma-Receptor Gene and Susceptibility to Mycobacterial Infection. N. Engl. J. Med. 1996, 335, 1941–1949. [Google Scholar] [CrossRef]
- Sodhi, A.; Gong, J.; Silva, C.; Qian, D.; Barnes, P.F. Clinical Correlates of Interferon γ Production in Patients with Tuberculosis. Clin. Infect. Dis. 1997, 25, 617–620. [Google Scholar] [CrossRef] [Green Version]
- DiNardo, A.R.; Gandhi, T.; Heyckendorf, J.; Grimm, S.L.; Rajapakshe, K.; Nishiguchi, T.; Reimann, M.; Kirchner, H.L.; Kahari, J.; Dlamini, Q.; et al. Gene Expression Signatures Identify Biologically and Clinically Distinct Tuberculosis Endotypes. Eur. Respir. J. 2022, 60, 2102263. [Google Scholar] [CrossRef]
- Holland, S.M. Interferon Gamma, IL-12, IL-12R and STAT-1 Immunodeficiency Diseases: Disorders of the Interface of Innate and Adaptive Immunity. Immunol. Res. 2007, 38, 342–346. [Google Scholar] [CrossRef]
- Flynn, J.L. Lessons from Experimental Mycobacterium Tuberculosis Infections. Microbes. Infect. 2006, 8, 1179–1188. [Google Scholar] [CrossRef] [PubMed]
- Ghanavi, J.; Farnia, P.; Farnia, P.; Velayati, A.A. The Role of Interferon-Gamma and Interferon-Gamma Receptor in Tuberculosis and Nontuberculous Mycobacterial Infections. Int. J. Mycobacteriol. 2021, 10, 349–357. [Google Scholar] [CrossRef] [PubMed]
- Anderson, G.P. Endotyping Asthma: New Insights into Key Pathogenic Mechanisms in a Complex, Heterogeneous Disease. Lancet 2008, 372, 1107–1119. [Google Scholar] [CrossRef]
- Bustamante, J.; Boisson-Dupuis, S.; Abel, L.; Casanova, J.-L. Mendelian Susceptibility to Mycobacterial Disease: Genetic, Immunological, and Clinical Features of Inborn Errors of IFN-γ Immunity. Semin. Immunol. 2014, 26, 454–470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ehlers, S. Role of Tumour Necrosis Factor (TNF) in Host Defence against Tuberculosis: Implications for Immunotherapies Targeting TNF. Ann. Rheum. Dis. 2003, 62 (Suppl. S2), ii37–ii42. [Google Scholar] [CrossRef] [Green Version]
- Barber, D.L.; Mayer-Barber, K.D.; Feng, C.G.; Sharpe, A.H.; Sher, A. CD4 T Cells Promote Rather than Control Tuberculosis in the Absence of PD-1-Mediated Inhibition. J. Immunol. 2011, 186, 1598–1607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sakai, S.; Kauffman, K.D.; Sallin, M.A.; Sharpe, A.H.; Young, H.A.; Ganusov, V.V.; Barber, D.L. CD4 T Cell-Derived IFN-γ Plays a Minimal Role in Control of Pulmonary Mycobacterium Tuberculosis Infection and Must Be Actively Repressed by PD-1 to Prevent Lethal Disease. PLoS Pathog. 2016, 12, e1005667. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martínez-Colón, G.J.; Moore, B.B. Prostaglandin E2 as a Regulator of Immunity to Pathogens. Pharmacol. Ther. 2018, 185, 135–146. [Google Scholar] [CrossRef]
- Xiong, W.; Wen, Q.; Du, X.; Wang, J.; He, W.; Wang, R.; Hu, S.; Zhou, X.; Yang, J.; Gao, Y.; et al. Novel Function of Cyclooxygenase-2: Suppressing Mycobacteria by Promoting Autophagy via the Protein Kinase B/Mammalian Target of Rapamycin Pathway. J. Infect. Dis. 2018, 217, 1267–1279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wan, M.; Tang, X.; Rekha, R.S.; Muvva, S.S.V.J.R.; Brighenti, S.; Agerberth, B.; Haeggström, J.Z. Prostaglandin E2 Suppresses HCAP18/LL-37 Expression in Human Macrophages via EP2/EP4: Implications for Treatment of Mycobacterium Tuberculosis Infection. FASEB J. 2018, 32, 2827–2840. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Svenningsen, S.; Nair, P. Asthma Endotypes and an Overview of Targeted Therapy for Asthma. Front. Med. 2017, 4, 158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pasquinelli, V.; Quiroga, M.F.; Martínez, G.J.; Zorrilla, L.C.; Musella, R.M.; Bracco, M.M.; Belmonte, L.; Malbrán, A.; Fainboim, L.; Sieling, P.A.; et al. Expression of Signaling Lymphocytic Activation Molecule-Associated Protein Interrupts IFN-Gamma Production in Human Tuberculosis. J. Immunol. 2004, 172, 1177–1185. [Google Scholar] [CrossRef] [Green Version]
- Amiano, N.O.; Pellegrini, J.M.; Morelli, M.P.; Martinena, C.; Rolandelli, A.; Castello, F.A.; Casco, N.; Ciallella, L.M.; de Casado, G.C.; Armitano, R.; et al. Circulating Monocyte-Like Myeloid Derived Suppressor Cells and CD16 Positive Monocytes Correlate With Immunological Responsiveness of Tuberculosis Patients. Front. Cell. Infect. Microbiol. 2022, 12, 841741. [Google Scholar] [CrossRef]
- Quiroga, M.F.; Pasquinelli, V.; Martínez, G.J.; Jurado, J.O.; Zorrilla, L.C.; Musella, R.M.; Abbate, E.; Sieling, P.A.; García, V.E. Inducible Costimulator: A Modulator of IFN-Gamma Production in Human Tuberculosis. J. Immunol. 2006, 176, 5965–5974. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Zeng, G.; Yang, Q.; Zhang, J.; Zhu, X.; Chen, Q.; Suthakaran, P.; Zhang, Y.; Deng, Q.; Liu, H.; et al. Anti-Tuberculosis Treatment Enhances the Production of IL-22 through Reducing the Frequencies of Regulatory B Cell. Tuberculosis 2014, 94, 238–244. [Google Scholar] [CrossRef]
- Rovetta, A.I.; Peña, D.; Hernández Del Pino, R.E.; Recalde, G.M.; Pellegrini, J.; Bigi, F.; Musella, R.M.; Palmero, D.J.; Gutierrez, M.; Colombo, M.I.; et al. IFNG-Mediated Immune Responses Enhance Autophagy against Mycobacterium Tuberculosis Antigens in Patients with Active Tuberculosis. Autophagy 2014, 10, 2109–2121. [Google Scholar] [CrossRef] [Green Version]
- Tateosian, N.L.; Pellegrini, J.M.; Amiano, N.O.; Rolandelli, A.; Casco, N.; Palmero, D.J.; Colombo, M.I.; García, V.E. IL17A Augments Autophagy in Mycobacterium Tuberculosis-Infected Monocytes from Patients with Active Tuberculosis in Association with the Severity of the Disease. Autophagy 2017, 13, 1191–1204. [Google Scholar] [CrossRef] [Green Version]
- Jamil, B.; Shahid, F.; Hasan, Z.; Nasir, N.; Razzaki, T.; Dawood, G.; Hussain, R. Interferon Gamma/IL10 Ratio Defines the Disease Severity in Pulmonary and Extra Pulmonary Tuberculosis. Tuberculosis 2007, 87, 279–287. [Google Scholar] [CrossRef]
- Mahuad, C.; Bay, M.L.; Farroni, M.A.; Bozza, V.; Del Rey, A.; Besedovsky, H.; Bottasso, O.A. Cortisol and Dehydroepiandrosterone Affect the Response of Peripheral Blood Mononuclear Cells to Mycobacterial Antigens during Tuberculosis. Scand. J. Immunol. 2004, 60, 639–646. [Google Scholar] [CrossRef]
- Morais-Papini, T.F.; Coelho-dos-Reis, J.G.A.; Wendling, A.P.B.; do Vale Antonelli, L.R.; Wowk, P.F.; Bonato, V.L.D.; Augusto, V.M.; Elói-Santos, S.; Martins-Filho, O.A.; Carneiro, C.M.; et al. Systemic Immunological Changes in Patients with Distinct Clinical Outcomes during Mycobacterium Tuberculosis Infection. Immunobiology 2017, 222, 1014–1024. [Google Scholar] [CrossRef]
- Domaszewska, T.; Zyla, J.; Otto, R.; Kaufmann, S.H.E.; Weiner, J. Gene Set Enrichment Analysis Reveals Individual Variability in Host Responses in Tuberculosis Patients. Front. Immunol. 2021, 12, 694680. [Google Scholar] [CrossRef] [PubMed]
- Thompson, C.B.; Allison, J.P. The Emerging Role of CTLA-4 as an Immune Attenuator. Immunity 1997, 7, 445–450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oosterwegel, M.A.; Greenwald, R.J.; Mandelbrot, D.A.; Lorsbach, R.B.; Sharpe, A.H. CTLA-4 and T Cell Activation. Curr. Opin. Immunol. 1999, 11, 294–300. [Google Scholar] [CrossRef] [PubMed]
- Jurado, J.O.; Alvarez, I.B.; Pasquinelli, V.; Martínez, G.J.; Quiroga, M.F.; Abbate, E.; Musella, R.M.; Chuluyan, H.E.; García, V.E. Programmed Death (PD)-1:PD-Ligand 1/PD-Ligand 2 Pathway Inhibits T Cell Effector Functions during Human Tuberculosis. J. Immunol. 2008, 181, 116–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quiroga, M.F.; Jurado, J.O.; Martínez, G.J.; Pasquinelli, V.; Musella, R.M.; Abbate, E.; Issekutz, A.C.; Bracco, M.M.; Malbran, A.; Sieling, P.A.; et al. Cross-Talk between CD31 and the Signaling Lymphocytic Activation Molecule-Associated Protein during Interferon- Gamma Production against Mycobacterium Tuberculosis. J. Infect. Dis. 2007, 196, 1369–1378. [Google Scholar] [CrossRef] [Green Version]
- Alfaro, C.; Murillo, O.; Tirapu, I.; Azpilicueta, A.; Huarte, E.; Arina, A.; Arribillaga, L.; Pérez-Gracia, J.L.; Bendandi, M.; Prieto, J.; et al. The immunotherapy potential of agonistic anti-CD137 (4-1BB) monoclonal antibodies for malignancies and chronic viral diseases. Sist. Sanit. Navar. 2006, 29, 77–96. [Google Scholar] [CrossRef]
- Rijnink, W.F.; Ottenhoff, T.H.M.; Joosten, S.A. B-Cells and Antibodies as Contributors to Effector Immune Responses in Tuberculosis. Front. Immunol. 2021, 12, 640168. [Google Scholar] [CrossRef]
- Rao, M.; Valentini, D.; Poiret, T.; Dodoo, E.; Parida, S.; Zumla, A.; Brighenti, S.; Maeurer, M. B in TB: B Cells as Mediators of Clinically Relevant Immune Responses in Tuberculosis. Clin. Infect. Dis. 2015, 61 (Suppl. S3), S225–S234. [Google Scholar] [CrossRef] [Green Version]
- Ashenafi, S.; Aderaye, G.; Zewdie, M.; Raqib, R.; Bekele, A.; Magalhaes, I.; Lema, B.; Habtamu, M.; Rekha, R.S.; Aseffa, G.; et al. BCG-Specific IgG-Secreting Peripheral Plasmablasts as a Potential Biomarker of Active Tuberculosis in HIV Negative and HIV Positive Patients. Thorax 2013, 68, 269–276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eum, S.-Y.; Kong, J.-H.; Hong, M.-S.; Lee, Y.-J.; Kim, J.-H.; Hwang, S.-H.; Cho, S.-N.; Via, L.E.; Barry, C.E. Neutrophils Are the Predominant Infected Phagocytic Cells in the Airways of Patients with Active Pulmonary TB. Chest 2010, 137, 122–128. [Google Scholar] [CrossRef] [Green Version]
- Skendros, P.; Mitroulis, I.; Ritis, K. Autophagy in Neutrophils: From Granulopoiesis to Neutrophil Extracellular Traps. Front. Cell Dev. Biol. 2018, 6, 109. [Google Scholar] [CrossRef] [PubMed]
- Pellegrini, J.M.; Sabbione, F.; Morelli, M.P.; Tateosian, N.L.; Castello, F.A.; Amiano, N.O.; Palmero, D.; Levi, A.; Ciallella, L.; Colombo, M.I.; et al. Neutrophil Autophagy during Human Active Tuberculosis Is Modulated by SLAMF1. Autophagy 2020, 17, 2629–2638. [Google Scholar] [CrossRef] [PubMed]
- Wallis, R.S.; O’Garra, A.; Sher, A.; Wack, A. Host-Directed Immunotherapy of Viral and Bacterial Infections: Past, Present and Future. Nat. Rev. Immunol. 2022, 23, 121–133. [Google Scholar] [CrossRef]
- Scriba, T.J.; Penn-Nicholson, A.; Shankar, S.; Hraha, T.; Thompson, E.G.; Sterling, D.; Nemes, E.; Darboe, F.; Suliman, S.; Amon, L.M.; et al. Sequential Inflammatory Processes Define Human Progression from M. Tuberculosis Infection to Tuberculosis Disease. PLoS Pathog. 2017, 13, e1006687. [Google Scholar] [CrossRef] [Green Version]
- Falk, A. Classification of Pulmonary Tuberculosis. In Diagnostic Standards and Classification of Tuberculosis; National Tuberculosis and Respiratory Disease Association: Chicago, IL, USA, 1969; pp. 68–76. [Google Scholar]
- Li, F.; Gao, B.; Xu, W.; Chen, L.; Xiong, S. The Defect in Autophagy Induction by Clinical Isolates of Mycobacterium Tuberculosis Is Correlated with Poor Tuberculosis Outcomes. PLoS ONE 2016, 11, e0147810. [Google Scholar] [CrossRef] [Green Version]
- Sánchez, M.D.; García, Y.; Montes, C.; París, S.C.; Rojas, M.; Barrera, L.F.; Arias, M.A.; García, L.F. Functional and Phenotypic Changes in Monocytes from Patients with Tuberculosis Are Reversed with Treatment. Microbes. Infect. 2006, 8, 2492–2500. [Google Scholar] [CrossRef] [PubMed]
- Du Plessis, N.; Loebenberg, L.; Kriel, M.; von Groote-Bidlingmaier, F.; Ribechini, E.; Loxton, A.G.; van Helden, P.D.; Lutz, M.B.; Walzl, G. Increased Frequency of Myeloid-Derived Suppressor Cells during Active Tuberculosis and after Recent Mycobacterium Tuberculosis Infection Suppresses T-Cell Function. Am. J. Respir. Crit. Care Med. 2013, 188, 724–732. [Google Scholar] [CrossRef]
- Zhan, X.; Hu, S.; Wu, Y.; Li, M.; Liu, T.; Ming, S.; Wu, M.; Liu, M.; Huang, X. IFN-γ Decreased the Suppressive Function of CD33+HLA-DRlow Myeloid Cells through down-Regulation of PD-1/PD-L2 Signaling Pathway. Mol. Immunol. 2018, 94, 107–120. [Google Scholar] [CrossRef]
- Jetley, S.; Jairajpuri, Z.S.; Pujani, M.; Khan, S.; Rana, S. Tuberculosis “The Great Imitator”: A Usual Disease with Unusual Presentations. Indian J. Tuberc. 2017, 64, 54–59. [Google Scholar] [CrossRef] [PubMed]
- Jones, B.E.; Young, S.M.; Antoniskis, D.; Davidson, P.T.; Kramer, F.; Barnes, P.F. Relationship of the Manifestations of Tuberculosis to CD4 Cell Counts in Patients with Human Immunodeficiency Virus Infection. Am. Rev. Respir. Dis. 1993, 148, 1292–1297. [Google Scholar] [CrossRef] [PubMed]
- Blankley, S.; Graham, C.M.; Turner, J.; Berry, M.P.R.; Bloom, C.I.; Xu, Z.; Pascual, V.; Banchereau, J.; Chaussabel, D.; Breen, R.; et al. The Transcriptional Signature of Active Tuberculosis Reflects Symptom Status in Extra-Pulmonary and Pulmonary Tuberculosis. PLoS ONE 2016, 11, e0162220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCaffrey, E.F.; Donato, M.; Keren, L.; Chen, Z.; Delmastro, A.; Fitzpatrick, M.B.; Gupta, S.; Greenwald, N.F.; Baranski, A.; Graf, W.; et al. The Immunoregulatory Landscape of Human Tuberculosis Granulomas. Nat. Immunol. 2022, 23, 318–329. [Google Scholar] [CrossRef]
- Sterling, T.R.; Dorman, S.E.; Chaisson, R.E.; Ding, L.; Hackman, J.; Moore, K.; Holland, S.M. Human Immunodeficiency Virus-Seronegative Adults with Extrapulmonary Tuberculosis Have Abnormal Innate Immune Responses. Clin. Infect. Dis. 2001, 33, 976–982. [Google Scholar] [CrossRef]
- Antas, P.R.Z.; Ding, L.; Hackman, J.; Reeves-Hammock, L.; Shintani, A.K.; Schiffer, J.; Holland, S.M.; Sterling, T.R. Decreased CD4+ Lymphocytes and Innate Immune Responses in Adults with Previous Extrapulmonary Tuberculosis. J. Allergy Clin. Immunol. 2006, 117, 916–923. [Google Scholar] [CrossRef] [PubMed]
- Fiske, C.T.; de Almeida, A.S.; Shintani, A.K.; Kalams, S.A.; Sterling, T.R. Abnormal Immune Responses in Persons with Previous Extrapulmonary Tuberculosis in an in Vitro Model That Simulates in Vivo Infection with Mycobacterium Tuberculosis. Clin. Vaccine Immunol. 2012, 19, 1142–1149. [Google Scholar] [CrossRef] [Green Version]
- Mi, J.; Liang, Y.; Liang, J.; Gong, W.; Wang, S.; Zhang, J.; Li, Z.; Wu, X. The Research Progress in Immunotherapy of Tuberculosis. Front. Cell. Infect. Microbiol. 2021, 11, 763591. [Google Scholar] [CrossRef]
- Yuk, J.-M.; Shin, D.-M.; Lee, H.-M.; Yang, C.-S.; Jin, H.S.; Kim, K.-K.; Lee, Z.-W.; Lee, S.-H.; Kim, J.-M.; Jo, E.-K. Vitamin D3 Induces Autophagy in Human Monocytes/Macrophages via Cathelicidin. Cell Host Microbe 2009, 6, 231–243. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R.; Xi, X.; Wang, C.; Pan, Y.; Ge, C.; Zhang, L.; Zhang, S.; Liu, H. Therapeutic Effects of Recombinant Human Interleukin 2 as Adjunctive Immunotherapy against Tuberculosis: A Systematic Review and Meta-Analysis. PLoS ONE 2018, 13, e0201025. [Google Scholar] [CrossRef] [Green Version]
- Bekele, A.; Gebreselassie, N.; Ashenafi, S.; Kassa, E.; Aseffa, G.; Amogne, W.; Getachew, M.; Aseffa, A.; Worku, A.; Raqib, R.; et al. Daily Adjunctive Therapy with Vitamin D3 and Phenylbutyrate Supports Clinical Recovery from Pulmonary Tuberculosis: A Randomized Controlled Trial in Ethiopia. J. Intern. Med. 2018, 284, 292–306. [Google Scholar] [CrossRef] [Green Version]
- Skerry, C.; Pinn, M.L.; Bruiners, N.; Pine, R.; Gennaro, M.L.; Karakousis, P.C. Simvastatin Increases the in Vivo Activity of the First-Line Tuberculosis Regimen. J. Antimicrob. Chemother. 2014, 69, 2453–2457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Young, C.; Walzl, G.; Du Plessis, N. Therapeutic Host-Directed Strategies to Improve Outcome in Tuberculosis. Mucosal Immunol. 2020, 13, 190–204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mehta, K.; Spaink, H.P.; Ottenhoff, T.H.M.; van der Graaf, P.H.; van Hasselt, J.G.C. Host-Directed Therapies for Tuberculosis: Quantitative Systems Pharmacology Approaches. Trends Pharm. Sci. 2022, 43, 293–304. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tateosian, N.L.; Morelli, M.P.; Pellegrini, J.M.; García, V.E. Beyond the Clinic: The Activation of Diverse Cellular and Humoral Factors Shapes the Immunological Status of Patients with Active Tuberculosis. Int. J. Mol. Sci. 2023, 24, 5033. https://doi.org/10.3390/ijms24055033
Tateosian NL, Morelli MP, Pellegrini JM, García VE. Beyond the Clinic: The Activation of Diverse Cellular and Humoral Factors Shapes the Immunological Status of Patients with Active Tuberculosis. International Journal of Molecular Sciences. 2023; 24(5):5033. https://doi.org/10.3390/ijms24055033
Chicago/Turabian StyleTateosian, Nancy Liliana, María Paula Morelli, Joaquín Miguel Pellegrini, and Verónica Edith García. 2023. "Beyond the Clinic: The Activation of Diverse Cellular and Humoral Factors Shapes the Immunological Status of Patients with Active Tuberculosis" International Journal of Molecular Sciences 24, no. 5: 5033. https://doi.org/10.3390/ijms24055033
APA StyleTateosian, N. L., Morelli, M. P., Pellegrini, J. M., & García, V. E. (2023). Beyond the Clinic: The Activation of Diverse Cellular and Humoral Factors Shapes the Immunological Status of Patients with Active Tuberculosis. International Journal of Molecular Sciences, 24(5), 5033. https://doi.org/10.3390/ijms24055033