Novel Sulfonamide Derivatives Containing a Piperidine Moiety as New Bactericide Leads for Managing Plant Bacterial Diseases
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis of the Target Molecules
2.2. In Vitro Antibacterial Activities and Structure−Activity Relationship (SAR) Analysis
2.3. Effect of Molecule C4 on the Growth of Xoo Cells
2.4. Molecular Docking Simulation of C4 with XooDHPS
2.5. SEM Morphological Study of Xoo Cells Treated with C4
2.6. Assessing the Cell Membrane Integrity by Fluorescence Microscopy
2.7. Effect of C4 on Electrical Conductivity
2.8. Effect of C4 on Protein Concentrations
2.9. Phytotoxicity Assay and In Vivo Bioassay against Rice Bacterial Leaf Blight
3. Materials and Methods
3.1. Instruments and Chemicals
3.2. Synthesis of the Target Molecules
3.3. Experimental Section
3.4. Molecular Docking Study
3.5. Fluorescence Images of Propidium Iodide (PI)-Stained Xoo
3.6. Determination of Intracellular and Extracellular Protein Content
3.7. Phytotoxicity Assay
3.8. Antibacterial Activity In Vivo against Rice Bacterial Leaf Blight
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Popp, J.; Pető, K.; Nagy, J. Pesticide productivity and food security. A review. Agron. Sustain. Dev. 2013, 33, 243–255. [Google Scholar] [CrossRef]
- Ryan, R.P.; Vorhölter, F.J.; Potnis, N.; Jones, J.B.; Van Sluys, M.A.; Bogdanove, A.J.; Dow, J.M. Pathogenomics of Xanthomonas: Understanding bacterium-plant interactions. Nat. Rev. Microbiol. 2011, 9, 344–355. [Google Scholar] [CrossRef]
- Timilsina, S.; Potnis, N.; Newberry, E.A.; Liyanapathiranage, P.; Iruegas-Bocardo, F.; White, F.F.; Goss, E.M.; Jones, J.B. Xanthomonas diversity, virulence and plant–pathogen interactions. Nat. Rev. Microbiol. 2020, 18, 415–427. [Google Scholar] [CrossRef]
- He, Y.H.; Chu, Q.R.; Zhang, S.Y.; Guo, L.R.; Ma, Y.; Zhang, B.Q.; Zhang, Z.J.; Zhao, W.B.; Hu, Y.M.; Yang, C.J.; et al. Discovery of cryptolepine derivatives as novel promising agents against phytopathogenic bacteria. Front. Chem. Sci. Eng. 2023, 17, 156–166. [Google Scholar] [CrossRef]
- Wang, F.; Yang, B.X.; Zhang, T.H.; Tao, Q.Q.; Zhou, X.; Wang, P.Y.; Yang, S. Novel 1,3,4-Oxadiazole Thioether and Sulfone Derivatives Bearing a Flexible N-Heterocyclic Moiety: Synthesis, Characterization, and Anti-microorganism Activity. Arab. J. Chem. 2023, 16, 104479. [Google Scholar] [CrossRef]
- Karmakar, S.; Molla, K.A.; Das, K.; Sarkar, S.N.; Datta, S.K.; Datta, K. Dual gene expression cassette is superior than single gene cassette for enhancing sheath blight tolerance in transgenic rice. Sci. Rep. 2017, 7, 7900. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mansfield, J.; Genin, S.; Magori, S.; Citovsky, V.; Sriariyanum, M.; Ronald, P.; Dow, M.; Verdier, V.; Beer, S.V.; Machado, M.A.; et al. Top 10 plant pathogenic bacteria in molecular plant pathology. Mol. Plant Pathol. 2012, 13, 614–629. [Google Scholar] [CrossRef] [Green Version]
- Niñoz, L.D.O.; Ronald, P.C.; Bogdanove, A.J. Xanthomonas oryzae pathovars: Model pathogens of a model crop. Mol. Plant Pathol. 2006, 7, 303–324. [Google Scholar]
- Lin, Y.; He, Z.; Rosskopf, E.N.; Conn, K.L.; Powell, C.A.; Lazarovits, G. A nylon membrane bag assay for determination of the effect of chemicals on soilborne plant pathogens in soil. Plant Dis. 2010, 94, 201–206. [Google Scholar] [CrossRef] [Green Version]
- Song, Y.L.; Liu, H.W.; Yang, Y.H.; He, J.J.; Yang, B.X.; Yang, L.L.; Zhou, X.; Liu, L.W.; Wang, P.Y.; Yang, S. Novel 18β-glycyrrhetinic acid amide derivatives show dual-acting capabilities for control of plant bacterial diseases through ROS-mediated antibacterial efficiency and activation of plant defense responses. J. Integr. Agric. 2022; in press. [Google Scholar]
- Roland, S.; Ferone, R.; Harvey, R.J.; Styles, V.L.; Morrison, R.W. The characteristics and significance of sulfonamides as substrates for Escherichia coli dihydropteroate synthase. J. Biol. Chem. 1979, 254, 10337–10345. [Google Scholar] [CrossRef]
- Woods, D.D. The relation of p-aminobenzoic acid to the mechanism of the action of sulphanilamide. Br. J. Exp. Pathol. 1940, 21, 74. [Google Scholar]
- Bermingham, A.; Derrick, J.P. The folic acid biosynthesis pathway in bacteria: Evaluation of potential for antibacterial drug discovery. Bioessays 2002, 24, 637–648. [Google Scholar] [CrossRef]
- Achari, A.; Somers, D.O.; Champness, J.N.; Bryant, P.K.; Rosemond, J.; Stammers, D.K. Crystal structure of the anti-bacterial sulfonamide drug target dihydropteroate synthase. Nat. Struct. Biol. 1997, 4, 490–497. [Google Scholar] [CrossRef]
- Verma, S.K.; Verma, R.; Xue, F.; Thakur, P.K.; Girish, Y.R.; Rakesh, K.P. Antibacterial activities of sulfonyl or sulfonamide containing heterocyclic derivatives and its structure-activity relationships (SAR) studies: A critical review. Bioorg. Chem. 2020, 105, 104400. [Google Scholar] [CrossRef]
- Meşeli, T.; Doğan, Ş.D.; Gündüz, M.G.; Kökbudak, Z.; Bogojevic, S.S.; Noonan, T.; Vojnovic, S.; Wolber, G.; Nikodinovic-Runic, J. Design, synthesis, antibacterial activity evaluation and molecular modeling studies of new sulfonamides containing a sulfathiazole moiety. New J. Chem. 2021, 45, 8166–8177. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, S.; Xiao, L.F.; Wan, Y.; He, L.; Wang, K.; Qi, Z.Q.; Li, X.H. Synthesis and biological activity of novel hydantoin cyclohexyl sulfonamide derivatives as potential antimicrobial agents in agriculture. Pest Manag. Sci. 2022, 78, 1438–1447. [Google Scholar] [CrossRef]
- Scozzafava, A.; Owa, T.; Mastrolorenzo, A.; Supuran, C.T. Anticancer and antiviral sulfonamides. Curr. Med. Chem. 2003, 10, 925–953. [Google Scholar] [CrossRef]
- Shah, S.S.A.; Rivera, G.; Ashfaq, M. Recent advances in medicinal chemistry of sulfonamides. Rational design as anti-tumoral, anti-bacterial and anti-inflammatory agents. Mini-Rev. Med. Chem. 2013, 13, 70–86. [Google Scholar] [CrossRef]
- Qin, H.L.; Zhang, Z.W.; Lekkala, R.; Alsulami, H.; Rakesh, K.P. Chalcone hybrids as privileged scaffolds in antimalarial drug discovery: A key review. Eur. J. Med. Chem. 2020, 193, 112215. [Google Scholar] [CrossRef]
- Peng, J.N.; Wang, K.; Feng, T.Y.; Zhang, H.Z.; Li, X.H.; Qi, Z.Q. The effect of (1S, 2R-((3-bromophenethyl) amino)-N-(4-chloro-2-trifluoromethylphenyl) cyclohexane-1-sulfonamide) on Botrytis cinerea through the membrane damage mechanism. Molecules 2019, 25, 94. [Google Scholar] [CrossRef] [Green Version]
- Yan, X.J.; Chen, S.N.; Sun, W.; Zhou, X.X.; Yang, D.B.; Yuan, H.Z.; Wang, D.Q. Primary Mode of Action of the Novel Sulfonamide Fungicide against Botrytis cinerea and Field Control Effect on Tomato Gray Mold. Int. J. Mol. Sci. 2022, 23, 1526. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, P.L.; Ansari, M.F.; Li, S.; Zhou, C.H. Molecular design and preparation of 2-aminothiazole sulfanilamide oximes as membrane active antibacterial agents for drug resistant Acinetobacter baumannii. Bioorg. Chem. 2021, 113, 105039. [Google Scholar] [CrossRef]
- Vitaku, E.; Smith, D.T.; Njardarson, J.T. Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among US FDA approved pharmaceuticals: Miniperspective. J. Med. Chem. 2014, 57, 10257–10274. [Google Scholar] [CrossRef]
- Ding, M.H.; Wan, S.R.; Wu, N.; Yan, Y.; Li, J.H.; Bao, X.P. Synthesis, Structural Characterization, and Antibacterial and Antifungal Activities of Novel 1,2,4-Triazole Thioether and Thiazolo [3,2-b]-1,2,4-triazole Derivatives Bearing the 6-Fluoroquinazolinyl Moiety. J. Agric. Food Chem. 2021, 69, 15084–15096. [Google Scholar] [CrossRef]
- Gao, P.; Song, S.; Frutos-Beltrán, E.; Li, W.X.; Sun, B.; Kang, D.W.; Zou, J.M.; Zhang, J.; Pannecouque, C.; Clercq, E.D.; et al. Novel indolylarylsulfone derivatives as covalent HIV-1 reverse transcriptase inhibitors specifically targeting the drug-resistant mutant Y181C. Bioorg. Med. Chem. 2021, 30, 115927. [Google Scholar] [CrossRef]
- Canale, V.; Frisi, V.; Bantreil, X.; Lamaty, F.; Zajdel, P. Sustainable synthesis of a potent and selective 5-HT7 receptor antagonist using a mechanochemical approach. J. Org. Chem. 2020, 85, 10958–10965. [Google Scholar] [CrossRef]
- Morstein, J.; Capecchi, A.; Hinnah, K.; Park, B.; Petit-Jacques, J.; Van Lehn, R.C.; Reymond, J.L.; Trauner, D. Medium-Chain Lipid Conjugation Facilitates Cell-Permeability and Bioactivity. J. Am. Chem. Soc. 2022, 144, 18532–18544. [Google Scholar] [CrossRef]
- Hu, Y.Y.; Wang, J.; Li, T.J.; Bheemanaboina, R.R.Y.; Ansari, M.F.; Cheng, Y.; Zhou, C.H. An unexpected discovery toward novel membrane active sulfonyl thiazoles as potential MRSA DNA intercalators. Future Med. Chem. 2020, 12, 1709–1727. [Google Scholar] [CrossRef]
- Li, D.; Bheemanaboina, R.R.Y.; Battini, N.; Tangadanchu, V.K.R.; Fang, X.F.; Zhou, C.H. Novel organophosphorus aminopyrimidines as unique structural DNA-targeting membrane active inhibitors towards drug-resistant methicillin-resistant Staphylococcus aureus. MedChemComm 2018, 9, 1529–1537. [Google Scholar] [CrossRef]
- Kubo, I.; Muroi, H.; Himejima, M.; Yamagiwa, Y.; Mera, H.; Tokushima, K.; Ohta, S.; Kamikawa, T. Structure-antibacterial activity relationships of anacardic acids. J. Agric. Food Chem. 1993, 41, 1016–1019. [Google Scholar] [CrossRef]
- Desbois, A.P.; Smith, V.J. Antibacterial free fatty acids: Activities, mechanisms of action and biotechnological potential. Appl. Microbiol. Biotechnol. 2010, 85, 1629–1642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kubo, I.; Fujita, K.I.; Nihei, K.I.; Nihei, A. Antibacterial activity of akyl gallates against Bacillus subtilis. J. Agric. Food Chem. 2004, 52, 1072–1076. [Google Scholar] [CrossRef] [PubMed]
- Saedtler, M.; Förtig, N.; Ohlsen, K.; Faber, F.; Masota, N.; Kowalick, K.; Holzgrabe, U.; Meinel, L. Antibacterial Anacardic Acid Derivatives. ACS Infect. Dis. 2020, 6, 1674–1685. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.; Li, J.; Yu, M.M.; Jia, W.B.; Duan, S.; Cao, D.P.; Ding, X.K.; Yu, B.R.; Zhang, X.R.; Xu, F.J. Molecular sizes and antibacterial performance relationships of flexible ionic liquid derivatives. J. Am. Chem. Soc. 2020, 142, 20257–20269. [Google Scholar] [CrossRef]
- Henderson, J.C.; Zimmerman, S.M.; Crofts, A.A.; Boll, J.M.; Kuhns, L.G.; Herrera, C.M.; Trent, M.S. The power of asymmetry: Architecture and assembly of the Gram-negative outer membrane lipid bilayer. Annu. Rev. Microbiol. 2016, 70, 255–278. [Google Scholar] [CrossRef]
- Stocks, S.M. Mechanism and use of the commercially available viability stain, BacLight. Cytom. Part A 2004, 61, 189–195. [Google Scholar] [CrossRef]
- Habtewold, T.; Duchateau, L.; Christophides, G.K. Flow cytometry analysis of the microbiota associated with the midguts of vector mosquitoes. Parasites Vectors 2016, 9, 167. [Google Scholar] [CrossRef] [Green Version]
- Cox, S.D.; Mann, C.M.; Markham, J.L.; Gustafson, J.E.; Warmington, J.R.; Wyllie, S.G. Determining the antimicrobial actions of tea tree oil. Molecules 2001, 6, 87–91. [Google Scholar] [CrossRef] [Green Version]
- Roy, S.; Mondal, A.; Yadav, V.; Sarkar, A.; Banerjee, R.; Sanpui, P.; Jaiswal, A. Mechanistic insight into the antibacterial activity of chitosan exfoliated MoS2 nanosheets: Membrane damage, metabolic inactivation, and oxidative stress. ACS Appl. Bio. Mater. 2019, 2, 2738–2755. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Zhou, H.; Liu, Y.; Yang, S.H.; Zhou, L.; Chang, M.X. One-Pot N-Deprotection and Catalytic Intramolecular Asymmetric Reductive Amination for the Synthesis of Tetrahydroisoquinolines. Angew. Chem. Int. Ed. 2017, 56, 2725–2729. [Google Scholar] [CrossRef]
- Srinivasan, N.; Yurek-George, A.; Ganesan, A. Rapid deprotection of N-Boc amines by TFA combined with freebase generation using basic ion-exchange resins. Mol. Divers. 2005, 9, 291–293. [Google Scholar] [CrossRef]
- Deciga-Campos, M.; Melo-Hernandez, L.A.; Torres-Gomez, H.; Wunsch, B.; Schepmann, D.; Gonzalez-Trujano, M.E.; Espinosa-Juarez, J.; Lopez-Munoz, F.J.; Navarrete-Vazquez, G. Design and synthesis of N-(benzylpiperidinyl)-4-fluorobenzamide: A haloperidol analog that reduces neuropathic nociception via σ1 receptor antagonism. Life Sci. 2020, 245, 117348. [Google Scholar] [CrossRef]
- Jorgensen, L.; Al-Khawaja, A.; Kickinger, S.; Vogensen, S.B.; Skovgaard-Petersen, J.; Rosenthal, E.; Borkar, N.; Loffler, R.; Madsen, K.K.; Brauner-Osborne, H.; et al. Structure-Activity Relationship, Pharmacological Characterization, and Molecular Modeling of Noncompetitive Inhibitors of the Betaine/γ-Aminobutyric Acid Transporter 1 (BGT1). J. Med. Chem. 2017, 60, 8834–8846. [Google Scholar] [CrossRef] [PubMed]
- Dunetz, J.R.; Magano, J.; Weisenburger, G.A. Large-Scale Applications of Amide Coupling Reagents for the Synthesis of Pharmaceuticals. Org. Process Res. Dev. 2016, 20, 140–177. [Google Scholar] [CrossRef]
- Joshi, R.S.; Mandhane, P.G.; Badadhe, P.V.; Gill, C.H. Development of practical methodologies for the synthesis of novel 3(4-oxo-4H-chromen-3-yl)acrylic acid hydrazides. Ultrason. Sonochem. 2011, 18, 735–738. [Google Scholar] [CrossRef]
- Zhao, Y.L.; Huang, X.; Liu, L.W.; Wang, P.Y.; Long, Q.S.; Tao, Q.Q.; Li, Z.; Yang, S. Identification of racemic and chiral carbazole derivatives containing an isopropanolamine linker as prospective surrogates against plant pathogenic bacteria: In vitro and in vivo assays and quantitative proteomics. J. Agric. Food Chem. 2019, 67, 7512–7525. [Google Scholar] [CrossRef] [PubMed]
- Xiang, M.; Song, Y.L.; Ji, J.; Zhou, X.; Liu, L.W.; Wang, P.Y.; Wu, Z.B.; Li, Z.; Yang, S. Synthesis of novel 18β-glycyrrhetinic piperazine amides displaying significant in vitro and in vivo antibacterial activities against intractable plant bacterial diseases. Pest Manag. Sci. 2020, 76, 2959–2971. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Liu, H.W.; Long, Z.Q.; Li, Z.X.; Zhu, J.J.; Wang, P.Y.; Qi, P.Y.; Liu, L.W.; Yang, S. Rational optimization of 1,2,3-triazole-tailored carbazoles as prospective antibacterial alternatives with significant in vivo control efficiency and unique mode of action. J. Agric. Food Chem. 2021, 69, 4615–4627. [Google Scholar] [CrossRef]
- Zhou, X.; Ye, H.J.; Gao, X.H.; Feng, Y.M.; Shao, W.B.; Qi, P.Y.; Wu, Z.B.; Liu, L.W.; Wang, P.Y.; Yang, S. The discovery of natural 4′-demethylepipodophyllotoxin from renewable Dysosma versipellis species as a novel bacterial cell division inhibitor for controlling intractable diseases in rice. Ind. Crops Prod. 2021, 174, 114182. [Google Scholar] [CrossRef]
Compds | Xoo | Xac | ||
---|---|---|---|---|
Regression Equation | EC50 a (µg mL−1) | Regression Equation | EC50 a (µg mL−1) | |
A1 | y = 1.4343x + 4.0238 | 4.79 ± 0.43 | y = 1.8300x + 3.3715 | 7.76 ± 0.67 |
A2 | y = 4.6625x + 2.0919 | 4.20 ± 0.10 | y = 2.6383x + 3.0814 | 5.34 ± 0.30 |
A3 | y = 5.6177x + 1.2286 | 4.69 ± 0.31 | y = 4.9718x + 0.5371 | 7.90 ± 0.04 |
A4 | y = 9.6320x − 2.5659 | 6.10 ± 0.02 | y = 3.0552x + 2.3945 | 7.13 ± 0.23 |
A5 | y = 4.9037x + 2.5394 | 3.18 ± 0.07 | y = 2.0715x + 3.2566 | 6.94 ± 0.88 |
A6 | y = 5.5240x + 1.7972 | 3.80 ± 0.02 | y = 1.8178x + 3.4108 | 7.49 ± 1.02 |
A7 | y = 5.6023x + 1.7953 | 3.73 ± 0.13 | y = 0.6510x + 4.4427 | 7.18 ± 0.99 |
A8 | y = 5.1991x + 2.4018 | 3.16 ± 0.18 | y = 3.1487x + 2.8714 | 4.74 ± 0.14 |
A9 | y = 8.4556x − 1.0261 | 5.16 ± 0.08 | y = 3.9909x + 1.6175 | 7.04 ± 0.14 |
A10 | y = 3.4044x + 3.5605 | 2.65 ± 0.07 | y = 2.0645x + 2.6144 | 14.31 ± 0.59 |
A11 | y = 7.4910x + 1.5325 | 2.90 ± 0.18 | y = 7.8360x − 0.5968 | 5.18 ± 0.06 |
A12 | y = 14.402x − 6.1575 | 5.95 ± 0.05 | y = 4.2303x + 1.4896 | 6.76 ± 0.07 |
A13 | y = 3.8692x + 1.7679 | 6.84 ± 0.10 | y = 1.3363x + 3.7871 | 8.08 ± 0.29 |
A14 | y = 3.4330x + 3.1455 | 3.47 ± 0.13 | y = 1.8159x + 2.8787 | 14.73 ± 1.52 |
A15 | y = 4.4933x + 1.9684 | 4.73 ± 0.16 | y = 7.3320x − 1.3252 | 7.29 ± 0.50 |
A16 | y = 2.2578x + 3.4263 | 4.98 ± 0.21 | y = 7.1180x − 0.9297 | 6.81 ± 0.06 |
A17 | y = 7.2855x + 1.8567 | 2.70 ± 0.05 | y = 3.1753x + 2.5126 | 6.07 ± 0.24 |
A18 | y = 5.0487x + 1.1615 | 5.76 ± 0.22 | y = 2.0441x + 3.2704 | 7.02 ± 0.14 |
A19 | y = 3.9981x + 2.7651 | 3.62 ± 0.16 | y = 3.8577x + 0.7400 | 12.71 ± 0.57 |
A20 | y = 8.6187x − 0.9974 | 4.96 ± 0.22 | y = 2.7816x + 3.0557 | 5.00 ± 0.19 |
A21 | y = 7.9264x + 1.2165 | 3.00 ± 0.20 | y = 6.1030x − 0.9408 | 9.41 ± 0.13 |
A22 | y = 6.6465x − 2.0600 | 11.54 ± 0.27 | y = 1.5202x + 3.0320 | 19.71 ± 3.22 |
A23 | y = 6.8367x − 2.3662 | 11.83 ± 0.17 | y = 4.7402x − 0.6111 | 15.27 ± 0.81 |
A24 | y = 6.0096x − 1.2526 | 10.98 ± 0.13 | y = 1.5720x + 2.9129 | 21.26 ± 3.90 |
SD b | / | >150 | / | >150 |
BT b | y = 4.3565x − 2.0887 | 42.38 ± 0.82 | y = 4.3041x − 3.7955 | 110.54 ± 4.88 |
TC b | y = 5.2027x − 4.4146 | 64.50 ± 0.45 | y = 9.4597x − 14.7160 | 121.40 ± 2.60 |
Compds | Xoo | Xac | ||
---|---|---|---|---|
Regression Equation | EC50 a (µg mL−1) | Regression Equation | EC50 a (µg mL−1) | |
B1 | y = 1.0841x + 3.4603 | 26.32 ± 1.90 | y = 1.5204x + 2.7135 | 31.91 ± 2.38 |
B2 | y = 1.2982x + 3.3740 | 17.89 ± 4.46 | y = 1.7303x + 2.9865 | 14.58 ± 1.37 |
B3 | y = 0.7878x + 3.7917 | 34.18 ± 2.49 | / | >150 |
B4 | y = 1.9602x + 3.1950 | 8.33 ± 0.88 | y = 1.9231x + 2.7285 | 15.18 ± 1.05 |
B5 | y = 10.1760x − 6.9093 | 14.80 ± 0.23 | y = 1.5972x + 3.2558 | 12.36 ± 0.14 |
B6 | / | >150 | / | >150 |
SD b | / | >150 | / | >150 |
BT b | y = 4.3565x − 2.0887 | 42.38 ± 0.82 | y = 4.3041x − 3.7955 | 110.54 ± 4.88 |
TC b | y = 5.2027x − 4.4146 | 64.50 ± 0.45 | y = 9.4597x − 14.7160 | 121.40 ± 2.60 |
Compds | Xoo | Xac | ||
---|---|---|---|---|
Regression Equation | EC50 a (µg mL−1) | Regression Equation | EC50 a (µg mL−1) | |
C1 | y = 1.8612x + 1.9174 | 45.32 ± 5.39 | y = 2.3393x + 0.8311 | 60.55 ± 1.64 |
C2 | y = 3.1093x + 0.7133 | 23.92 ± 0.77 | y = 3.1899x + 0.8925 | 19.39 ± 0.42 |
C3 | y = 5.7483x + 1.6495 | 3.83 ± 0.02 | y = 2.7728x + 2.4090 | 8.60 ± 0.60 |
C4 | y = 5.4304x + 3.3394 | 2.02 ± 0.22 | y = 2.2438x + 2.7277 | 10.30 ± 0.36 |
C5 | y = 2.1944x + 2.4490 | 14.54 ± 0.63 | y = 4.7345x − 0.9608 | 18.16 ± 0.81 |
C6 | / | >150 | / | >150 |
SD b | / | >150 | / | >150 |
BT b | y = 4.3565x − 2.0887 | 42.38 ± 0.82 | y = 4.3041x − 3.7955 | 110.54 ± 4.88 |
TC b | y = 5.2027x − 4.4146 | 64.50 ± 0.45 | y = 9.4597x − 14.7160 | 121.40 ± 2.60 |
Treatment | Curative Activity (14 Days after Spraying) | Protective Activity (14 Days after Spraying) | ||||
---|---|---|---|---|---|---|
Morbidity (%) | Disease Index (%) | Control Efficiency (%) | Morbidity (%) | Disease Index (%) | Control Efficiency (%) | |
C4 | 100 | 55.56 | 34.78 | 100 | 52.59 | 39.83 |
BT | 100 | 56.30 | 33.91 | 100 | 54.07 | 38.14 |
TC | 100 | 60.00 | 29.57 | 100 | 60.74 | 30.51 |
Control | 100 | 85.19 | 100 | 87.41 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, J.; Long, Z.-Q.; Chen, A.-Q.; Ding, Y.-G.; Liu, S.-T.; Zhou, X.; Liu, L.-W.; Yang, S. Novel Sulfonamide Derivatives Containing a Piperidine Moiety as New Bactericide Leads for Managing Plant Bacterial Diseases. Int. J. Mol. Sci. 2023, 24, 5861. https://doi.org/10.3390/ijms24065861
Xie J, Long Z-Q, Chen A-Q, Ding Y-G, Liu S-T, Zhou X, Liu L-W, Yang S. Novel Sulfonamide Derivatives Containing a Piperidine Moiety as New Bactericide Leads for Managing Plant Bacterial Diseases. International Journal of Molecular Sciences. 2023; 24(6):5861. https://doi.org/10.3390/ijms24065861
Chicago/Turabian StyleXie, Jiao, Zhou-Qing Long, Ai-Qun Chen, Ying-Guo Ding, Shi-Tao Liu, Xiang Zhou, Li-Wei Liu, and Song Yang. 2023. "Novel Sulfonamide Derivatives Containing a Piperidine Moiety as New Bactericide Leads for Managing Plant Bacterial Diseases" International Journal of Molecular Sciences 24, no. 6: 5861. https://doi.org/10.3390/ijms24065861
APA StyleXie, J., Long, Z.-Q., Chen, A.-Q., Ding, Y.-G., Liu, S.-T., Zhou, X., Liu, L.-W., & Yang, S. (2023). Novel Sulfonamide Derivatives Containing a Piperidine Moiety as New Bactericide Leads for Managing Plant Bacterial Diseases. International Journal of Molecular Sciences, 24(6), 5861. https://doi.org/10.3390/ijms24065861