The Nutraceutical Properties of Rhus coriaria Linn: Potential Application on Human Health and Aging Biomedicine
Abstract
:1. Introduction
2. Sumac and Sumac Extracts Composition
3. Antioxidant, Anti-Inflammatory and Immunomodulatory Properties of Sumac
4. Antimicrobial and Antifungal Effects of Sumac
5. Treatment of Age-Related Diseases with Sumac Extracts
6. Application of Sumac Extracts in Aging Biomedicine
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abu-Reidah, I.M.; Jamous, R.; Ali-Shtayeh, M.S. Phytochemistry, Pharmacological Properties and Industrial Applications of Rhus coriaria L. (Sumac): A Review. Jordan J. Biol. Sci. 2014, 7, 233–244. [Google Scholar] [CrossRef] [Green Version]
- Giovanelli, S.; Giusti, G.; Cioni, P.L.; Minissale, P.; Ciccarelli, D.; Pistelli, L. Aroma profile and essential oil composition of Rhus coriaria fruits from four Sicilian sites of collection. Ind. Crops Prod. 2017, 97, 166–174. [Google Scholar] [CrossRef]
- Bean, W. Trees and Shrubs Hardy in Great Britain, 2nd ed.; J.Murray: London, UK, 1916; Volume 1–4 and Supplement. [Google Scholar]
- Huxley, A. The New RHS Dictionary of Gardening; MacMillan Press: London, UK, 1992; Volume 4. [Google Scholar]
- Alsamri, H.; Athamneh, K.; Pintus, G.; Eid, A.H.; Iratni, R. Pharmacological and Antioxidant Activities of Rhus coriaria L. (Sumac). Antioxidants 2021, 10, 73. [Google Scholar] [CrossRef]
- Khoshkharam, M.; Shahrajabian, M.H.; Sun, W.; Cheng, Q. Sumac (Rhus coriaria L.) a spice and medicinal plant—A mini review. Amaz. J. Plant Resear. 2020, 4, 517–523. [Google Scholar] [CrossRef]
- Elagbar, Z.A.; Shakya, A.K.; Barhoumi, L.M.; Al-Jaber, H.I. Phytochemical Diversity and Pharmacological Properties of Rhus coriaria. Chem. Biodivers. 2020, 17, e1900561. [Google Scholar] [CrossRef]
- Batiha, G.E.; Ogunyemi, O.M.; Shaheen, H.M.; Kutu, F.R.; Olaiya, C.O.; Sabatier, J.M.; De Waard, M. Rhus coriaria L. (Sumac), a Versatile and Resourceful Food Spice with Cornucopia of Polyphenols. Molecules 2022, 27, 5179. [Google Scholar] [CrossRef] [PubMed]
- Tieu, S.; Charchoglyan, A.; Wagter-Lesperance, L.; Karimi, K.; Bridle, B.W.; Karrow, N.A.; Mallard, B.A. Immunoceuticals: Harnessing Their Immunomodulatory Potential to Promote Health and Wellness. Nutrients 2022, 14, 4075. [Google Scholar] [CrossRef] [PubMed]
- Baker, R.E.; Mahmud, A.S.; Miller, I.F.; Rajeev, M.; Rasambainarivo, F.; Rice, B.L.; Takahashi, S.; Tatem, A.J.; Wagner, C.E.; Wang, L.F.; et al. Infectious disease in an era of global change. Nat. Rev. Microbiol. 2022, 20, 193–205. [Google Scholar] [CrossRef] [PubMed]
- Lo Vecchio, G.; Cicero, N.; Nava, V.; Macrì, A.; Gervasi, C.; Capparucci, F.; Sciortino, M.; Avellone, G.; Benameur, Q.; Santini, A.; et al. Chemical Characterization, Antibacterial Activity, and Embryo Acute Toxicity of Rhus coriaria L. Genotype from Sicily (Italy). Foods. 2022, 11, 538. [Google Scholar] [CrossRef]
- Reidel, R.V.B.; Cioni, P.L.; Majo, L.; Pistelli, L. Evolution of Volatile Emission in Rhus coriaria Organs During Different Stages of Growth and Evaluation of the Essential Oil Composition. Chem. Biodivers. 2017, 14, e1700270. [Google Scholar] [CrossRef]
- Kossah, R.; Nsabimana, C.; Jianxin, Z.; Haiqin, C.; Fengwei, T.; Hao, Z.; Wei, C. Comparative Study on the Chemical Composition of Syrian Sumac (Rhus coriaria L.) and Chinese Sumac (Rhus typhina L.) Fruits. Pak. J. Nutr. 2009, 8, 1570–1574. [Google Scholar] [CrossRef] [Green Version]
- Romeo, F.V.; Ballistreri, G.; Fabroni, S.; Pangallo, S.; Nicosia, M.G.; Schena, L.; Rapisarda, P. Chemical Characterization of Different Sumac and Pomegranate Extracts Effective against Botrytis cinerea Rots. Molecules 2015, 20, 11941–11958. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grassia, M.; Sarghini, F.; Bruno, M.; Cinquanta, L.; Scognamiglio, M.; Pacifico, S.; Fiorentino, A.; Geraci, A.; Schicchi, R.; Corona, O. Chemical composition and microencapsulation suitability of sumac (Rhus coriaria L.) fruit extract. Eur. Food Res. Technol. 2021, 247, 1133–1148. [Google Scholar] [CrossRef]
- Sakhr, K.; El Khatib, S. Physiochemical properties and medicinal, nutritional and industrial applications of Lebanese Sumac (Syrian Sumac—Rhus coriaria): A review. Heliyon 2020, 6, e03207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martinelli, G.; Angarano, M.; Piazza, S.; Fumagalli, M.; Magnavacca, A.; Pozzoli, C.; Khalilpour, S.; Dell’Agli, M.; Sangiovanni, E. The Nutraceutical Properties of Sumac (Rhus coriaria L.) against Gastritis: Antibacterial and Anti-Inflammatory Activities in Gastric Epithelial Cells Infected with H. pylori. Nutrients 2022, 14, 1757. [Google Scholar] [CrossRef]
- Regazzoni, L.; Arlandini, E.; Garzon, D.; Santagati, N.A.; Beretta, G.; Maffei Facino, R. A rapid profiling of gallotannins and flavonoids of the aqueous extract of Rhus coriaria L. by flow injection analysis with high-resolution mass spectrometry assisted with database searching. J. Pharm. Biomed. Anal. 2013, 72, 202–207. [Google Scholar] [CrossRef] [PubMed]
- Asgary, S.; Salehizadeh, L.; Keshvari, M.; Taheri, M.; Spence, N.D.; Farvid, M.S.; Rafieian-Kopaei, M.; Sarrafzadegan, N. Potential Cardioprotective Effects of Sumac Capsule in Patients With Hyperlipidemia: A Triple-Blind Randomized, Placebo-Controlled Crossover Trial. J. Am. Coll. Nutr. 2018, 37, 286–292. [Google Scholar] [CrossRef]
- Marahatha, R.; Basnet, S.; Bhattarai, B.R.; Budhathoki, P.; Aryal, B.; Adhikari, B.; Lamichhane, G.; Poudel, D.K.; Parajuli, N. Potential natural inhibitors of xanthine oxidase and HMG-CoA reductase in cholesterol regulation: In silico analysis. BMC Complement. Med. Ther. 2021, 21, 1–11. [Google Scholar] [CrossRef]
- Pizzino, G.; Irrera, N.; Cucinotta, M.; Pallio, G.; Mannino, F.; Arcoraci, V.; Squadrito, F.; Altavilla, D.; Bitto, A. Oxidative Stress: Harms and Benefits for Human Health. Oxid. Med. Cell Longev. 2017, 2017, 8416763. [Google Scholar] [CrossRef] [Green Version]
- Ray, P.D.; Huang, B.W.; Tsuji, Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal. 2012, 24, 981–990. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Majo, D.; Sardo, P.; Giglia, G.; Di Liberto, V.; Zummo, F.P.; Zizzo, M.G.; Caldara, G.F.; Rappa, F.; Intili, G.; van Dijk, R.M.; et al. Correlation of Metabolic Syndrome with Redox Homeostasis Biomarkers: Evidence from High-Fat Diet Model in Wistar Rats. Antioxidants 2022, 12, 89. [Google Scholar] [CrossRef]
- Bursal, E.; Koksal, E. Evaluation of reducing power and radical scavenging activities of water and ethanol extracts from sumac (Rhus coriaria L.). Food Res. Int. 2011, 44, 2217–2221. [Google Scholar] [CrossRef]
- Al-Muwaly, K.; Al-Flayeh, K.; Ali, A.; Younus, K. Antioxidant and free radical scavenging effects of Iraqi sumac (Rhus coriaria L.). Baghdad Sci. J. 2019, 10, 2013. [Google Scholar]
- Saw, E.; Melzi, G.; Marabini, L.; Marinovich, M.; Piazza, S.; Khalilpour, S.; Dell’Agli, M.; Sangiovanni, E. Rhus coriaria L. Fruit Extract Prevents UV-A-Induced Genotoxicity and Oxidative Injury in Human Microvascular Endothelial Cells. Antioxidants 2020, 9, 292. [Google Scholar] [CrossRef] [Green Version]
- Chakraborty, A.; Ferk, F.; Simić, T.; Brantner, A.; Dusinská, M.; Kundi, M.; Hoelzl, C.; Nersesyan, A.; Knasmüller, S. DNA-protective effects of sumach (Rhus coriaria L.), a common spice: Results of human and animal studies. Mutat Res. 2009, 661, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Saw, C.L.; Guo, Y.; Yang, A.Y.; Paredes-Gonzalez, X.; Ramirez, C.; Pung, D.; Kong, A.N. The berry constituents quercetin, kaempferol, and pterostilbene synergistically attenuate reactive oxygen species: Involvement of the Nrf2-ARE signaling pathway. Food Chem. Toxicol. 2014, 72, 303–311. [Google Scholar] [CrossRef]
- Khalil, M.; Hayek, S.; Khalil, N.; Serale, N.; Vergani, L.; Calasso, M.; De Angelis, M.; Portincasa, P. Role of Sumac (Rhus coriaria L.) in the management of metabolic syndrome and related disorders: Focus on NAFLD-atherosclerosis interplay. J. Funct. Foods 2021, 87, 104811. [Google Scholar] [CrossRef]
- Rahideh, S.T.; Shidfar, F.; Khandozi, N.; Rajab, A.; Hosseini, S.P.; Mirtaher, S.M. The effect of sumac (Rhus coriaria L.) powder on insulin resistance, malondialdehyde, high sensitive C-reactive protein and paraoxonase 1 activity in type 2 diabetic patients. J. Res. Med. Sci. 2014, 19, 933–938. [Google Scholar]
- Momeni, A.; Maghsoodi, H.; Rezapour, S.; Shiravand, M.; Mardani, M. Reduction of expression of IL-18, IL-1β genes in the articular joint by sumac fruit extract (Rhus coriaria L.). Mol. Genet. Genomic Med. 2019, 7, e664. [Google Scholar] [CrossRef] [Green Version]
- Khalilpour, S.; Sangiovanni, E.; Piazza, S.; Fumagalli, M.; Beretta, G.; Dell’Agli, M. In vitro evidences of the traditional use of Rhus coriaria L. fruits against skin inflammatory conditions. J. Ethnopharmacol. 2019, 238, 111829. [Google Scholar] [CrossRef] [PubMed]
- Khalil, M.; Bazzi, A.; Zeineddine, D.; Jomaa, W.; Daher, A.; Awada, R. Repressive effect of Rhus coriaria L. fruit extracts on microglial cells-mediated inflammatory and oxidative stress responses. J. Ethnopharmacol. 2021, 269, 113748. [Google Scholar] [CrossRef]
- Kim, B.G.; Song, Y.; Lee, M.G.; Ku, J.M.; Jin, S.J.; Hong, J.W.; Lee, S.; Kang, H. Macrophages from Mice Administered Rhus verniciflua Stokes Extract Show Selective Anti-Inflammatory Activity. Nutrients 2018, 10, 1926. [Google Scholar] [CrossRef] [Green Version]
- Huang, R.Y.; Yu, Y.L.; Cheng, W.C.; OuYang, C.N.; Fu, E.; Chu, C.L. Immunosuppressive effect of quercetin on dendritic cell activation and function. J. Immunol. 2010, 184, 6815–6821. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, M.K.; Yu, Y.L.; Chen, K.C.; Chang, W.T.; Lee, M.S.; Yang, M.J.; Cheng, H.C.; Liu, C.H.; Chen, D.C.; Chu, C.L. Kaempferol from Semen cuscutae attenuates the immune function of dendritic cells. Immunobiology 2011, 216, 1103–1109. [Google Scholar] [CrossRef] [PubMed]
- Nair, M.P.; Kandaswami, C.; Mahajan, S.; Chadha, K.C.; Chawda, R.; Nair, H.; Kumar, N.; Nair, R.E.; Schwartz, S.A. The flavonoid, quercetin, differentially regulates Th-1 (IFNgamma) and Th-2 (IL4) cytokine gene expression by normal peripheral blood mononuclear cells. Biochim. Biophys. Acta 2002, 1593, 29–36. [Google Scholar] [CrossRef] [Green Version]
- Nasar-Abbas, S.M.; Halkman, A.K. Antimicrobial effect of water extract of sumac (Rhus coriaria L.) on the growth of some food borne bacteria including pathogens. Int. J. Food Microbiol. 2004, 97, 63–69. [Google Scholar] [CrossRef]
- Korkmaz, H. Could Sumac Be Effective on COVID-19 Treatment? J. Med. Food 2021, 24, 563–568. [Google Scholar] [CrossRef]
- Parvez, M.K.; Al-Dosari, M.S.; Abdelwahid, M.A.S.; Alqahtani, A.S.; Alanzi, A.R. Novel anti-hepatitis B virus-active catechin and epicatechin from Rhus tripartita. Exp. Ther. Med. 2022, 23, 398. [Google Scholar] [CrossRef]
- Nazerian, Y.; Ghasemi, M.; Yassaghi, Y.; Nazerian, A.; Hashemi, S.M. Role of SARS-CoV-2-induced cytokine storm in multi-organ failure: Molecular pathways and potential therapeutic options. Int. Immunopharmacol. 2022, 113 Pt B, 109428. [Google Scholar] [CrossRef]
- Belhassan, A.; Zaki, H.; Chtita, S.; Alaqarbeh, M.; Alsakhen, N.; Benlyas, M.; Lakhlifi, T.; Bouachrine, M. Camphor, Artemisinin and Sumac Phytochemicals as inhibitors against COVID-19: Computational approach. Comput. Biol. Med. 2021, 136, 104758. [Google Scholar] [CrossRef] [PubMed]
- Singh, O.; Ali, M.; Akhtar, N. New antifungal xanthones from the seeds of Rhus coriaria L. Z. Für Nat. C 2011, 66, 17–23. [Google Scholar] [CrossRef]
- Digrak, M.; Alma, M.H.; Ilcim, A. Antibacterial and Antifungal Activities of Turkish Medicinal Plants. Pharm. Biol. 2001, 39, 346–350. [Google Scholar] [CrossRef]
- Shidfar, F.; Rahideh, S.T.; Rajab, A.; Khandozi, N.; Hosseini, S.; Shidfar, S.; Mojab, F. The Effect of Sumac (Rhus coriaria L.) Powder on Serum Glycemic Status, ApoB, ApoA-I and Total Antioxidant Capacity in Type 2 Diabetic Patients. Iran. J. Pharm. Res. 2014, 13, 1249–1255. [Google Scholar] [PubMed]
- El Hasasna, H.; Saleh, A.; Al Samri, H.; Athamneh, K.; Attoub, S.; Arafat, K.; Benhalilou, N.; Alyan, S.; Viallet, J.; Al Dhaheri, Y.; et al. Rhus coriaria suppresses angiogenesis, metastasis and tumor growth of breast cancer through inhibition of STAT3, NFκB and nitric oxide pathways. Sci. Rep. 2016, 6, 21144. [Google Scholar] [CrossRef]
- Ferrucci, L.; Fabbri, E. Inflammageing: Chronic inflammation in ageing, cardiovascular disease, and frailty. Nat. Rev. Cardiol. 2018, 15, 505–522. [Google Scholar] [CrossRef]
- Franceschi, C.; Bonafè, M.; Valensin, S.; Olivieri, F.; De Luca, M.; Ottaviani, E.; De Benedictis, G. Inflamm-aging. An evolutionary perspective on immunosenescence. Ann. N. Y. Acad. Sci. 2000, 908, 244–254. [Google Scholar] [CrossRef] [PubMed]
- Childs, B.G.; Durik, M.; Baker, D.J.; van Deursen, J.M. Cellular senescence in aging and age-related disease: From mechanisms to therapy. Nat. Med. 2015, 21, 1424–1435. [Google Scholar] [CrossRef] [Green Version]
- Anwer, T.; Sharma, M.; Khan, G.; Iqbal, M.; Ali, M.S.; Alam, M.S.; Safhi, M.M.; Gupta, N. Rhus coriaria ameliorates insulin resistance in non-insulin-dependent diabetes mellitus (NIDDM) rats. Acta Pol. Pharm. Drug Res. 2013, 70, 861–867. [Google Scholar]
- Beretta, G.; Rossoni, G.; Santagati, N.A.; Facino, R.M. Anti-ischemic activity and endothelium-dependent vasorelaxant effect of hydrolysable tannins from the leaves of Rhus coriaria (Sumac) in isolated rabbit heart and thoracic aorta. Planta Med. 2009, 75, 1482–1488. [Google Scholar] [CrossRef] [Green Version]
- Hashem-Dabaghian, F.; Ghods, R.; Shojaii, A.; Abdi, L.; Campos-Toimil, M.; Yousefsani, B.S. Rhus coriaria L., a new candidate for controlling metabolic syndrome: A systematic review. J. Pharm. Pharmacol. 2022, 74, 1–12. [Google Scholar] [CrossRef]
- Isgrò, C.; Spagnuolo, L.; Pannucci, E.; Mondello, L.; Santi, L.; Dugo, L.; Sardanelli, A.M. Rhus Coriaria L. Extract: Antioxidant Effect and Modulation of Bioenergetic Capacity in Fibroblasts from Parkinson’s Disease Patients and THP-1 Macrophages. Int. J. Mo.l Sci. 2022, 23, 12774. [Google Scholar] [CrossRef]
- El Hasasna, H.; Athamneh, K.; Al Samri, H.; Karuvantevida, N.; Al Dhaheri, Y.; Hisaindee, S.; Ramadan, G.; Al Tamimi, N.; AbuQamar, S.; Eid, A.; et al. Rhus coriaria induces senescence and autophagic cell death in breast cancer cells through a mechanism involving p38 and ERK1/2 activation. Sci. Rep. 2015, 5, 13013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Athamneh, K.; Hasasna, H.E.; Samri, H.A.; Attoub, S.; Arafat, K.; Benhalilou, N.; Rashedi, A.A.; Dhaheri, Y.A.; AbuQamar, S.; Eid, A.; et al. Rhus coriaria increases protein ubiquitination, proteasomal degradation and triggers non-canonical Beclin-1-independent autophagy and apoptotic cell death in colon cancer cells. Sci. Rep. 2017, 7, 11633. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moskalev, A.; Chernyagina, E.; Kudryavtseva, A.; Shaposhnikov, M. Geroprotectors: A Unified Concept and Screening Approaches. Aging Dis. 2017, 8, 354–363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gur, T. Green synthesis, characterizations of silver nanoparticles using sumac (Rhus coriaria L.) plant extract and their antimicrobial and DNA damage protective effects. Front. Chem. 2022, 10, 968280. [Google Scholar] [CrossRef]
- Caliskan, G.; Nur Dirim, S. The effects of the different drying conditions and the amounts of maltodextrin addition during spray drying of sumac extract. Food Bioprod. Process 2013, 91, 539–548. [Google Scholar] [CrossRef]
- Perna, A.; Simonetti, A.; Grassi, G.; Gambacorta, E. Effect of αS1-casein genotype on phenolic compounds and antioxidant activity in goat milk yogurt fortified with Rhus coriaria leaf powder. J. Dairy Sci. 2018, 101, 7691–7701. [Google Scholar] [CrossRef]
- Wang, S.; Zhu, F. Quality attributes of bread fortified with staghorn sumac extract. J. Texture Stud. 2018, 49, 129–134. [Google Scholar] [CrossRef] [Green Version]
- Forouzanfar, F.; Ahmadpoor, M.; Farahi, M.M.; Hadianfar, A.; Sahebkar, A.; Esmaily, H.; Nematy, M.; Rakhshandeh, H. The Effect of Pomegranate Juice and Sumac Consumption in the Treatment of Outpatients with COVID-19. Mediat. Inflamm. 2022, 2022, 6850342. [Google Scholar] [CrossRef]
Compound | Method of Isolation | Concentration | Method of Detection | References |
---|---|---|---|---|
Fibers | Chemical methods codified by Association of Official Analytical Chemist | 33.21 ± 1.02% | Chemical methods codified by Association of Official Analytical Chemist | [11] |
Unsaturated fatty acids | Chemical methods codified by Association of Official Analytical Chemist | (65.09 ± 1.67%) | Chemical methods codified by Association of Official Analytical Chemist | [11] |
Palmitic acid | Chemical methods codified by Association of Official Analytical Chemist | 31.25 ± 0.47 mg/Kg | Chemical methods codified by Association of Official Analytical Chemist | [11] |
Linolenic acid | 1.85 ± 0.07% | |||
α-linoleic acid | 30.82 ± 1.21% | |||
Polyphenols | Ethanol/water extraction | 27.16±0.31 g gallic acid equivalents (GAE)/Kg (leaves); 5.34±0.43 g GAE/Kg (fruits) | High Performance Liquid Chromatography (HPLC) | [11] |
Flavonoids | ||||
Quercetin 3-O-galactoside | Methanol/aqueous extraction | 160.53 ± 0.02 mg/g | HPLC | [11] |
Kaempferol 3-O-glucoside | 99.86 ± 0.01 mg/g | |||
Quercetin | 23.13 ± 0.02 mg/g | |||
Myricetin 3-O-hexoside | 18.55 ± 0.01 mg/g | |||
Organic acids | ||||
Gallic acids | Methanol extracts | 142.549 ± 0.02 mg/g | HPLC | [11] |
Pentagalloyl-hexoside | 128.09 ± 0.01 mg/g | |||
Malaric acid | Acqueous extraction | 1568.04 ± 0.05 mg/Kg | Spectrometric and HPLC analysis | [8,14] |
Citric acid | 56.93 ± 0.35 mg/Kg | |||
Fumaric acid | 3.40 ± 0.46 mg/Kg | |||
Tartaric acid | 2.15 ± 0.13 mg/Kg | |||
Essential oils | ||||
β-caryophyllene | Solid Phase Micro-Extraction | 54.5% | Gas Chromatography/Mass Spectrometry (MS) | [7,12] |
α-pyrene | 15.2% | |||
Minerals | ||||
Potassium | HNO3 and H2O2 warm extraction | 266.91 ± 15.55 mg/Kg | Inductively coupled plasma MS | [11] |
Calcium | 215.53 ± 16.78 mg/Kg | |||
Magnesium | 41.870 ± 3.55 mg/Kg | |||
Phosphorus | 39.70 ± 3.05 mg/Kg | |||
Vitamins | ||||
Pyridoxine | Water extraction | 69.83 ± 0.31 mg/Kg | HPLC | [5,13] |
Ascorbic acid | 38.91 ± 0.27 mg/Kg | |||
Thiamine | 30.65 ± 0.57 mg/Kg | |||
Riboflavin | 24.68 ± 0.42 mg/Kg |
Type of Solvent Used for the Extraction | Part of Sumac Treated | Phytochemicals Composition | References |
---|---|---|---|
Water | Fruits | Organic acids: malic, citric, fumaric, and tartaric; Terpenoids; Tannins; Quinones; Sterol and steroids; Diterpenes; Phenols; Flavonoids; Anthocyanins; Proteins; Resines; Cardiac glycosides; Fatty acid: oleic acid, linoleic acid, and palmitic acid. | [5,8,15,16] |
Water | Leaves | Phenols; Flavonoids: myricetin, quercetin; Tannins: gallotannins. | [5,17] |
Ethanol | Fruits | Polyphenols; Flavonoids; Anthocyanins: cyanidin, peonidin, pelargonidin, petunidin, delphinidin glucosides and coumarates; Organic acids: malate, butanedioic acid; Terpenoids; Quinones; Sterol and steroids; Proteins and amino acids; Resines; Cardiac glycosides; Alkaloids; Oil and fatty acids; Tannins. | [5,6,15,16,18] |
Ethanol and water | Fruits | Flavonoids; Anthocyanins; Tannins. | [17] |
Methanol and water | Leaves | Tannins: gallotannins; Phenolic and Flavonoids derivatives: myricetin, quercetin. | [18] |
Methanol | Fruits | Phenols; Hydrolysed tannins: gallotannins derivatives; Flavonoids; Anthocyanins; Butein. | [1,18] |
Methanol | Leaves | Flavonols: quercetin, myricetin, and kaempferol; Tannins; Flavonols: quercetin, myricetin, and kaempferol; Organic acids: gallic acid, methyl gallate, m-digallic acid, and ellagic acid. | [5] |
Ethyl acetate | Leaves | Flavonols: quercetin, myricetin, and kaempferol; Organic acids: gallic acid, methyl gallate, m-digallic acid, and ellagic acid. | [1] |
Petroleum ether extract | Fruits | Organic acids: oleic acid, linoleic, palmitic, stearic acids and other fatty acids. | [1] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Calabrò, A.; Ligotti, M.E.; Accardi, G.; Di Majo, D.; Caruso, C.; Candore, G.; Aiello, A. The Nutraceutical Properties of Rhus coriaria Linn: Potential Application on Human Health and Aging Biomedicine. Int. J. Mol. Sci. 2023, 24, 6206. https://doi.org/10.3390/ijms24076206
Calabrò A, Ligotti ME, Accardi G, Di Majo D, Caruso C, Candore G, Aiello A. The Nutraceutical Properties of Rhus coriaria Linn: Potential Application on Human Health and Aging Biomedicine. International Journal of Molecular Sciences. 2023; 24(7):6206. https://doi.org/10.3390/ijms24076206
Chicago/Turabian StyleCalabrò, Anna, Mattia Emanuela Ligotti, Giulia Accardi, Danila Di Majo, Calogero Caruso, Giuseppina Candore, and Anna Aiello. 2023. "The Nutraceutical Properties of Rhus coriaria Linn: Potential Application on Human Health and Aging Biomedicine" International Journal of Molecular Sciences 24, no. 7: 6206. https://doi.org/10.3390/ijms24076206