Sensitivity of Neuroblastoma and Induced Neural Progenitor Cells to High-Intensity THz Radiation
Abstract
:1. Introduction
2. Results
2.1. Assessment of Spontaneous Differentiation of Neural Progenitor Cells (drNPCs) and Human Neuroblastoma Cells (SK-N-BE (2))
2.2. Studies of the Cells’ Proliferative Activity and Foci of Histone H2AX Phosphorylation
3. Discussion
4. Materials and Methods
4.1. Description of the THz Setup for Irradiation of Cells
4.2. Cell Culture
4.3. Preparation of Samples for Irradiation
4.4. Irradiation of Samples
4.5. Introduction of a Click-iT EdU Label
4.6. Immunocytochemical Analysis
4.7. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zaytsev, K.I.; Dolganova, I.N.; Chernomyrdin, N.V.; Katyba, G.M.; Gavdush, A.A.; Cherkasova, O.P.; Komandin, G.A.; Shchedrina, M.A.; Khodan, A.N.; Ponomarev, D.S.; et al. The Progress and Perspectives of Terahertz Technology for Diagnosis of Neoplasms: A Review. J. Opt. 2020, 22, 013001. [Google Scholar] [CrossRef]
- Zaytsev, K.I.; Kurlov, V.N.; Skorobogatiy, M.; Reshetov, I.V.; Tuchin, V.V. Special Section Guest Editorial: Advances in Terahertz Biomedical Science and Applications. J. Biomed. Opt. 2021, 26, 043001. [Google Scholar] [CrossRef]
- Nikitkina, A.I.; Bikmulina, P.Y.; Gafarova, E.R.; Kosheleva, N.V.; Efremov, Y.M.; Bezrukov, E.A.; Butnaru, D.V.; Dolganova, I.N.; Chernomyrdin, N.V.; Cherkasova, O.P.; et al. Terahertz Radiation and the Skin: A Review. J. Biomed. Opt. 2021, 26, 043005. [Google Scholar] [CrossRef] [PubMed]
- Son, J.-H.; Oh, S.J.; Cheon, H. Potential Clinical Applications of Terahertz Radiation. J. Appl. Phys. 2019, 125, 190901. [Google Scholar] [CrossRef]
- Gavdush, A.A.; Chernomyrdin, N.V.; Komandin, G.A.; Dolganova, I.N.; Nikitin, P.V.; Musina, G.R.; Katyba, G.M.; Kucheryavenko, A.S.; Reshetov, I.V.; Potapov, A.A.; et al. Terahertz Dielectric Spectroscopy of Human Brain Gliomas and Intact Tissues Ex Vivo: Double-Debye and Double-Overdamped-Oscillator Models of Dielectric Response. Biomed. Opt. Express 2021, 12, 69–83. [Google Scholar] [CrossRef]
- Chernomyrdin, N.V.; Musina, G.R.; Nikitin, P.V.; Dolganova, I.N.; Kucheryavenko, A.S.; Alekseeva, A.I.; Wang, Y.; Xu, D.; Shi, Q.; Tuchin, V.V.; et al. Terahertz Technology in Intraoperative Neurodiagnostics: A Review. Opto-Electron. Adv. 2023, 6, 220071. [Google Scholar] [CrossRef]
- Musina, G.R.; Chernomyrdin, N.V.; Gafarova, E.R.; Gavdush, A.A.; Shpichka, A.J.; Komandin, G.A.; Anzin, V.B.; Grebenik, E.A.; Kravchik, M.V.; Istranova, E.V.; et al. Moisture Adsorption by Decellularized Bovine Pericardium Collagen Matrices Studied by Terahertz Pulsed Spectroscopy and Solid Immersion Microscopy. Biomed. Opt. Express 2021, 12, 5368. [Google Scholar] [CrossRef]
- Titova, L.V.; Ayesheshim, A.K.; Golubov, A.; Rodriguez-Juarez, R.; Woycicki, R.; Hegmann, F.A.; Kovalchuk, O. Intense THz Pulses Down-Regulate Genes Associated with Skin Cancer and Psoriasis: A New Therapeutic Avenue? Sci. Rep. 2013, 3, 2363. [Google Scholar] [CrossRef]
- Serdyukov, D.S.; Goryachkovskaya, T.N.; Mescheryakova, I.A.; Kuznetsov, S.A.; Popik, V.M.; Peltek, S.E. Fluorescent Bacterial Biosensor E Coli/PTdcR-TurboYFP Sensitive to Terahertz Radiation. Biomed. Opt. Express 2021, 12, 705. [Google Scholar] [CrossRef]
- Wilmink, G.J.; Grundt, J.E. Invited Review Article: Current State of Research on Biological Effects of Terahertz Radiation. J. Infrared Millim. Terahertz Waves 2011, 32, 1074–1122. [Google Scholar] [CrossRef]
- Il’ina, I.V.; Sitnikov, D.S.; Agranat, M.B. State-of-the-Art of Studies of the Effect of Terahertz Radiation on Living Biological Systems. High Temp. 2018, 56, 789–810. [Google Scholar] [CrossRef]
- Cherkasova, O.P.; Serdyukov, D.S.; Ratushnyak, A.S.; Nemova, E.F.; Kozlov, E.N.; Shidlovskii, Y.V.; Zaytsev, K.I.; Tuchin, V.V. Effects of Terahertz Radiation on Living Cells: A Review. Opt. Spectrosc. 2020, 128, 855–866. [Google Scholar] [CrossRef]
- Cherkasova, O.P.; Serdyukov, D.S.; Nemova, E.F.; Ratushnyak, A.S.; Kucheryavenko, A.S.; Dolganova, I.N.; Xu, G.; Skorobogatiy, M.; Reshetov, I.V.; Timashev, P.S.; et al. Cellular Effects of Terahertz Waves. J. Biomed. Opt. 2021, 26, 090902. [Google Scholar] [CrossRef]
- Romeo, S.; Zeni, O.; Scarfì, M.; Poeta, L.; Lioi, M.; Sannino, A. Radiofrequency Electromagnetic Field Exposure and Apoptosis: A Scoping Review of In Vitro Studies on Mammalian Cells. Int. J. Mol. Sci. 2022, 23, 2322. [Google Scholar] [CrossRef]
- Stefi, A.L.; Margaritis, L.H.; Skouroliakou, A.S.; Vassilacopoulou, D. Mobile Phone Electromagnetic Radiation Affects Amyloid Precursor Protein and α-Synuclein Metabolism in SH-SY5Y Cells. Pathophysiology 2019, 26, 203–212. [Google Scholar] [CrossRef]
- Zhi, W.-J.; Wang, L.-F.; Hu, X.-J. Recent Advances in the Effects of Microwave Radiation on Brains. Mil. Med. Res. 2017, 4, 29. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, M.; Liu, Y.; Liu, H.; Ren, K.; Xue, Q.; Zhang, H.; Zhi, N.; Wang, W.; Wu, S. Terahertz Exposure Enhances Neuronal Synaptic Transmission and Oligodendrocyte Differentiation in Vitro. iScience 2021, 24, 103485. [Google Scholar] [CrossRef]
- Tan, S.Z.; Tan, P.C.; Luo, L.Q.; Chi, Y.L.; Yang, Z.; Zhao, X.; Zhao, L.; Dong, J.; Zhang, J.; Yao, B.W.; et al. Exposure Effects of Terahertz Waves on Primary Neurons and Neuron-like Cells Under Nonthermal Conditions. Biomed. Environ. Sci. 2019, 32, 739–754. [Google Scholar] [CrossRef]
- Romanenko, S.; Begley, R.; Harvey, A.R.; Hool, L.; Wallace, V.P. The Interaction between Electromagnetic Fields at Megahertz, Gigahertz and Terahertz Frequencies with Cells, Tissues and Organisms: Risks and Potential. J. R. Soc. Interface 2017, 14, 20170585. [Google Scholar] [CrossRef]
- Alexandrov, B.S.; Lisa Phipps, M.; Alexandrov, L.B.; Booshehri, L.G.; Erat, A.; Zabolotny, J.; Mielke, C.H.; Chen, H.T.; Rodriguez, G.; Rasmussen, K.O.; et al. Specificity and Heterogeneity of Terahertz Radiation Effect on Gene Expression in Mouse Mesenchymal Stem Cells. Sci. Rep. 2013, 3, 1184. [Google Scholar] [CrossRef]
- Titova, L.V.; Ayesheshim, A.K.; Golubov, A.; Fogen, D.; Rodriguez-Juarez, R.; Hegmann, F.A.; Kovalchuk, O. Intense THz Pulses Cause H2AX Phosphorylation and Activate DNA Damage Response in Human Skin Tissue. Biomed. Opt. Express 2013, 4, 559–568. [Google Scholar] [CrossRef] [PubMed]
- Sitnikov, D.S.; Ilina, I.V.; Gurova, S.A.; Shatalova, R.O.; Revkova, V.A. Studying the Induction of Double-Strand Breaks in Human Fibroblasts by High-Intensity Terahertz Radiation. Bull. Russ. Acad. Sci. Phys. 2020, 84, 1370–1374. [Google Scholar] [CrossRef]
- Sitnikov, D.S.; Ilina, I.V.; Revkova, V.A.; Rodionov, S.; Gurova, S.; Shatalova, R.; Kovalev, A.; Ovchinnikov, A.V.; Chefonov, O.V.; Konoplyannikov, M.; et al. Effects of High Intensity Non-Ionizing Terahertz Radiation on Human Skin Fibroblasts. Biomed. Opt. Express 2021, 12, 7122–7138. [Google Scholar] [CrossRef] [PubMed]
- Wollner, I.S.; Prust, R.M.; Andrews, J.C.; Walker-Andrews, S.C.; Nostrant, T.T.; Knol, J.A.; Eckhauser, F.E.; Cho, K.J.; Lichter, A.S.; Ensminger, W.D. Combination Chemo-Radiation Therapy for Jaundice Due to Focal Malignant Obstruction of the Major Bile Ducts. Sel. Cancer Ther. 1989, 5, 81–91. [Google Scholar] [CrossRef]
- Wagner, T.; Yang, G. Cetuximab: Its Use in Combination with Radiation Therapy and Chemotherapy in the Multimodality Treatment of Head and Neck Cancer. Recent Pat. Anticancer. Drug Discov. 2008, 3, 76–83. [Google Scholar] [CrossRef]
- Gupta, P.B.; Onder, T.T.; Jiang, G.; Tao, K.; Kuperwasser, C.; Weinberg, R.A.; Lander, E.S. Identification of Selective Inhibitors of Cancer Stem Cells by High-Throughput Screening. Cell 2009, 138, 645–659. [Google Scholar] [CrossRef]
- Fuchs, D.; Heinold, A.; Opelz, G.; Daniel, V.; Naujokat, C. Salinomycin Induces Apoptosis and Overcomes Apoptosis Resistance in Human Cancer Cells. Biochem. Biophys. Res. Commun. 2009, 390, 743–749. [Google Scholar] [CrossRef]
- Zhang, G.-N.; Liang, Y.; Zhou, L.-J.; Chen, S.-P.; Chen, G.; Zhang, T.-P.; Kang, T.; Zhao, Y.-P. Combination of Salinomycin and Gemcitabine Eliminates Pancreatic Cancer Cells. Cancer Lett. 2011, 313, 137–144. [Google Scholar] [CrossRef]
- Dong, T.-T.; Zhou, H.-M.; Wang, L.-L.; Feng, B.; Lv, B.; Zheng, M.-H. Salinomycin Selectively Targets ‘CD133+’ Cell Subpopulations and Decreases Malignant Traits in Colorectal Cancer Lines. Ann. Surg. Oncol. 2011, 18, 1797–1804. [Google Scholar] [CrossRef]
- Lu, D.; Choi, M.Y.; Yu, J.; Castro, J.E.; Kipps, T.J.; Carson, D.A. Salinomycin Inhibits Wnt Signaling and Selectively Induces Apoptosis in Chronic Lymphocytic Leukemia Cells. Proc. Natl. Acad. Sci. USA 2011, 108, 13253–13257. [Google Scholar] [CrossRef]
- Norouzi, M.; Yathindranath, V.; Thliveris, J.A.; Miller, D.W. Salinomycin-Loaded Iron Oxide Nanoparticles for Glioblastoma Therapy. Nanomaterials 2020, 10, 477. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Liu, S.; Wang, Y.; Dai, W.; Zou, H.; Wang, S.; Zhang, J.; Pan, J. Salinomycin Effectively Eliminates Cancer Stem-like Cells and Obviates Hepatic Metastasis in Uveal Melanoma. Mol. Cancer 2019, 18, 159. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Zhou, S.; Qi, D.; Xiang, S.-H.; Wong, E.T.; Wang, X.; Fonkem, E.; Hsieh, T.; Yang, J.; Kirmani, B.; et al. Nucleolin Is a Functional Binding Protein for Salinomycin in Neuroblastoma Stem Cells. J. Am. Chem. Soc. 2019, 141, 3613–3622. [Google Scholar] [CrossRef] [PubMed]
- Cheon, H.; Paik, J.H.; Choi, M.; Yang, H.J.; Son, J.H. Detection and Manipulation of Methylation in Blood Cancer DNA Using Terahertz Radiation. Sci. Rep. 2019, 9, 6413. [Google Scholar] [CrossRef]
- Baklaushev, V.P.; Bogush, V.G.; Kalsin, V.A.; Sovetnikov, N.N.; Samoilova, E.M.; Revkova, V.A.; Sidoruk, K.V.; Konoplyannikov, M.A.; Timashev, P.S.; Kotova, S.L.; et al. Tissue Engineered Neural Constructs Composed of Neural Precursor Cells, Recombinant Spidroin and PRP for Neural Tissue Regeneration. Sci. Rep. 2019, 9, 3161. [Google Scholar] [CrossRef]
- Revkova, V.A.; Sidoruk, K.V.; Kalsin, V.A.; Melnikov, P.A.; Konoplyannikov, M.A.; Kotova, S.; Frolova, A.A.; Rodionov, S.A.; Smorchkov, M.M.; Kovalev, A.V.; et al. Spidroin Silk Fibers with Bioactive Motifs of Extracellular Proteins for Neural Tissue Engineering. ACS Omega 2021, 6, 15264–15273. [Google Scholar] [CrossRef]
- Sedelnikova, O.A.; Pilch, D.R.; Redon, C.; Bonner, W.M. Histone H2AX in DNA Damage and Repair. Cancer Biol. Ther. 2003, 2, 233–235. [Google Scholar] [CrossRef]
- Kinner, A.; Wu, W.; Staudt, C.; Iliakis, G. γ-H2AX in Recognition and Signaling of DNA Double-Strand Breaks in the Context of Chromatin. Nucleic Acids Res. 2008, 36, 5678–5694. [Google Scholar] [CrossRef]
- Dhuppar, S.; Roy, S.; Mazumder, A. ΓH2AX in the S Phase after UV Irradiation Corresponds to DNA Replication and Does Not Report on the Extent of DNA Damage. Mol. Cell. Biol. 2020, 40, e00328-20. [Google Scholar] [CrossRef]
- Konoplyannikov, M.A.; Eremina, A.S.; Kargina, Y.V.; Le-Deygen, I.M.; Kharin, A.Y.; Bazylenko, T.Y.; Yusubalieva, G.M.; Revkova, V.A.; Matchuk, O.N.; Zamulaeva, I.A.; et al. Mesoporous Silicon Nanoparticles Loaded with Salinomycin for Cancer Therapy Applications. Microporous Mesoporous Mater. 2021, 328, 111473. [Google Scholar] [CrossRef]
- Clothier, R.H.; Bourne, N. Effects of THz Exposure on Human Primary Keratinocyte Differentiation and Viability. J. Biol. Phys. 2003, 29, 179–185. [Google Scholar] [CrossRef] [PubMed]
- Bourne, N.; Clothier, R.H.; D’Arienzo, M.; Harrison, P. The Effects of Terahertz Radiation on Human Keratinocyte Primary Cultures and Neural Cell Cultures. ATLA Altern. Lab. Anim. 2008, 36, 667–684. [Google Scholar] [CrossRef] [PubMed]
- Yu, T.; MacPhail, S.H.; Banáth, J.P.; Klokov, D.; Olive, P.L. Endogenous Expression of Phosphorylated Histone H2AX in Tumors in Relation to DNA Double-Strand Breaks and Genomic Instability. DNA Repair 2006, 5, 935–946. [Google Scholar] [CrossRef] [PubMed]
- Bogomazova, A.N.; Vassina, E.M.; Goryachkovskaya, T.N.; Popik, V.M.; Sokolov, A.S.; Kolchanov, N.A.; Lagarkova, M.A.; Kiselev, S.L.; Peltek, S.E. No DNA Damage Response and Negligible Genome-Wide Transcriptional Changes in Human Embryonic Stem Cells Exposed to Terahertz Radiation. Sci. Rep. 2015, 5, 7749. [Google Scholar] [CrossRef] [PubMed]
- Sitnikov, D.S.; Revkova, V.A.; Ilina, I.V.; Gurova, S.A.; Komarov, P.S.; Struleva, E.V.; Konoplyannikov, M.A.; Kalsin, V.A.; Baklaushev, V.P. Studying the Genotoxic Effects of High Intensity Terahertz Radiation on Fibroblasts and CNS Tumor Cells. J. Biophotonics 2023, 16, e202200212. [Google Scholar] [CrossRef]
- Hintzsche, H.; Jastrow, C.; Kleine-Ostmann, T.; Kärst, U.; Schrader, T.; Stopper, H. Terahertz Electromagnetic Fields (0.106 THz) Do Not Induce Manifest Genomic Damage In Vitro. PLoS ONE 2012, 7, e46397. [Google Scholar] [CrossRef]
- Moskaleva, E.Y.; Severin, S.E. Antitumor Activity of Ionophore Antibiotic Salinomycin: The Target—Cancer Stem Cells. Mol. Med. 2012, 6, 28–36. [Google Scholar]
- Mai, T.T.; Hamaï, A.; Hienzsch, A.; Cañeque, T.; Müller, S.; Wicinski, J.; Cabaud, O.; Leroy, C.; David, A.; Acevedo, V.; et al. Salinomycin Kills Cancer Stem Cells by Sequestering Iron in Lysosomes. Nat. Chem. 2017, 9, 1025–1033. [Google Scholar] [CrossRef]
- Liu, Q.; Sun, J.; Luo, Q.; Ju, Y.; Song, G. Salinomycin Suppresses Tumorigenicity of Liver Cancer Stem Cells and Wnt/Beta-Catenin Signaling. Curr. Stem Cell Res. Ther. 2021, 16, 630–637. [Google Scholar] [CrossRef]
- Naujokat, C.; Steinhart, R. Salinomycin as a Drug for Targeting Human Cancer Stem Cells. J. Biomed. Biotechnol. 2012, 2012, 950658. [Google Scholar] [CrossRef]
- Liu, Y.; Hao, Y.; Li, Y.; Zheng, Y.; Dai, J.; Zhong, F.; Wei, W.; Fang, Z. Salinomycin Induces Autophagic Cell Death in Salinomycin-Sensitive Melanoma Cells through Inhibition of Autophagic Flux. Sci. Rep. 2020, 10, 18515. [Google Scholar] [CrossRef]
- Amini, T.; Jahangiri, F.; Ameri, Z.; Hemmatian, M.A. A Review of Feasible Applications of THz Waves in Medical Diagnostics and Treatments. J. Lasers Med. Sci. 2021, 12, e92. [Google Scholar] [CrossRef]
- Vicario, C.; Ovchinnikov, A.V.; Ashitkov, S.I.; Agranat, M.B.; Fortov, V.E.; Hauri, C.P. Generation of 09-MJ THz Pulses in DSTMS Pumped by a Cr:Mg_2SiO_4 Laser. Opt. Lett. 2014, 39, 6632. [Google Scholar] [CrossRef]
- Sitnikov, D.S.; Ilina, I.V.; Pronkin, A.A. Experimental System for Studying Bioeffects of Intense Terahertz Pulses with Electric Field Strength up to 3.5 MV/cm. Opt. Eng. 2020, 59, 061613. [Google Scholar] [CrossRef]
- Sitnikov, D.S.; Ilina, I.V.; Revkova, V.A.; Konoplyannikov, M.A.; Kalsin, V.A.; Baklaushev, V.P. System for Long-Term Irradiation of Living Cell Culture with High-Intensity THz Pulses. High Temp. 2020, 58, 36–43. [Google Scholar] [CrossRef]
- Ovchinnikov, A.V.; Chefonov, O.V.; Sitnikov, D.S.; Il’ina, I.V.; Ashitkov, S.I.; Agranat, M.B. A Source of THz Radiation with Electric Field Strength of More than 1 MV Cm -1 on the Basis of 100-Hz Femtosecond Cr: Forsterite Laser System. Quantum Electron. 2018, 48, 554–558. [Google Scholar] [CrossRef]
- Vicario, C.; Jazbinsek, M.; Ovchinnikov, A.V.; Chefonov, O.V.; Ashitkov, S.I.; Agranat, M.B.; Hauri, C.P. High Efficiency THz Generation in DSTMS, DAST and OH1 Pumped by Cr:Forsterite Laser. Opt. Express 2015, 23, 4573–4580. [Google Scholar] [CrossRef]
- Nazarov, M.M.; Shcheglov, P.A.; Teplyakov, V.V.; Chashchin, M.V.; Mitrofanov, A.V.; Sidorov-Biryukov, D.A.; Panchenko, V.Y.; Zheltikov, A.M. Broadband Terahertz Generation by Optical Rectification of Ultrashort Multiterawatt Laser Pulses near the Beam Breakup Threshold. Opt. Lett. 2021, 46, 5866. [Google Scholar] [CrossRef]
- Ovchinnikov, A.V.; Chefonov, O.V.; Agranat, M.B.; Shalaby, M.; Sitnikov, D.S. Terahertz Generation Optimization in an OH1 Nonlinear Organic Crystal Pumped by a Cr:Forsterite Laser. Opt. Lett. 2022, 47, 5505. [Google Scholar] [CrossRef]
- Sitnikov, D.S.; Romashevskiy, S.A.; Ovchinnikov, A.V.; Chefonov, O.V.; Savel’ev, A.B.; Agranat, M.B. Estimation of THz Field Strength by an Electro-Optic Sampling Technique Using Arbitrary Long Gating Pulses. Laser Phys. Lett. 2019, 16, 115302. [Google Scholar] [CrossRef]
- Ahlfors, J.-E.; Azimi, A.; El-Ayoubi, R.; Velumian, A.; Vonderwalde, I.; Boscher, C.; Mihai, O.; Mani, S.; Samoilova, M.; Khazaei, M.; et al. Examining the Fundamental Biology of a Novel Population of Directly Reprogrammed Human Neural Precursor Cells. Stem Cell Res. Ther. 2019, 10, 166. [Google Scholar] [CrossRef] [PubMed]
- Sitnikov, D.S.; Pronkin, A.A.; Ilina, I.V.; Revkova, V.A.; Konoplyannikov, M.A.; Kalsin, V.A.; Baklaushev, V.P. Numerical Modelling and Experimental Verification of Thermal Effects in Living Cells Exposed to High-Power Pulses of THz Radiation. Sci. Rep. 2021, 11, 17916. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sitnikov, D.; Revkova, V.; Ilina, I.; Shatalova, R.; Komarov, P.; Struleva, E.; Konoplyannikov, M.; Kalsin, V.; Baklaushev, V. Sensitivity of Neuroblastoma and Induced Neural Progenitor Cells to High-Intensity THz Radiation. Int. J. Mol. Sci. 2023, 24, 6558. https://doi.org/10.3390/ijms24076558
Sitnikov D, Revkova V, Ilina I, Shatalova R, Komarov P, Struleva E, Konoplyannikov M, Kalsin V, Baklaushev V. Sensitivity of Neuroblastoma and Induced Neural Progenitor Cells to High-Intensity THz Radiation. International Journal of Molecular Sciences. 2023; 24(7):6558. https://doi.org/10.3390/ijms24076558
Chicago/Turabian StyleSitnikov, Dmitry, Veronika Revkova, Inna Ilina, Rimma Shatalova, Pavel Komarov, Evgenia Struleva, Mikhail Konoplyannikov, Vladimir Kalsin, and Vladimir Baklaushev. 2023. "Sensitivity of Neuroblastoma and Induced Neural Progenitor Cells to High-Intensity THz Radiation" International Journal of Molecular Sciences 24, no. 7: 6558. https://doi.org/10.3390/ijms24076558
APA StyleSitnikov, D., Revkova, V., Ilina, I., Shatalova, R., Komarov, P., Struleva, E., Konoplyannikov, M., Kalsin, V., & Baklaushev, V. (2023). Sensitivity of Neuroblastoma and Induced Neural Progenitor Cells to High-Intensity THz Radiation. International Journal of Molecular Sciences, 24(7), 6558. https://doi.org/10.3390/ijms24076558