High-Order Harmonics Generation in MoS2 Transition Metal Dichalcogenides: Effect of Nickel and Carbon Nanotube Dopants
Abstract
:1. Introduction
2. Results
2.1. HHG and Z-Scan Measurements Using Mo-Contained Molecular Plasmas and Suspensions
2.2. Resonance-Enhanced Harmonic Generation
2.3. Effect of Driving and Heating Pulse Intensities on HHG in Ablated Molecular Structures
3. Discussion
4. Materials and Methods
4.1. Synthesis of Nickel Oxide Nanoparticles
4.2. Synthesis of Multiwalled Carbon Nanotubes
4.3. Synthesis of Few-Layer MoS2 and NiO Nanoparticles-Decorated MoS2
4.4. HHG and Z-Scan Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lopez-Sanchez, O.; Lembke, D.; Kayci, M.; Radenovic, A.; Kis, A. Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol. 2013, 8, 497–501. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, Y.K.; Chaturvedi, A.; Manjappa, M.; Kumar, A.; Dayal, G.; Kloc, C.; Singh, R. MoS2 for ultrafast all-optical switching and modulation of THz fano metaphotonic devices. Adv. Opt. Mater. 2017, 5, 1700762. [Google Scholar] [CrossRef]
- Nguyen, C.V.; Hieu, N.N.; Muoi, D.; Duque, C.A.; Feddi, E.; Nguyen, H.V.; Phuong, L.T.T.; Hoi, B.D.; Phuc, H.V. Linear and nonlinear magneto-optical properties of monolayer MoS2. J. Appl. Phys. 2018, 123, 034301. [Google Scholar] [CrossRef]
- Sun, X.; Zhang, B.; Li, Y.; Luo, X.; Li, G.; Chen, Y.; Zhang, C.; He, J. Tunable ultrafast nonlinear optical properties of graphene/MoS2 van der Waals heterostructures and their application in solid-state bulk lasers. ACS Nano 2018, 12, 11376–11385. [Google Scholar] [CrossRef]
- Zhang, J.; Du, L.; Feng, S.; Zhang, R.W.; Cao, B.; Zou, C.; Chen, Y.; Liao, M.; Zhang, B.; Yang, S.A.; et al. Enhancing and controlling valley magnetic response in MoS2/WS2 heterostructures by all-optical route. Nat. Commun. 2019, 10, 4226. [Google Scholar] [CrossRef] [Green Version]
- Habib, M.R.; Wang, W.; Khan, A.; Khan, Y.; Obaidulla, S.M.; Pi, X.; Xu, M. Theoretical study of interfacial and electronic properties of transition metal dichalcogenides and organic molecules based van der Waals heterostructures. Adv. Theory Simul. 2020, 3, 2000045. [Google Scholar] [CrossRef]
- Kumar, R.R.; Habib, M.R.; Khan, A.; Chen, P.-C.; Murugesan, T.; Gupta, S.; Anbalagan, A.K.; Tai, N.-H.; Lee, C.-H.; Lin, H.-N. Sulfur monovacancies in liquid-exfoliated MoS2 nanosheets for NO2 gas sensing. ACS Appl. Nano Mater. 2021, 4, 9459–9470. [Google Scholar] [CrossRef]
- Liu, T.; Liu, Q.; Hong, R.; Shi, Y.; Tao, C.; Wang, Q.; Lin, H.; Han, Z.; Zhang, D. Cu2O induced the enhancement of nonlinear absorption of MoS2 thin film. J. Alloys Compd. 2021, 886, 161137. [Google Scholar] [CrossRef]
- Liu, H.-Q.; Yao, C.-B.; Jiang, C.-H.; Wang, X. Preparation, modification and nonlinear optical properties of semiconducting MoS2 and MoS2/ZnO composite film. Opt. Laser Technol. 2021, 138, 106905. [Google Scholar] [CrossRef]
- Balaei, M.; Karimzadeh, R.; Saghaei, H.; Ghayeb-Zamharir, S. The effect of laser wavelength and concentration on the optical limiting response of exfoliated MoS2 in the NMP solvent. Eur. Phys. J. Plus. 2021, 136, 296. [Google Scholar] [CrossRef]
- Zha, F.; Chu, H.; Pan, Z.; Pan, H.; Zhao, S.; Yang, M.; Li, D. Large-scale few-layered MoS2 as a saturable absorber for Q-switching operation at 2.3 µm. Opt. Lett. 2022, 47, 3271. [Google Scholar] [CrossRef]
- Lu, C.; Luo, M.; Ge, Y.; Huang, Y.; Zhao, Q.; Zhou, Y.; Xu, X. Layer-dependent nonlinear optical properties of WS2, MoS2, and Bi2S3 films synthesized by chemical vapor deposition. ACS Appl. Mater. Interfaces 2022, 14, 2390–2400. [Google Scholar] [CrossRef] [PubMed]
- Autere, A.; Jussila, H.; Dai, Y.; Wang, Y.; Lipsanen, H.; Sun, Z. Nonlinear optics with 2D layered materials. Adv. Mater. 2018, 30, 1705963. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pham, V.P.; Yeom, G.Y. Recent advances in doping of molybdenum disulfide: Industrial applications and future prospects. Adv. Mater. 2016, 28, 9024–9059. [Google Scholar] [CrossRef] [PubMed]
- Le, C.T.; Clark, D.J.; Ullah, F.; Jang, J.I.; Senthilkumar, V.; Sim, Y.; Seong, M.-J.; Chung, K.-H.; Kim, J.W.; Park, S.; et al. Impact of selenium doping on resonant second-harmonic generation in monolayer MoS2. ACS Photonics 2016, 4, 38–44. [Google Scholar] [CrossRef]
- Stavrou, M.; Chazapis, N.; Nikoli, E.; Arenal, R.; Tagmatarchis, N.; Couris, S. Crystalline phase effects on the nonlinear optical response of MoS2 and WS2 nanosheets: Implications for photonic and optoelectronic applications. ACS Appl. Nano Mater. 2022, 5, 16674–16686. [Google Scholar] [CrossRef]
- Kim, V.V.; Boltaev, G.S.; Iqbal, M.; Abbasi, N.A.; Al-Harmi, H.; Wahyutama, I.S.; Sato, T.; Ishikawa, K.L.; Ganeev, R.A.; Alnaser, A.S. Resonance enhancement of harmonics in the vicinity of 32 nm spectral range during propagation of femtosecond pulses through the molybdenum plasma. J. Phys. B Atomic Mol. Opt. Phys. 2020, 53, 195401. [Google Scholar] [CrossRef]
- Boltaev, G.S.; Ganeev, R.A.; Kim, V.V.; Zhang, K.; Venkatesh, M.; Guo, C. Time-dependent optimization of laser-produced molecular plasmas through high-order harmonic generation. Phys. Plasmas 2019, 26, 100703. [Google Scholar] [CrossRef]
- Lee, D.G.; Kim, J.H.; Hong, K.H.; Nam, C.H. Coherent control of high-order harmonics with chirped femtosecond laser pulses. Phys. Rev. Lett. 2001, 87, 243902. [Google Scholar] [CrossRef] [Green Version]
- Fareed, M.A.; Strelkov, V.V.; Singh, M.; Thire, N.; Mondal, S.; Schmidt, B.E.; Legare, F.; Ozaki, T. Harmonic generation from neutral manganese atoms in the vicinity of the giant autoionization resonance. Phys. Rev. Lett. 2018, 121, 023201. [Google Scholar] [CrossRef] [Green Version]
- Singh, M.; Fareed, M.A.; Laramée, A.; Isgandarov, E.; Ozaki, T. Intense vortex high-order harmonics generated from laser-ablated plume. Appl. Phys. Lett. 2019, 115, 231105. [Google Scholar] [CrossRef]
- Venkatesh, M.; Ganeev, R.A.; Kim, V.V.; Boltaev, G.S.; Sapaev, I.B.; Liang, J.; Yu, J.; Li, W. Application of vector beams for enhanced high-order harmonics generation in laser-induced plasmas. Opt. Express 2022, 30, 17080–17093. [Google Scholar] [CrossRef]
- Rothhardt, J.; Hadrich, S.; Demmler, S.; Krebs, M.; Fritzsche, S.; Limpert, J.; Tunnermann, A. Enhancing the macroscopic yield of narrow-band high-order harmonic generation by Fano resonances. Phys. Rev. Lett. 2014, 112, 233002. [Google Scholar] [CrossRef] [Green Version]
- Boltaev, G.S.; Iqbal, M.; Abbasi, N.A.; Kim, V.V.; Ganeev, R.A.; Alnaser, A.S. Enhanced XUV harmonics generation from diatomic gases using two orthogonally polarized laser fields. Sci. Rep. 2021, 11, 5534. [Google Scholar] [CrossRef]
- Boltaev, G.S.; Ganeev, R.A.; Strelkov, V.V.; Kim, V.V.; Zhang, K.; Venkatesh, M.; Guo, C. Resonance-enhanced harmonics in mixed laser-produced plasmas. Plasma Res. Express 2019, 1, 035002. [Google Scholar] [CrossRef]
- Rosenthal, N.; Marcus, G. Discriminating between the role of phase matching and that of the single-atom response in resonance plasma-plume high-order harmonic generation. Phys. Rev. Lett. 2015, 115, 133901. [Google Scholar] [CrossRef] [PubMed]
- Ganeev, R.A.; Boltaev, G.S.; Kim, V.V.; Venkatesh, M.; Zvyagin, A.I.; Smirnov, M.S.; Ovchinnikov, O.V.; Wöstmann, M.; Zacharias, H.; Guo, C. High-order harmonic generation using quasi-phase matching and two-color pump in the plasmas con taining molecular and alloyed metal sulfide quantum dots. J. Appl. Phys. 2019, 126, 193103. [Google Scholar] [CrossRef]
- Venkatesh, M.; Ganeev, R.A.; Ivanov, D.S.; Boltaev, G.S.; Kim, V.V.; Liang, J.; Samokhvalov, A.A.; Kabashin, A.V.; Klimentov, S.M.; Garcia, M.E.; et al. High-order harmonic generation in Au nanoparticle-contained plasmas. Nanomaterials 2020, 10, 234. [Google Scholar] [CrossRef] [Green Version]
- Konda, S.R.; Soma, V.R.; Banavoth, M.; Ketavath, R.; Venkatesh, M.; Lai, Y.H.; Li, W. High harmonic generation from laser-induced plasmas of Ni-doped CsPbBr3 nanocrystals: Implications for extreme ultraviolet light sources. ACS Appl. Nano Mater. 2021, 4, 8292–8301. [Google Scholar] [CrossRef]
- Venkatesh, M.; Ganeev, R.A.; Rao, K.S.; Boltaev, G.S.; Zhang, K.; Srivastava, A.; Bindra, J.K.; Singh, S.; Kim, V.V.; Maurya, S.K.; et al. Influence of gadolinium doping on low- and high-order nonlinear optical properties and transient absorption dynamics of ZnO nanomaterials. Opt. Mater. 2019, 95, 109241. [Google Scholar] [CrossRef]
- Konda, S.R.; Ganeev, R.A.; Kim, V.V.; Ketavath, R.; Yu, J.; Li, W. High-order harmonics generation in nanosecond-pulses-induced plasma containing Ni-doped CsPbBr3 perovskite nanocrystals using chirp-free and chirped femtosecond pulses. Nanotechnology 2022, 34, 055705. [Google Scholar] [CrossRef] [PubMed]
- Konda, S.R.; Soma, V.R.; Ganeev, R.A.; Banavoth, M.; Ketavath, R.; Li, W. Third-order optical nonlinearities and high-order harmonics generation in Ni-doped CsPbBr3 nanocrystals using single- and two-color chirped pulses. J. Mater. Sci. 2022, 57, 3468–3485. [Google Scholar] [CrossRef]
- Nefedova, V.E.; Fröhlich, S.; Navarrete, F.; Tancogne-Dejean, N.; Franz, D.; Hamdou, A.; Kaassamani, S.; Gauthier, D.; Nicolas, R.; Jargot, G.; et al. Enhanced extreme ultraviolet high-harmonic generation from chromium-doped magnesium oxide. Appl. Phys. Lett. 2021, 118, 201103. [Google Scholar] [CrossRef]
- Wang, Z.; Park, H.; Lai, Y.H.; Xu, J.; Blaga, C.I.; Yang, F.; Agostini, P.; DiMauro, L.F. The roles of photo-carrier doping and driving wavelength in high harmonic generation from a semiconductor. Nat. Commun. 2017, 8, 1686. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lai, B.; Singh, S.C.; Bindra, J.K.; Saraj, C.S.; Shukla, A.; Yadav, T.P.; Wu, W.; McGill, S.A.; Dalal, N.S.; Srivastava, A.; et al. Hydrogen evolution reaction from bare and surface-functionalized few-layered MoS2 nanosheets in acidic and alkaline electrolytes. Mater. Today Chem. 2019, 14, 100207. [Google Scholar] [CrossRef]
- Ganeev, R.A.; Naik, P.A.; Singhal, H.; Chakera, J.A.; Kumar, M.; Joshi, M.P.; Srivastava, A.K.; Gupta, P.D. High-order harmonic generation in carbon-nanotube-containing plasma plumes. Phys. Rev. A 2011, 83, 013820. [Google Scholar] [CrossRef]
- Liang, Y.; Li, P.; Zhu, B.; Gu, Y. Highly improved nonlinear optical responses of reduced graphene oxide via the decoration of Ni doped ZnS nanoparticles. Phot. Nanostruct. Fundam. Appl. 2022, 50, 101004. [Google Scholar] [CrossRef]
- Chtouki, T.; El Kouari, Y.; Kulyk, B.; Louardi, A.; Rmili, A.; Erguig, H.; Elidrissi, B.; Soumahoro, L.; Sahraoui, B. Spin-coated nickel doped cadmium sulfide thin films for third harmonic generation applications. J. Alloys Compd. 2017, 696, 1292–1297. [Google Scholar] [CrossRef] [Green Version]
- Guo, B.; Xiao, Q.L.; Wang, S.H.; Zhang, H. 2D layered materials: Synthesis, nonlinear optical properties, and device applications. Laser Phot. Rev. 2019, 13, 1800327. [Google Scholar] [CrossRef]
- Sun, X.; Chu, L.; Ren, F.; Jia, Y.; Chen, F. Plasmon-enhanced third-order optical nonlinearity of monolayer MoS2. Appl. Phys. Lett. 2022, 120, 193101. [Google Scholar] [CrossRef]
- Sheik-Bahae, M.; Said, A.A.; Wei, T.H.; Hagan, D.J.; Stryland, E.W.V. Sensitive measurement of optical nonlinearities using a single beam. IEEE J. Quantum Electron. 1990, 26, 760–769. [Google Scholar] [CrossRef] [Green Version]
- Konda, S.R.; Lai, Y.H.; Li, W. Improvement of high-order harmonics from silver plasma plumes induced by femtoseconds laser pulses. Opt. Laser Technol. 2022, 146, 107602. [Google Scholar] [CrossRef]
- Stanciu, C.; Ehlich, R.; Petrov, V.; Steinkellner, O.; Herrmann, J.; Hertel, I.V.; Slepyan, G.Y.; Khrutchinski, A.A.; Maksimenko, S.A.; Rotermund, F.; et al. Experimental and theoretical study of third-order harmonic generation in carbon nanotubes. Appl. Phys. Lett. 2002, 81, 4064–4066. [Google Scholar] [CrossRef]
- Strelkov, V. Role of autoionizing state in resonant high-order harmonic generation and attosecond pulse production. Phys. Rev. Lett. 2010, 104, 123901. [Google Scholar] [CrossRef]
- Ganeev, R.A.; Boltaev, G.S.; Kim, V.V.; Iqbal, M.; Kuroda, H.; Alnaser, A.S. Distinction in resonance properties of the atomic and molecular contained plasmas used for high-order harmonics generation of ultrafast laser pulses. J. Appl. Phys. 2021, 129, 043103. [Google Scholar] [CrossRef]
- Hutchison, C.; Ganeev, R.A.; Witting, T.; Frank, F.; Okell, W.A.; Tisch, J.W.G.; Marangos, J.P. Stable generation of high-order harmonics of femtosecond laser radiation from laser produced plasma plumes at 1 kHz pulse repetition rate. Opt. Lett. 2012, 37, 2064–2066. [Google Scholar] [CrossRef]
- Elouga Bom, L.B.; Ganeev, R.A.; Abdul-Hadi, J.; Vidal, F.; Ozaki, T. Intense multi microjoule high-order harmonics generated from neutral atoms of In2O3 nanoparticles. Appl. Phys. Lett. 2009, 94, 111108. [Google Scholar] [CrossRef]
- Wang, X.; Kim, S.Y.; Wallace, R.M. Interface chemistry and band alignment study of Ni and Ag contacts on MoS. ACS Appl. Mater. Interfaces 2021, 13, 15802–15810. [Google Scholar] [CrossRef]
- Hong, W.-P.; Jung, Y.-D. Characteristics of the resonant charge transfer in strongly coupled plasmas including quantum and shielding effects. J. Plasma Phys. 2016, 82, 455820101. [Google Scholar] [CrossRef]
- Ko, T.-S.; Huang, C.-C.; Lin, D.-Y. Optical and transport properties of Ni-MoS2. Appl. Sci. 2016, 6, 227. [Google Scholar] [CrossRef] [Green Version]
- Jeon, I.; Kutsuzawa, D.; Hashimoto, Y.; Yanase, T.; Nagahama, T.; Shimada, T.; Matsuo, Y. Multilayered MoS2 nanoflakes bound to carbon nanotubes as electron acceptors in bulk heterojunction inverted organic solar cells. Org. Electron. 2015, 17, 275–280. [Google Scholar] [CrossRef]
- Liu, M.; Hisama, K.; Zheng, Y.; Maruyama, M.; Seo, S.; Anisimov, A.; Inoue, T.; Kauppinen, E.I.; Okada, S.; Chiashi, S.; et al. Photoluminescence from single-walled MoS2 nanotubes coaxially grown on boron nitride nanotubes. ACS Nano 2021, 15, 8418–8426. [Google Scholar] [CrossRef]
- Itatani, J.; Levesque, J.; Zeidler, D.; Niikura, H.; Pépin, H.; Kieffer, J.C.; Corkum, P.B.; Villeneuve, D.M. Tomographic imaging of molecular orbitals. Nature 2004, 432, 867–871. [Google Scholar] [CrossRef] [PubMed]
- Kraus, P.M.; Zürch, M.; Cushing, S.K.; Neumark, D.M.; Leone, S.R. The ultrafast X-ray spectroscopic revolution in chemical dynamics. Nat. Rev. Chem. 2018, 2, 82–94. [Google Scholar] [CrossRef] [Green Version]
- Geneaux, R.; Marroux, H.J.B.; Guggenmos, A.; Neumark, D.M.; Leone, S.R. Transient absorption spectroscopy using high harmonic generation: A review of ultrafast X-ray dynamics in molecules and solids. Philos. Trans. R. Soc. London, Ser. A 2019, 377, 20170463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Lu, J.; Chew, A.; Han, S.; Li, J.; Wu, Y.; Wang, H.; Ghimire, S.; Chang, Z. Attosecond science based on high harmonic generation from gases and solids. Nat. Commun. 2020, 11, 2748. [Google Scholar] [CrossRef]
- Borrego-Varillas, R.; Lucchini, M.; Nisoli, M. Attosecond spectroscopy for the investigation of ultrafast dynamics in atomic, molecular and solid-state physics. Rep. Prog. Phys. 2022, 85, 066401. [Google Scholar] [CrossRef]
- Ganeev, R.A.; Suzuki, M.; Baba, M.; Kuroda, H.; Ozaki, T. Strong resonance enhancement of a single harmonic generated in the extreme ultraviolet range. Opt. Lett. 2006, 31, 1699–1701. [Google Scholar] [CrossRef]
- Ganeev, R.; Witting, T.; Hutchison, C.; Frank, F.; Tudorovskaya, M.; Lein, M.; Okell, W.; Zaïr, A.; Marangos, J.; Tisch, J.J. Isolated sub-fs XUV pulse generation in Mn plasma ablation. Opt. Express 2012, 20, 25239–25248. [Google Scholar] [CrossRef]
- Ganeev, R.A.; Witting, T.; Hutchison, C.; Strelkov, V.V.; Frank, F.; Castillejo, M.; Lopez-Quintas, I.; Abdelrahman, Z.; Tisch, J.W.G.; Marangos, J.P. Comparative studies of resonance enhancement of harmonic radiation in indium plasma using multicycle and few-cycle pulses. Phys. Rev. A 2013, 88, 033838. [Google Scholar] [CrossRef] [Green Version]
- Strelkov, V.V. Attosecond-pulse production using resonantly enhanced high-order harmonics. Phys. Rev. A 2016, 94, 063420. [Google Scholar] [CrossRef] [Green Version]
- Khokhlova, M.A.; Emelin, M.Y.; Ryabikin, M.Y.; Strelkov, V.V. Polarization control of quasimonochromatic XUV light produced via resonant high-order harmonic generation. Phys. Rev. A 2021, 103, 043114. [Google Scholar] [CrossRef]
- Ganeev, R.A.; Milošević, D.B. Comparative analysis of the high-order harmonic generation in the laser ablation plasmas prepared on the surfaces of complex and atomic targets. J. Opt. Soc. Am. B 2008, 25, 1127–1134. [Google Scholar] [CrossRef]
- Rezaee, S.; Ghaderi, A.; Boochani, A.; Solaymani, S. Synthesis of multiwalled carbon nanotubes on Cu-Fe nano-catalyst substrate. Results Phys. 2017, 7, 3640–3644. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Venkatesh, M.; Kim, V.V.; Boltaev, G.S.; Konda, S.R.; Svedlindh, P.; Li, W.; Ganeev, R.A. High-Order Harmonics Generation in MoS2 Transition Metal Dichalcogenides: Effect of Nickel and Carbon Nanotube Dopants. Int. J. Mol. Sci. 2023, 24, 6540. https://doi.org/10.3390/ijms24076540
Venkatesh M, Kim VV, Boltaev GS, Konda SR, Svedlindh P, Li W, Ganeev RA. High-Order Harmonics Generation in MoS2 Transition Metal Dichalcogenides: Effect of Nickel and Carbon Nanotube Dopants. International Journal of Molecular Sciences. 2023; 24(7):6540. https://doi.org/10.3390/ijms24076540
Chicago/Turabian StyleVenkatesh, Mottamchetty, Vyacheslav V. Kim, Ganjaboy S. Boltaev, Srinivasa Rao Konda, Peter Svedlindh, Wei Li, and Rashid A. Ganeev. 2023. "High-Order Harmonics Generation in MoS2 Transition Metal Dichalcogenides: Effect of Nickel and Carbon Nanotube Dopants" International Journal of Molecular Sciences 24, no. 7: 6540. https://doi.org/10.3390/ijms24076540