Anti-Inflammatory, Antimicrobial, Antioxidant and Photoprotective Investigation of Red Propolis Extract as Sunscreen Formulation in Polawax Cream
Abstract
:1. Introduction
2. Results and Discussion
2.1. Phytochemical Screening
2.2. In Vitro Determination of the Sun Protection Factor (SPF)
2.3. Evaluation of Antioxidant Activity
2.4. Determination of Total Phenolics and Flavonoids
2.5. Cell Viability
2.5.1. Macrophage Cells
2.5.2. HaCaT Cells
2.6. Nitric Oxide
2.7. Antimicrobial Activity
2.8. Analysis of Chemical Components in the Ethanolic Extract of Red Propolis by UPLC-QTOF-MS/MS
3. Materials and Methods
3.1. General Considerations
3.2. Plant Material
3.3. Extraction of Ethanolic Extracts of Red Propolis-EEPV Heated
3.4. Extraction of Ethanolic Extracts of Red Propolis-EEPV Room Temperature
3.5. Phytochemical Screening
3.5.1. Test for Flavonoids (Alkaline Reagent Test) [43,44]
3.5.2. Test for Phenols/Tannins (Ferric Chloride Test) [43,44]
3.5.3. Test for Saponins (Froth Test) [43,44]
3.5.4. Test for Terpenoids (Salkowski Test) [43,44,45]
3.6. Photoprotective Formulation of Red Propolis Ethanolic Extracts 70% (Room Temperature and Hot Temperature) in Polawax Cream
3.7. In Vitro Determination of the Sun Protection Factor (SPF)
3.8. Evaluation of Antioxidant Activity
3.9. Determination of Total Phenolics and Flavonoids
3.10. Biological Assays
3.10.1. Sample Preparation
3.10.2. In Vitro Assays with Cell Culture
Cell Culture of RAW 264.7
Cell Viability in RAW 264.7
Nitric Oxide in RAW 264.7
Cell Culture of HaCaT Cells
Cell Viability in HaCaT Cells
3.10.3. Antimicrobial Activity
Micro-Organisms and Culture Conditions
Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC)
3.10.4. Statistical Analysis
3.11. Analysis of Chemical Components in the Ethanolic Extract of red Propolis by UPLC-QTOF-MS/MS
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Park, Y.K.; Koo, M.H.; Abreu, J.A.; Ikegaki, M.; Cury, J.A.; Rosalen, P.L. Antimicrobial properties of propolis on oral microorganisms. Curr. Microbiol. 1998, 36, 24–28. [Google Scholar] [CrossRef]
- Park, Y.K.; Alencar, S.M.; Aguiar, C.L. Botanical origin and chemical composition of Brazilian propolis. J. Agric. Food Chem. 2002, 50, 2502–2506. [Google Scholar] [CrossRef] [PubMed]
- El-Hady, N.A.A.A.; ElSayed, A.I.; El-Saadany, S.S.; Deligios, P.A.; Ledda, L. Exogenous Application of Foliar Salicylic Acid and Propolis Enhances Antioxidant Defenses and Growth Parameters in Tomato Plants. Plants 2021, 10, 74. [Google Scholar] [CrossRef] [PubMed]
- Bankova, V. Recent trends and important developments in propolis research. Evid. Based Complement. Alternat. Med. 2005, 2, 29–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sforcin, J.; Fernandes, A.J.; Lopes, C.; Bankova, V.; Funari, S. Seasonal effect on Brazilian propolis antibacterial activity. J. Ethnopharmacol. 2000, 73, 243–249. [Google Scholar] [CrossRef]
- Galeotti, F.; Maccari, F.; Fachini, A.; Volpi, N. Chemical composition and antioxidant activity of propolis prepared in different forms and in different solvents useful for finished products. Foods 2018, 7, 41. [Google Scholar] [CrossRef] [Green Version]
- Nichols, J.A.; Katiyar, S.K. Skin photoprotection by natural polyphenols: Antiinflammatory, antioxidant and DNA repair mechanisms. Arch. Dermatol. Res. 2010, 302, 71–83. [Google Scholar] [CrossRef] [Green Version]
- Bravo, L. Polyphenols: Chemistry, dietary sources, metabolism, and nutritional significance. Nutr. Rev. 1998, 56, 317–333. [Google Scholar] [CrossRef]
- De Zordi, N.; Cortesi, A.; Kikic, I.; Moneghini, M.; Solinas, D.; Innocenti, G.; Portolan, A.; Baratto, G.; Dall’Acqua, S. The supercritical carbon dioxide extraction of polyphenols from Propolis: A central composite design approach. J. Supercrit. Fluids 2014, 95, 491–498. [Google Scholar] [CrossRef]
- Marcucci, M.C.; Rodriguez, J.; Ferreres, F.; Bankova, V.; Groto, R.; Popov, S. Chemical composition of Brazilian propolis from Sao Paulo State. Z. Nat. Forsch. C J. Biosci. 1998, 53, 117–119. [Google Scholar] [CrossRef]
- Kalogeropoulos, N.; Konteles, S.J.; Troullidou, E.; Mourtzinos, I.; Karathanos, V.T. Chemical composition, antioxidant activity and antimicrobial properties of propolis extracts from Greece and Cyprus. Food Chem. 2009, 116, 452–461. [Google Scholar] [CrossRef]
- Usman, U.Z.; Bakar, A.B.A.; Mohamed, M. Phytochemical screening and comparison of antioxidant activity of water and ethanol extract propolis from Malaysia. Int. J. Pharm. Pharm. Sci. 2016, 8, 413–415. [Google Scholar]
- Pratami, D.K.; Munim, A.; Sundowo, A.; Sahlan, M. Phytochemical profile and antioxidant activity of propolis ethanolic extract from Tetragonula Bee. Pharmacogn. J. 2018, 10, 128–135. [Google Scholar] [CrossRef] [Green Version]
- Brasil, Agência Nacional de Vigilância Sanitária—ANVISA. Aprova o Regulamento Técnico Mercosul sobre protetores solares em cosméticos e dá outras providências (Resolução—RDC nº 30, de 1º de junho de 2012). In Diário Oficial da República Federativa do Brasil, Seção 1; Diário Oficial da República Federativa: Brasilia, Brazil, 2012. [Google Scholar]
- Nascimento, C.S.; Nunes, L.C.C.; de Lima, A.A.N.; Grangeiro Junior, S.; Rolim Neto, P. Incremento do FPS em formulação de protetor solar utilizando extratos de própolis verde e vermelha. Rev. Bras. Farm. 2009, 90, 334–339. [Google Scholar]
- Ghazi, S. Do the polyphenolic compounds from natural products can protect the skin from ultraviolet rays? Results Chem. 2022, 4, 100428. [Google Scholar] [CrossRef]
- Food and Drug Administration. Sunscreen: How to Help Protect Your Skin from the Sun. Available online: https://www.fda.gov/drugs/understanding-over-counter-medicines/sunscreen-how-help-protect-your-skin-sun#spf (accessed on 20 December 2022).
- Almeida, W.A.S.; Antunes, A.S.; Penido, R.G.; Correa, H.S.G.; Do Nascimento, A.M.; Andrade, A.L.; Santos, V.R.; Cazati, T.; Amparo, T.R.; De Souza, G.H.B.; et al. Photoprotective activity and increase of SPF in sunscreen formulation using lyophilized red propolis extracts from Alagoas. Rev. Bras. Farmacogn. 2019, 29, 373–380. [Google Scholar] [CrossRef]
- Almeida, W.S.; Sousa, L.R.D.; Antunes, A.S.; Azevedo, A.S.; do Nascimento, A.M.; Amparo, T.R.A.; Souza, G.H.B.; dos Santos, O.D.H.; Andrade, A.L.; Cazati, T.; et al. Green Propolis: In vitro photoprotective and photostability studies of single and incorporated extracts in a sunscreen formulation. Rev. Bras. Farmacogn. 2020, 30, 436–443. [Google Scholar] [CrossRef]
- Duca, A.; Sturza, A.; Moaca, E.A.; Negrea, M.; Lalescu, V.D.; Lungeanu, D.; Dehelean, C.A.; Muntean, D.M.; Alexa, E. Identification of resveratrol as bioactive compound of propolis from western Romania and characterization of phenolic profile and antioxidant activity of ethanolic extracts. Molecules 2019, 24, 3368. [Google Scholar] [CrossRef] [Green Version]
- Frozza, C.O.S.; Garcia, C.S.C.; Gambato, G.; Souza, M.D.O.; Salvador, M.; Moura, S.; Padilha, F.F.; Seixas, F.K.; Collares, T.; Borsuk, S.; et al. Chemical characterization, antioxidant and cytotoxic activities of Brazilian red propolis. Food Chem. Toxicol. 2013, 52, 137–142. [Google Scholar] [CrossRef]
- Sforcin, J.M. Biological properties and therapeutic applications of propolis. Phytother. Res. 2016, 30, 894–905. [Google Scholar] [CrossRef]
- Da Silva, J.F.M.; Souza, M.C.; Matta, S.R.; Andrade, M.R.; Vidal, F.V.N. Correlation analysis between phenolic levels of Brazilian propolis extracts and their antimicrobial and antioxidant activities. Food Chem. 2006, 99, 431–435. [Google Scholar] [CrossRef]
- Siddhuraju, P. Antioxidant activity of polyphenolic compounds extracted from defatted raw heated, Tamarindus indica seed coat. LWT-Food Sci. Technol. 2007, 40, 982–990. [Google Scholar] [CrossRef]
- Fonseca, A.M.; Bizerra, A.M.C.; Souza, J.S.N.; Monte, F.J.Q.; Oliveira, M.C.F.; Mattos, M.C.; Cordell, G.A.; Braz-Filho, R.; Lemos, T.L.G. Constituents and antioxidant activity of two varieties of coconut water (Cocos nucifera L.). Rev. Bras. Farmacogn. 2009, 19, 193–198. [Google Scholar] [CrossRef]
- Soares, S.E. Ácidos fenólicos como antioxidantes. Rev. Nutr. 2002, 15, 71–81. [Google Scholar] [CrossRef] [Green Version]
- Duarte-Almeida, J.M.; Santos, R.J.; Genovese, M.I.; Lajolo, F.M. Avaliação da atividade antioxidante utilizando sistema β-caroteno/ácido linoleico e método de sequestro de radicais DPPH. Ciênc. Tecnol. Aliment. 2006, 26, 446–452. [Google Scholar] [CrossRef] [Green Version]
- Righi, A.A.; Alves, T.R.; Negri, G.; Marques, L.M.; Breyer, H.; Salatino, A. Brazilian red propolis: Unreported substances, antioxidant and antimicrobial activities. J. Sci. Food Agric. 2011, 91, 2363–2370. [Google Scholar] [CrossRef]
- Cabral, I.S.R.; Oldoni, T.L.C.; Prado, A.; Bezerra, R.M.N.; Alencar, S.M. Composição fenólica, atividade antibacteriana e antioxidante da própolis vermelha brasileira. Quim. Nova 2009, 32, 1523–1527. [Google Scholar] [CrossRef] [Green Version]
- Alencar, S.M.; Oldoni, T.L.C.; Castro, M.L.; Cabral, I.S.R.; Costa-Neto, C.M.; Cury, J.A.; Rosalen, P.L.; Ikegaki, M. Chemical composition and biological activity of a new type of Brazilian propolis: Red propolis. J. Ethnopharmacol. 2007, 113, 278–283. [Google Scholar] [CrossRef]
- ISO 10993-5; Biological Evaluation of Medical devices-Part 5: Test dor in vitro Cytotoxicity. International Standard Organization: Geneva, Switzerland, 2009.
- Marunaka, K.; Kobayashi, M.; Shu, S.; Matsunaga, T.; Ikari, A. Brazilian green propolis rescues oxidative stress-induced mislocalization of claudin-1 in human keratinocyte-derived HaCaT Cells. Int. J. Mol. Sci. 2019, 20, 3869. [Google Scholar] [CrossRef] [Green Version]
- Karapetsas, A.; Voulgaridou, G.-P.; Konialis, M.; Tsochantaridis, I.; Kynigopoulos, S.; Lambropoulou, M.; Stavropoulou, M.-I.; Stathopoulou, K.; Aligiannis, N.; Bozidis, P.; et al. Propolis extracts inhibit UV-induced photodamage in human experimental in vitro skin models. Antioxidants 2019, 8, 125. [Google Scholar] [CrossRef] [Green Version]
- Popova, M.; Giannopoulou, E.; Skalicka-Woźniak, K.; Graikou, K.; Widelski, J.; Bankova, V.; Kalofonos, H.; Sivolapenko, G.; Gaweł-Bęben, K.; Antosiewicz, B.; et al. Characterization and biological evaluation of propolis from Poland. Molecules 2017, 22, 1159. [Google Scholar] [CrossRef]
- Pelegrino, M.T.; Paganotti, A.; Seabra, A.B.; Weller, R.B. Photochemistry of nitric oxide and S-nitrosothiols in human skin. Histochem. Cell Biol. 2020, 153, 431–441. [Google Scholar] [CrossRef]
- Rivera-Yañez, N.; Rivera-Yañez, R.; Pozo-Molina, G.; Méndez-Catalá, C.F.; Reyes-Reali, J.; Mendoza-Ramos, M.I.; Méndez-Cruz, A.R.; Nieto-Yañez, O. Effects of Propolis on Infectious Diseases of Medical Relevance. Biology 2021, 10, 428. [Google Scholar] [CrossRef]
- Azevedo, A.S.; Seibert, J.B.; Amparo, T.R.; Antunes, A.S.; Sousa, L.R.D.; Souza, G.H.B.; Medeiros, L.F.T.; Vieira, P.M.A.; Santos, V.M.R.; Nascimento, A.M.; et al. Chemical constituents, antioxidant potential, antibacterial study and photoprotective activity of Brazilian corn silk extract. Food Sci. Technol. 2022, 42. [Google Scholar] [CrossRef]
- Daugsch, A.; Moraes, C.S.; Fort, P.; Park, Y.K. Brazilian Red Propolis–Chemical Composition and Botanical Origin. Evid Based Complement. Altern. Med. 2008, 5, 435–441. [Google Scholar] [CrossRef] [Green Version]
- Rufatto, L.C.; Luchtenberg, P.; Garcia, C.; Thomassigny, C.; Bouttier, S.; Henriques, J.A.P.; Roesch-Ely, M.; Dumas, F.; Moura, S. Brazilian red propolis: Chemical composition and antibacterial activity determined using bioguided fractionation. Microbiol. Res. 2018, 214, 74–82. [Google Scholar] [CrossRef]
- Zhang, W.; Margarita, G.E.; Wu, D.; Yuan, W.; Yan, S.; Qi, S.; Xue, X.; Wang, K.; Wu, L. Antibacterial Activity of Chinese Red Propolis against Staphylococcus aureus and MRSA. Molecules 2022, 27, 1693. [Google Scholar] [CrossRef]
- Mansur, J.S.; Breder, M.N.R.; Mansur, M.C.A.; Azulay, R.D. Determinação do fator de proteção solar por espectrofotometria. An. Bras. Dermatol. 1986, 61, 121–124. [Google Scholar]
- Mansur, M.C.P.P.R.; Leitão, S.G.; Cerqueira-Coutinho, C.; Vermelho, A.B.; Silva, R.S.; Presgrave, O.A.F.; Leitão, A.A.C.; Leitão, G.G.; Ricci-Júnior, E.; Santos, E.P. In vitro and in vivo evaluation of efficacy and safety of photoprotective formulations containing antioxidant extracts. Rev. Bras. Farmacogn. 2016, 26, 251–258. [Google Scholar] [CrossRef] [Green Version]
- Abu-Qaoud, H.; Shawarb, N.; Fatima Hussen, F.; Jaradat, N.; Shtaya, M. Comparison of qualitative, quantitative analysis and antioxidant potential between wild and cultivated Borago officinalis leaves from palestine. Pak. J. Pharm. Sci. 2018, 31, 953–959. [Google Scholar]
- Egwaikhide, P.A.; Gimba, C.E. Analysis of the phytochemical content and anti-microbial activity of Plectranthus glandulosis whole plant. Middle-East J. Sci. Res. 2007, 2, 135–138. [Google Scholar]
- Edeoga, H.O.; Okwu, D.E.; Mbaebie, B.O. Phytochemical constituents of some Nigerian medicinal plants. J. Biotechnol. 2005, 4, 685–688. [Google Scholar]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Bonoli, M.; Verardo, V.; Marconi, E.; Caboni, M.F. Antioxidant phenols in barley (Hordeum vulgare L.) flour: Comparative spectrophotometric study among extraction methods of free and bound phenolic compounds. J. Agric. Food Chem. 2004, 52, 5195–5200. [Google Scholar] [CrossRef]
- Dowd, L.E. Spectrophotometric Determination of Quercetin. Anal. Chem. 1959, 31, 1184–1187. [Google Scholar] [CrossRef]
- Green, L.C.; Wagner, D.A.; Gloglowski, J.; Skipper, P.L.; Wishnok, J.S.; Tannenbaum, S.R. Analysis of nitrate, nitrite, and (15 N)-nitrate in biological fluids. Anal. Biochem. 1982, 126, 131–138. [Google Scholar] [CrossRef]
- Griess, B.D. Bemerkungen zu der Abhandlung der HH: Wesely und Benedikt “Uber einige Azoverbindungen”. Chem. Ges. 1879, 12, 426–428. [Google Scholar] [CrossRef] [Green Version]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
- M07-A6; Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically. Approved Standard—Sixth Edition; NCCLS document M7-A6; NCCLS: Dawynne, PA, USA, 2003; ISBN 1-56238-486-4.
- Upton, G.; Cook, I. A Dictionary of Statistics, 2nd ed.; Oxford University Press: Oxford, UK, 2006. [Google Scholar]
Phytochemicals | EEPV Room Temperature | EEPV Heated |
---|---|---|
Flavonoids (alkaline reagent test) | (+) | (+) |
Phenols/Tannins (ferric chloride test) | (−) | (−) |
Terpenoids (Salkowski test) | (+) | (+) |
Saponins (froth test) | (−) | (−) |
Concentration mg/mL | SPF | |
---|---|---|
EPPV Room Temperature | EEPV Heated | |
0.02 | 4.63955 ± 0.0194300 | 0.273258 ± 0.003261 |
0.03 | 5.400514 ± 0.677986 | 0.279551 ± 0.009742 |
0.05 | 8.278276 ± 0.021676 | 4.576193 ± 0.005881 |
0.07 | 9.214948 ± 1.636204 | 5.892001 ± 0.001900 |
0.10 | 10.77066 ± 0.215202 | 8.067012 ± 0.007059 |
Formulations in the Concentration of 0.10 mg/mL | SPF |
---|---|
Polawax cream (negative control) | 10.7705 ± 0.5311 |
EPPV room temperature with Polawax cream | 38.0588 ± 1.0661 |
EPPV heated with Polawax cream | 42.8509 ± 0.8840 |
Sunscreen UVA-UVB 5% gel with Pemulen TR-1® (positive control) | 28.9694 ± 1.2315 |
Strain | EEPV Room Temperature | EEPV Heated |
---|---|---|
MIC (MBC) (μg/mL) | ||
Gram (+) Bacteria | ||
S. aureus | 1000 (-) | 250 (500) |
S. epidermidis | 1000 (-) | 500 (-) |
Nº | tR (min) | Precursor Ion (m/z) | Molecular Formula | Adduct | Error (ppm) | Ions-Fragment (m/z) | Annotation | Class |
---|---|---|---|---|---|---|---|---|
1 | 5.033 | 177.019 | C9H6O4 | [M-H]− | −0.09 | 149.0230; 121..0294;92.0264; 77.0398 | Daphnetin | Coumarin |
2 | 7.123 | 419.135 | C20H22O7 | [M+FA-H]− | −0.11 | 373.1279; 327.1226; 208.0727; 151.0394 | Wikstromol | Lignan |
3 | 7.187 | 235.169 | C15H22O2 | [M+H]+ | 2.57 | 189.1639; 133.1013; 105.0695; 93.0696 | Valerenic acid * | Terpene |
4 | 7.323 | 287.056 | C15H12O6 | [M-H]− | −0.13 | 259.0592; 177.0551; 125.0241; 83.0139 | Dihydrokaempferol | Flavonoid |
5 | 7.324 | 303.086 | C16H14O6 | [M+H]+ | 1.53 | 177.0537; 153.0543; 138.0313; 79.0546 | Hesperetin | Flavonoid |
6 | 7.525 | 359.149 | C20H24O6 | [M-H]− | 0.18 | 329.1378; 192.0788; 178.0622; 160.0530 | Lariciresinol | Lignan |
7 | 7.999 | 253.05 | C15H10O4 | [M-H]− | −0.85 | 224.0473; 209.0597; 135.0086; 117.0340 | Daidzein | Flavonoid |
8 | 8.27 | 255.066 | C15H12O4 | [M-H]− | −0.26 | 135.0086; 119.0500; 91.0189 | DL-Liquiritigenin * | Flavonoid |
9 | 8.404 | 283.061 | C16H12O5 | [M-H]− | 0.17 | 268.0374; 240.0419; 211.0390; 184.0521 | Biochanin A | Flavonoid |
10 | 8.672 | 357.134 | C20H22O6 | [M-H]− | 0.32 | 342.1098; 176.0474; 151.0396; 136.0159 | Pinoresinol * | Lignan |
11 | 8.674 | 313.0712 | C17H14O6 | [M-H]− | 0.04 | 298.0474; 283.0243; 269.0443; 255.0293 | Cirsimaritin | Flavonoid |
12 | 9.012 | 255.066 | C15H12O4 | [M-H]− | −1.44 | 237.0553; 209.0604; 135.0085; 109.0294 | Dihydrodaidzein | Flavonoid |
13 | 9.144 | 327.087 | C18H16O6 | [M-H]− | −0.11 | 311.0581; 297.0400; 269.0418; 146.9379 | Kaempferol-3,7,4′-trimethyl ether | Flavonoid |
14 | 9.348 | 285.077 | C16H14O5 | [M-H]− | −0.71 | 270.0528; 149.9956; 124.0163; 109.0294 | 7-Hydroxy-6-methoxydihydroflavonol | Flavonoid |
15 | 9.418 | 271.0606 | C15H12O5 | [M-H]− | 0.18 | 151.0034; 119.0501; 107.0136; 83.0137 | Naringenin | Flavonoid |
16 | 9.481 | 297.0762 | C17H14O5 | [M-H]− | 0.33 | 281.0447; 267.0293; 253.0504; 239.0343 | 2′-Methoxyformonetin | Flavonoid |
17 | 9.481 | 359.149 | C20H22O6 | [M+H]+ | 1.85 | 177.0915; 137.0595; 131.0492; 74.0951 | Matairesinol | Lignan |
18 | 9.551 | 329.066 | C17H14O7 | [M-H]− | −0.52 | 314.0428; 299.0197; 271.0242; 161.0239 | 3,7-Dimethylquercetin | Flavonoid |
19 | 9.617 | 285.076 | C16H12O5 | [M+H]+ | 1.75 | 229.0858; 215.0701; 187.0751; 151.0389 | Glycitein | Flavonoid |
20 | 10.16 | 253.0865 | C16H14O3 | [M-H]− | −0.12 | 238.0627; 255.0535; 210.0683 | Dalbergichromene | Flavonoid |
21 | 10.22 | 303.1226 | C17H18O5 | [M+H]+ | 2.14 | 285.0756; 167.0701; 123.0441; 107.0492 | Isomucronulatol | Flavonoid |
22 | 10.36 | 257.0810 | C15H12O4 | [M+H]+ | 1.49 | 211.0752; 147.0443; 137.0234; 119.0491 | Liquiritigenin | Flavonoid |
23 | 10.43 | 255.066 | C15H12O4 | [M-H]− | −0.26 | 135.0086; 119.0500; 91.0190 | Isoliquiritigenin | Chalcone |
24 | 10.56 | 301.071 | C16H12O6 | [M+H]+ | 2.04 | 286.0466; 269.0446; 241.0493; 153.0181 | Chrysoeriol | Flavonoid |
25 | 10.63 | 273.1126 | C16H16O4 | [M+H]+ | 0.31 | 163.0754; 149.0596; 137.0598; 123.0441 | Isovestitol | Flavonoid |
26 | 10.63 | 267.0658 | C16H12O4 | [M-H]− | −0.25 | 252.0422; 223.0395; 195.0445; 132.0212 | Formononetin | Flavonoid |
27 | 10.9 | 241.0861 | C15H12O3 | [M+H]+ | 1.53 | 195.0801; 137.0233; 131.0490; 103.0543 | 7-Hydroxyflavanone | Flavonoid |
28 | 11.1 | 273.1126 | C16H16O4 | [M+H]+ | 0.31 | 163.0753; 149.0598; 137.0597; 123.0440 | Vestitol | Flavonoid |
29 | 11.17 | 271.096 | C16H14O4 | [M+H]+ | 2.34 | 161.0596; 137.0597; 123.0438; 109.0648 | 5-Hydroxy-7-methoxyflavanone | Flavonoid |
30 | 11.57 | 235.169 | C15H22O2 | [M+H]+ | 2.57 | 189.1628; 133.1007; 119.0855; 107.0855 | Curcumenol | Terpene |
31 | 11.64 | 269.0814 | C16H14O4 | [M-H]− | −0.06 | 254.0580; 239.0345; 226.0626; 210.0679 | Dalbergione, 4-Methoxy-4′-Hydroxy- | Neoflavonoid |
32 | 11.84 | 255.102 | C16H14O3 | [M+H]+ | 2.04 | 161.0596; 151.0389; 131.0490; 107.0492 | 2′-Hydroxy-4′-Methoxychalcone | Chalcone |
33 | 12.11 | 255.066 | C15H12O4 | [M-H]− | −0.26 | 213.0546; 171.0442; 151.0033; 107.0136 | Pinocembrin | Flavonoid |
34 | 12.38 | 283.061 | C16H12O5 | [M-H]− | 0.17 | 268.0372; 239.0343; 224.0470; 132.0208 | Acacetin | Flavonoid |
35 | 13.26 | 241.0861 | C15H12O3 | [M+H]+ | 1.53 | 195.0798; 137.0232; 131.0488; 103.0541 | 2′,4′-Dihydroxychalcone | Chalcone |
36 | 13.36 | 432.238 | C22H30O6 | [M+ACN+H]+ | 1.42 | 135.0802; 129.0543; 119.0856; 107.0856 | 7b,9-Dihydroxy-3-(hydroxymethyl)-1,1,6,8-tetramethyl-5-oxo-1,1a,1b,4,4a,5,7a,7b,8,9-decahydro-9aH-cyclopropa[3,4]benzo[1,2-e]azulen-9a-ylacetate | Terpene |
37 | 14.41 | 241.087 | C15H14O3 | [M-H]− | −0.13 | 226.0619; 213.0904; 186.0321; 150.9153 | Lapachol | Quinone |
38 | 16.22 | 203.179 | C15H22 | [M+H]+ | 3.82 | 147.1165; 119.0845; 105.0696; 95.0856 | Alpha-Curcumene | Terpene |
39 | 17.57 | 205.195 | C15H26O | [M+H-H2O]+ | 3.05 | 121.1006; 107.0854; 93.0699; 81.0701 | Alpha-Bisabolol | Terpene |
40 | 17.74 | 409.1652 | C24H26O6 | [M-H]− | −0.21 | 394.1407; 366.1466; 351.0859; 339.0851 | Alpha-Mangostin | Xanthone |
41 | 20.07 | 439.357 | C30H48O3 | [M+H-H2O]+ | 1.38 | 203.1787; 191.1791; 109.1014; 95.0856 | Oleanolic acid | Terpene |
42 | 20.14 | 311.1643 | C20H22O3 | [M+H]+ | 1.35 | 203.1062; 177.0542; 161.0960; 135.0438 | Dihydrocordoin # | Chalcone |
43 | 21.42 | 413.269 | C26H38O4 | [M-H]− | −0.04 | 344.1981; 301.1437; 289.1435; 233.0815 | Lupulone | Terpene |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valverde, T.M.; Soares, B.N.G.d.S.; Nascimento, A.M.d.; Andrade, Â.L.; Sousa, L.R.D.; Vieira, P.M.d.A.; Santos, V.R.; Seibert, J.B.; Almeida, T.C.S.d.; Rodrigues, C.F.; et al. Anti-Inflammatory, Antimicrobial, Antioxidant and Photoprotective Investigation of Red Propolis Extract as Sunscreen Formulation in Polawax Cream. Int. J. Mol. Sci. 2023, 24, 5112. https://doi.org/10.3390/ijms24065112
Valverde TM, Soares BNGdS, Nascimento AMd, Andrade ÂL, Sousa LRD, Vieira PMdA, Santos VR, Seibert JB, Almeida TCSd, Rodrigues CF, et al. Anti-Inflammatory, Antimicrobial, Antioxidant and Photoprotective Investigation of Red Propolis Extract as Sunscreen Formulation in Polawax Cream. International Journal of Molecular Sciences. 2023; 24(6):5112. https://doi.org/10.3390/ijms24065112
Chicago/Turabian StyleValverde, Thalita Marcolan, Bruna Nayane Goncalves de Souza Soares, Andréa Mendes do Nascimento, Ângela Leão Andrade, Lucas Resende Dutra Sousa, Paula Melo de Abreu Vieira, Vagner Rodrigues Santos, Janaína Brandão Seibert, Tatiane Cristine Silva de Almeida, Caio Fabrini Rodrigues, and et al. 2023. "Anti-Inflammatory, Antimicrobial, Antioxidant and Photoprotective Investigation of Red Propolis Extract as Sunscreen Formulation in Polawax Cream" International Journal of Molecular Sciences 24, no. 6: 5112. https://doi.org/10.3390/ijms24065112
APA StyleValverde, T. M., Soares, B. N. G. d. S., Nascimento, A. M. d., Andrade, Â. L., Sousa, L. R. D., Vieira, P. M. d. A., Santos, V. R., Seibert, J. B., Almeida, T. C. S. d., Rodrigues, C. F., Oliveira, S. R. M. d., Martins, F. d. S., Júnior, J. G. F., & Santos, V. M. R. d. (2023). Anti-Inflammatory, Antimicrobial, Antioxidant and Photoprotective Investigation of Red Propolis Extract as Sunscreen Formulation in Polawax Cream. International Journal of Molecular Sciences, 24(6), 5112. https://doi.org/10.3390/ijms24065112