The Different Pathways of Epicardial Adipose Tissue across the Heart Failure Phenotypes: From Pathophysiology to Therapeutic Target
Abstract
:1. Introduction
1.1. The Role of Epicardial Adipose Tissue in Cardiovascular Disease
1.2. Quantification of Epicardial Adipose Tissue
2. Epicardial Adipose Tissue in Heart Failure with Preserved Ejection Fraction
2.1. The Obese HFpEF Phenotype
2.2. EAT and Sex Differences
2.3. EAT and Exercise Capacity
2.4. EAT and Atrial Fibrillation
3. Epicardial Adipose Tissue in Heart Failure with Reduced Ejection Fraction
Different Role of EAT in HFrEF as Compared to HFpEF
4. Epicardial Adipose Tissue in Heart Failure with Mildly Reduced Ejection Fraction
5. Potential of Epicardial Adipose Tissue in Heart Failure as Therapeutic Target
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Iacobellis, G.; Willens, H.J. Echocardiographic Epicardial Fat: A Review of Research and Clinical Applications. J. Am. Soc. Echocardiogr. 2009, 22, 1311–1319, quiz 417–418. [Google Scholar] [CrossRef]
- Sacks, H.S.; Fain, J.N. Human epicardial adipose tissue: A review. Am. Heart J. 2007, 153, 907–917. [Google Scholar] [CrossRef] [PubMed]
- Janovska, P.; Melenovsky, V.; Svobodova, M.; Havlenova, T.; Kratochvilova, H.; Haluzik, M.; Hoskova, E.; Pelikanova, T.; Kautzner, J.; Monzo, L.; et al. Dysregulation of epicardial adipose tissue in cachexia due to heart failure: The role of natriuretic peptides and cardiolipin. J. Cachexia Sarcopenia Muscle 2020, 11, 1614–1627. [Google Scholar] [CrossRef] [PubMed]
- Parisi, V.; Rengo, G.; Pagano, G.; D’Esposito, V.; Passaretti, F.; Caruso, A.; Grimaldi, M.G.; Lonobile, T.; Baldascino, F.; De Bellis, A.; et al. Epicardial adipose tissue has an increased thickness and is a source of inflammatory mediators in patients with calcific aortic stenosis. Int. J. Cardiol. 2015, 186, 167–169. [Google Scholar] [CrossRef] [PubMed]
- Rabkin, S.W. Epicardial fat: Properties, function and relationship to obesity. Obes. Rev. 2007, 8, 253–261. [Google Scholar] [CrossRef]
- Sacks, H.S.; Fain, J.N.; Holman, B.; Cheema, P.; Chary, A.; Parks, F.; Karas, J.; Optican, R.; Bahouth, S.W.; Garrett, E.; et al. Uncoupling Protein-1 and Related Messenger Ribonucleic Acids in Human Epicardial and Other Adipose Tissues: Epicardial Fat Functioning as Brown Fat. J. Clin. Endocrinol. Metab. 2009, 94, 3611–3615. [Google Scholar] [CrossRef] [PubMed]
- Gaborit, B.; Sengenes, C.; Ancel, P.; Jacquier, A.; Dutour, A. Role of Epicardial Adipose Tissue in Health and Disease: A Matter of Fat? Compr. Physiol. 2017, 7, 1051–1082. [Google Scholar]
- Talman, A.H.; Psaltis, P.J.; Cameron, J.D.; Meredith, I.T.; Seneviratne, S.K.; Wong, D.T.L. Epicardial adipose tissue: Far more than a fat depot. Cardiovasc. Diagn. Ther. 2014, 4, 416–429. [Google Scholar] [CrossRef]
- Marchington, J.M.; Mattacks, C.A.; Pond, C.M. Adipose tissue in the mammalian heart and pericardium: Structure, foetal development and biochemical properties. Comp. Biochem. Physiol. Part B Comp. Biochem. 1989, 94, 225–232. [Google Scholar] [CrossRef]
- Iacobellis, G.; Corradi, D.; Sharma, A.M. Epicardial adipose tissue: Anatomic, biomolecular and clinical relationships with the heart. Nat. Clin. Pract. Cardiovasc. Med. 2005, 2, 536–543. [Google Scholar] [CrossRef]
- Lima-Martínez, M.M.; Blandenier, C.; Iacobellis, G. Epicardial adipose tissue: More than a simple fat deposit? Endocrinol. Nutr. Engl. Ed. 2013, 60, 320–328. [Google Scholar] [CrossRef] [PubMed]
- Han, S.H.; Sakuma, I.; Shin, E.K.; Koh, K.K. Antiatherosclerotic and Anti-Insulin Resistance Effects of Adiponectin: Basic and Clinical Studies. Prog. Cardiovasc. Dis. 2009, 52, 126–140. [Google Scholar] [CrossRef] [PubMed]
- Monzo, L.; Kotrc, M.; Benes, J.; Sedlacek, K.; Jurcova, I.; Franekova, J.; Jarolim, P.; Kautzner, J.; Melenovsky, V. Clinical and Humoral Determinants of Congestion in Heart Failure: Potential Role of Adiponectin. Kidney Blood Press. Res. 2019, 44, 1271–1284. [Google Scholar] [CrossRef] [PubMed]
- Pratt, R.E.; Kavey, R.-E.; Quinzi, D. Combined dyslipidemia in obese children: Response to a focused lifestyle approach. J. Clin. Lipidol. 2014, 8, 181–186. [Google Scholar] [CrossRef] [PubMed]
- Packer, M. Epicardial Adipose Tissue May Mediate Deleterious Effects of Obesity and Inflammation on the Myocardium. J. Am. Coll. Cardiol. 2018, 71, 2360–2372. [Google Scholar] [CrossRef]
- Greenstein, A.S.; Khavandi, K.; Withers, S.B.; Sonoyama, K.; Clancy, O.; Jeziorska, M.; Laing, I.; Yates, A.P.; Pemberton, P.W.; Malik, R.A.; et al. Local Inflammation and Hypoxia Abolish the Protective Anticontractile Properties of Perivascular Fat in Obese Patients. Circulation 2009, 119, 1661–1670. [Google Scholar] [CrossRef] [Green Version]
- Mazurek, T.; Zhang, L.; Zalewski, A.; Mannion, J.D.; Diehl, J.T.; Arafat, H.; Sarov-Blat, L.; O’Brien, S.; Keiper, E.A.; Johnson, A.G.; et al. Human Epicardial Adipose Tissue Is a Source of Inflammatory Mediators. Circulation 2003, 108, 2460–2466. [Google Scholar] [CrossRef] [Green Version]
- Papathanassoglou, E.; El-Haschimi, K.; Li, X.C.; Matarese, G.; Strom, T.; Mantzoros, C. Leptin Receptor Expression and Signaling in Lymphocytes: Kinetics During Lymphocyte Activation, Role in Lymphocyte Survival, and Response to High Fat Diet in Mice. J. Immunol. 2006, 176, 7745–7752. [Google Scholar] [CrossRef] [Green Version]
- Wensveen, F.M.; Valentić, S.; Šestan, M.; Wensveen, T.T.; Polić, B. The “Big Bang” in obese fat: Events initiating obesity-induced adipose tissue inflammation. Eur. J. Immunol. 2015, 45, 2446–2456. [Google Scholar] [CrossRef]
- Yerramasu, A.; Dey, D.; Venuraju, S.; Anand, D.V.; Atwal, S.; Corder, R.; Berman, D.S.; Lahiri, A. Increased volume of epicardial fat is an independent risk factor for accelerated progression of sub-clinical coronary atherosclerosis. Atherosclerosis 2011, 220, 223–230. [Google Scholar] [CrossRef]
- Bachar, G.N.; Dicker, D.; Kornowski, R.; Atar, E. Epicardial Adipose Tissue as a Predictor of Coronary Artery Disease in Asymptomatic Subjects. Am. J. Cardiol. 2012, 110, 534–538. [Google Scholar] [CrossRef] [PubMed]
- Patel, K.H.K.; Hwang, T.; Liebers, C.S.; Ng, F.S. Epicardial adipose tissue as a mediator of cardiac arrhythmias. Am. J. Physiol. Circ. Physiol. 2022, 322, H129–H144. [Google Scholar] [CrossRef] [PubMed]
- Conte, M.; Petraglia, L.; Cabaro, S.; Valerio, V.; Poggio, P.; Pilato, E.; Attena, E.; Russo, V.; Ferro, A.; Formisano, P.; et al. Epicardial Adipose Tissue and Cardiac Arrhythmias: Focus on Atrial Fibrillation. Front. Cardiovasc. Med. 2022, 9, 932262. [Google Scholar] [CrossRef] [PubMed]
- Kenchaiah, S.; Ding, J.; Carr, J.J.; Allison, M.A.; Budoff, M.J.; Tracy, R.P.; Burke, G.L.; McClelland, R.L.; Arai, A.E.; Bluemke, D.A. Pericardial Fat and the Risk of Heart Failure. J. Am. Coll. Cardiol. 2021, 77, 2638–2652. [Google Scholar] [CrossRef] [PubMed]
- Rao, V.N.; Bush, C.G.; Mongraw-Chaffin, M.; Hall, M.E.; Clark, D., 3rd; Fudim, M.; Correa, A.; Hammill, B.G.; O’Brien, E.; Min, Y.I.; et al. Regional Adiposity and Risk of Heart Failure and Mortality: The Jackson Heart Study. J. Am. Heart Assoc. 2021, 10, e020920. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.-Z.; Chen, X.-L.; Tang, T.-T.; Zhang, S.; Li, Q.-L.; Xia, N.; Nie, S.-F.; Zhang, M.; Zhu, Z.-F.; Zhou, Z.-H.; et al. T lymphocyte characteristics and immune repertoires in the epicardial adipose tissue of heart failure patients. Front. Immunol. 2023, 14, 1126997. [Google Scholar] [CrossRef]
- Mancio, J.; Azevedo, D.; Fragao-Marques, M.; Falcao-Pires, I.; Leite-Moreira, A.; Lunet, N.; Fontes-Carvalho, R.; Bettencourt, N. Meta-Analysis of Relation of Epicardial Adipose Tissue Volume to Left Atrial Dilation and to Left Ventricular Hypertrophy and Functions. Am. J. Cardiol. 2019, 123, 523–531. [Google Scholar] [CrossRef]
- Nerlekar, N.; Muthalaly, R.G.; Wong, N.; Thakur, U.; Wong, D.T.L.; Brown, A.J.; Marwick, T.H. Association of Volumetric Epicardial Adipose Tissue Quantification and Cardiac Structure and Function. J. Am. Heart Assoc. 2018, 7, e009975. [Google Scholar] [CrossRef] [Green Version]
- Aydın, H.; Toprak, A.; Deyneli, O.; Yazıcı, D.; Tarçın, O.; Sancak, S.; Yavuz, D.; Akalın, S. Epicardial Fat Tissue Thickness Correlates with Endothelial Dysfunction and Other Cardiovascular Risk Factors in Patients with Metabolic Syndrome. Metab. Syndr. Relat. Disord. 2010, 8, 229–234. [Google Scholar] [CrossRef]
- Nalliah, C.J.; Bell, J.R.; Raaijmakers, A.J.A.; Waddell, H.M.; Wells, S.P.; Bernasochi, G.B.; Montgomery, M.K.; Binny, S.; Watts, T.; Joshi, S.B.; et al. Epicardial Adipose Tissue Accumulation Confers Atrial Conduction Abnormality. J. Am. Coll Cardiol. 2020, 76, 1197–1211. [Google Scholar] [CrossRef]
- Obokata, M.; Reddy, Y.; Pislaru, S.; Melenovsky, V.; Borlaug, B.A. Evidence Supporting the Existence of a Distinct Obese Phenotype of Heart Failure with Preserved Ejection Fraction. Circulation 2017, 136, 6–19. [Google Scholar] [CrossRef] [PubMed]
- Monzo, L.; Sedlacek, K.; Hromanikova, K.; Tomanova, L.; Borlaug, B.A.; Jabor, A.; Kautzner, J.; Melenovsky, V. Myocardial ketone body utilization in patients with heart failure: The impact of oral ketone ester. Metabolism 2021, 115, 154452. [Google Scholar] [CrossRef] [PubMed]
- Schejbal, V. Epicardial fatty tissue of the right ventricle--morphology, morphometry and functional significance. Pneumologie 1989, 43, 490–499. [Google Scholar] [PubMed]
- Iacobellis, G.; Willens, H.J.; Barbaro, G.; Sharma, A.M. Threshold Values of High-risk Echocardiographic Epicardial Fat Thickness. Obesity 2008, 16, 887–892. [Google Scholar] [CrossRef] [PubMed]
- van Woerden, G.; van Veldhuisen, D.J.; Gorter, T.M.; Ophuis, B.; Saucedo-Orozco, H.; van Empel, V.P.M.; Willems, T.P.; Geelhoed, B.; Rienstra, M.; Westenbrink, B.D. The value of echocardiographic measurement of epicardial adipose tissue in heart failure patients. ESC Heart Fail. 2022, 9, 953–957. [Google Scholar] [CrossRef]
- Doesch, C.; Haghi, D.; Flüchter, S.; Suselbeck, T.; Schoenberg, S.O.; Michaely, H.; Borggrefe, M.; Papavassiliu, T. Epicardial adipose tissue in patients with heart failure. J. Cardiovasc. Magn. Reson. 2010, 12, 40. [Google Scholar] [CrossRef] [Green Version]
- Nakazato, R.; Shmilovich, H.; Tamarappoo, B.K.; Cheng, V.Y.; Slomka, P.J.; Berman, D.S.; Dey, D. Interscan reproducibility of computer-aided epicardial and thoracic fat measurement from noncontrast cardiac CT. J. Cardiovasc. Comput. Tomogr. 2011, 5, 172–179. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, D.; Fujimoto, S.; Nozaki, Y.O.; Kudo, A.; Kawaguchi, Y.O.; Takamura, K.; Hiki, M.; Sato, H.; Tomizawa, N.; Kumamaru, K.K.; et al. Validation and clinical impact of novel pericoronary adipose tissue measurement on ECG-gated non-contrast chest CT. Atherosclerosis 2023, 370, 18–24. [Google Scholar] [CrossRef]
- Ishikawa, H.; Otsuka, K.; Kono, Y.; Hojo, K.; Yamaura, H.; Hirata, K.; Kasayuki, N.; Izumiya, Y.; Fukuda, D. Extent of coronary atherosclerosis is associated with deterioration of left ventricular global longitudinal strain in patients with preserved ejection fraction undergoing coronary computed tomography angiography. IJC Heart Vasc. 2023, 44, 101176. [Google Scholar] [CrossRef]
- Ilyushenkova, J.; Sazonova, S.; Popov, E.; Zavadovsky, K.; Batalov, R.; Archakov, E.; Moskovskih, T.; Popov, S.; Minin, S.; Romanov, A. Radiomic phenotype of epicardial adipose tissue in the prognosis of atrial fibrillation recurrence after catheter ablation in patients with lone atrial fibrillation. J. Arrhythmia 2022, 38, 682–693. [Google Scholar] [CrossRef]
- Palazzuoli, A.; Tramonte, F.; Beltrami, M. Laboratory and Metabolomic Fingerprint in Heart Failure with Preserved Ejection Fraction: From Clinical Classification to Biomarker Signature. Biomolecules 2023, 13, 173. [Google Scholar] [CrossRef] [PubMed]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Bohm, M.; Burri, H.; Butler, J.; Celutkiene, J.; Chioncel, O.; et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 2021, 42, 3599–3726. [Google Scholar] [CrossRef] [PubMed]
- Palazzuoli, A.; Beltrami, M. Are HFpEF and HFmrEF So Different? The Need to Understand Distinct Phenotypes. Front. Cardiovasc. Med. 2021, 8, 676658. [Google Scholar] [CrossRef] [PubMed]
- Kitzman, D.W.; Shah, S.J. The HFpEF Obesity Phenotype: The Elephant in the Room. J. Am. Coll Cardiol. 2016, 68, 200–203. [Google Scholar] [CrossRef] [PubMed]
- Venkateshvaran, A.; Faxen, U.L.; Hage, C.; Michaelsson, E.; Svedlund, S.; Saraste, A.; Beussink-Nelson, L.; Fermer, M.L.; Gan, L.M.; Tromp, J.; et al. Association of epicardial adipose tissue with proteomics, coronary flow reserve, cardiac structure and function, and quality of life in heart failure with preserved ejection fraction: Insights from the PROMIS-HFpEF study. Eur. J. Heart Fail. 2022, 24, 2251–2260. [Google Scholar] [CrossRef]
- Lindner, D.; Zietsch, C.; Tank, J.; Sossalla, S.; Fluschnik, N.; Hinrichs, S.; Maier, L.; Poller, W.; Blankenberg, S.; Schultheiss, H.-P.; et al. Cardiac fibroblasts support cardiac inflammation in heart failure. Basic Res. Cardiol. 2014, 109, 428. [Google Scholar] [CrossRef]
- Conceicao, G.; Martins, D.; Miranda, I.M.; Leite-Moreira, A.F.; Vitorino, R.; Falcao-Pires, I. Unraveling the Role of Epicardial Adipose Tissue in Coronary Artery Disease: Partners in Crime? Int. J. Mol. Sci. 2020, 21, 8866. [Google Scholar] [CrossRef]
- Iacobellis, G. Epicardial adipose tissue in contemporary cardiology. Nat. Rev. Cardiol. 2022, 19, 593–606. [Google Scholar] [CrossRef]
- De Biase, N.; Del Punta, L.; Pugliese, N.R. The dangerous liaison between epicardial adipose tissue and heart failure with preserved ejection fraction. Eur. J. Heart Fail. 2022, 24, 2261–2263. [Google Scholar] [CrossRef]
- McAninch, E.; Fonseca, T.L.; Poggioli, R.; Panos, A.; Salerno, T.A.; Deng, Y.; Li, Y.; Bianco, A.; Iacobellis, G. Epicardial adipose tissue has a unique transcriptome modified in severe coronary artery disease. Obesity 2015, 23, 1267–1278. [Google Scholar] [CrossRef]
- Wu, C.; Lee, J.; Hsu, J.; Su, M.-Y.; Wu, Y.; Lin, T.; Lan, C.; Hwang, J.; Lin, L. Myocardial adipose deposition and the development of heart failure with preserved ejection fraction. Eur. J. Heart Fail. 2020, 22, 445–454. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Guo, Z.; Wang, P.; Zheng, M.; Yang, X.; Liu, Y.; Ma, Z.; Chen, M.; Yang, X. Proteomics of epicardial adipose tissue in patients with heart failure. J. Cell. Mol. Med. 2020, 24, 511–520. [Google Scholar] [CrossRef] [Green Version]
- Packer, M. Disease–treatment interactions in the management of patients with obesity and diabetes who have atrial fibrillation: The potential mediating influence of epicardial adipose tissue. Cardiovasc. Diabetol. 2019, 18, 121. [Google Scholar] [CrossRef] [Green Version]
- Gorter, T.M.; van Woerden, G.; Rienstra, M.; Dickinson, M.G.; Hummel, Y.M.; Voors, A.A.; Hoendermis, E.S.; van Veldhuisen, D.J. Epicardial Adipose Tissue and Invasive Hemodynamics in Heart Failure with Preserved Ejection Fraction. JACC Heart Fail. 2020, 8, 667–676. [Google Scholar] [CrossRef]
- van Woerden, G.; van Veldhuisen, D.J.; Gorter, T.M.; van Empel, V.P.M.; Hemels, M.E.W.; Hazebroek, E.J.; van Veldhuisen, S.L.; Willems, T.P.; Rienstra, M.; Westenbrink, B.D. Importance of epicardial adipose tissue localization using cardiac magnetic resonance imaging in patients with heart failure with mid-range and preserved ejection fraction. Clin. Cardiol. 2021, 44, 987–993. [Google Scholar] [CrossRef] [PubMed]
- Pugliese, N.R.; Paneni, F.; Mazzola, M.; De Biase, N.; Del Punta, L.; Gargani, L.; Mengozzi, A.; Virdis, A.; Nesti, L.; Taddei, S.; et al. Impact of epicardial adipose tissue on cardiovascular haemodynamics, metabolic profile, and prognosis in heart failure. Eur. J. Heart Fail. 2021, 23, 1858–1871. [Google Scholar] [CrossRef] [PubMed]
- van Woerden, G.; Gorter, T.M.; Westenbrink, B.D.; Willems, T.P.; van Veldhuisen, D.J.; Rienstra, M. Epicardial fat in heart failure patients with mid-range and preserved ejection fraction. Eur. J. Heart Fail. 2018, 20, 1559–1566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Woerden, G.; van Veldhuisen, D.J.; Manintveld, O.C.; van Empel, V.P.M.; Willems, T.P.; de Boer, R.A.; Rienstra, M.; Westenbrink, B.D.; Gorter, T.M. Epicardial Adipose Tissue and Outcome in Heart Failure with Mid-Range and Preserved Ejection Fraction. Circ. Heart Fail. 2022, 15, e009238. [Google Scholar] [CrossRef]
- Ying, W.; Sharma, K.; Yanek, L.R.; Vaidya, D.; Schär, M.; Markl, M.; Subramanya, V.; Soleimani, S.; Ouyang, P.; Michos, E.D.; et al. Visceral adiposity, muscle composition, and exercise tolerance in heart failure with preserved ejection fraction. ESC Heart Fail. 2021, 8, 2535–2545. [Google Scholar] [CrossRef]
- Koepp, K.E.; Obokata, M.; Reddy, Y.N.; Olson, T.P.; Borlaug, B.A. Hemodynamic and Functional Impact of Epicardial Adipose Tissue in Heart Failure with Preserved Ejection Fraction. JACC Heart Fail. 2020, 8, 657–666. [Google Scholar] [CrossRef]
- Jin, X.; Hung, C.; Tay, W.T.; Soon, D.; Sim, D.; Sung, K.; Loh, S.Y.; Lee, S.; Jaufeerally, F.; Ling, L.H.; et al. Epicardial adipose tissue related to left atrial and ventricular function in heart failure with preserved versus reduced and mildly reduced ejection fraction. Eur. J. Heart Fail. 2022, 24, 1346–1356. [Google Scholar] [CrossRef] [PubMed]
- Owan, T.E.; Hodge, D.O.; Herges, R.M.; Jacobsen, S.J.; Roger, V.L.; Redfield, M.M. Trends in Prevalence and Outcome of Heart Failure with Preserved Ejection Fraction. N. Engl. J. Med. 2006, 355, 251–259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lavie, C.J.; Alpert, M.A.; Arena, R.; Mehra, M.R.; Milani, R.V.; Ventura, H.O. Impact of Obesity and the Obesity Paradox on Prevalence and Prognosis in Heart Failure. JACC Heart Fail. 2013, 1, 93–102. [Google Scholar] [CrossRef] [PubMed]
- Sorimachi, H.; Obokata, M.; Takahashi, N.; Reddy, Y.N.V.; Jain, C.C.; Verbrugge, F.H.; Koepp, K.E.; Khosla, S.; Jensen, M.D.; Borlaug, B.A. Pathophysiologic importance of visceral adipose tissue in women with heart failure and preserved ejection fraction. Eur. Heart J. 2021, 42, 1595–1605. [Google Scholar] [CrossRef]
- Shah, R.V.; Anderson, A.; Ding, J.; Budoff, M.; Rider, O.; Petersen, S.E.; Jensen, M.K.; Koch, M.; Allison, M.; Kawel-Boehm, N.; et al. Pericardial, But Not Hepatic, Fat by CT Is Associated with CV Outcomes and Structure: The Multi-Ethnic Study of Atherosclerosis. JACC Cardiovasc. Imaging 2017, 10, 1016–1027. [Google Scholar] [CrossRef]
- van Woerden, G.; van Veldhuisen, D.J.; Westenbrink, B.D.; de Boer, R.A.; Rienstra, M.; Gorter, T.M. Connecting epicardial adipose tissue and heart failure with preserved ejection fraction: Mechanisms, management and modern perspectives. Eur. J. Heart Fail. 2022, 24, 2238–2250. [Google Scholar] [CrossRef]
- Mancio, J.; Pinheiro, M.; Ferreira, W.; Carvalho, M.; Barros, A.; Ferreira, N.; Vouga, L.; Ribeiro, V.G.; Leite-Moreira, A.; Falcao-Pires, I.; et al. Gender differences in the association of epicardial adipose tissue and coronary artery calcification: EPICHEART study: EAT and coronary calcification by gender. Int. J. Cardiol. 2017, 249, 419–425. [Google Scholar] [CrossRef]
- Kim, S.-A.; Kim, M.-N.; Shim, W.-J.; Park, S.-M. Epicardial adipose tissue is related to cardiac function in elderly women, but not in men. Nutr. Metab. Cardiovasc. Dis. 2017, 27, 41–47. [Google Scholar] [CrossRef]
- Kenchaiah, S.; Evans, J.C.; Levy, D.; Wilson, P.W.; Benjamin, E.J.; Larson, M.G.; Kannel, W.B.; Vasan, R.S. Obesity and the Risk of Heart Failure. N. Engl. J. Med. 2002, 347, 305–313. [Google Scholar] [CrossRef]
- Zhu, W.; Zhang, H.; Guo, L.; Hong, K. Relationship between epicardial adipose tissue volume and atrial fibrillation: A systematic review and meta-analysis. Herz 2016, 41, 421–427. [Google Scholar] [CrossRef]
- Tromp, J.; Bryant, J.A.; Jin, X.; van Woerden, G.; Asali, S.; Yiying, H.; Liew, O.W.; Ching, J.C.P.; Jaufeerally, F.; Loh, S.Y.; et al. Epicardial fat in heart failure with reduced versus preserved ejection fraction. Eur. J. Heart Fail. 2021, 23, 835–838. [Google Scholar] [CrossRef]
- Shibata, R.; Sato, K.; Pimentel, D.R.; Takemura, Y.; Kihara, S.; Ohashi, K.; Funahashi, T.; Ouchi, N.; Walsh, K. Adiponectin protects against myocardial ischemia-reperfusion injury through AMPK- and COX-2–dependent mechanisms. Nat. Med. 2005, 11, 1096–1103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Polak, J.; Kotrc, M.; Wedellova, Z.; Jabor, A.; Malek, I.; Kautzner, J.; Kazdova, L.; Melenovsky, V. Lipolytic Effects of B-Type Natriuretic Peptide1–32 in Adipose Tissue of Heart Failure Patients Compared with Healthy Controls. J. Am. Coll. Cardiol. 2011, 58, 1119–1125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Savarese, G.; Stolfo, D.; Sinagra, G.; Lund, L.H. Heart failure with mid-range or mildly reduced ejection fraction. Nat. Rev. Cardiol. 2022, 19, 100–116. [Google Scholar] [CrossRef] [PubMed]
- Murphy, S.P.; Kakkar, R.; McCarthy, C.P.; Januzzi, J.L., Jr. Inflammation in Heart Failure: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2020, 75, 1324–1340. [Google Scholar] [CrossRef]
- Iacobellis, G.; Barbaro, G. The Double Role of Epicardial Adipose Tissue as Pro- and Anti-inflammatory Organ. Horm. Metab. Res. 2008, 40, 442–445. [Google Scholar] [CrossRef]
- Miao, C.; Tang, Z.-W.; Nie, F. Epicardial adipose tissue in heart failure: A promising therapeutic target. Int. J. Cardiol. 2023, 371, 297. [Google Scholar] [CrossRef]
- Lv, S.; Liu, Y.; Zou, Z.; Li, F.; Zhao, S.; Shi, R.; Bian, R.; Tian, H. The impact of statins therapy on disease activity and inflammatory factor in patients with rheumatoid arthritis: A meta-analysis. Ann. Rheum. Dis. 2015, 33, 69–76. [Google Scholar]
- Gómez-Garre, D.; González-Rubio, M.L.; Muñoz-Pacheco, P.; Caro-Vadillo, A.; Aragoncillo, P.; Fernández-Cruz, A. Rosuvastatin added to standard heart failure therapy improves cardiac remodelling in heart failure rats with preserved ejection fraction. Eur. J. Heart Fail. 2010, 12, 903–912. [Google Scholar] [CrossRef]
- Parisi, V.; Petraglia, L.; D’Esposito, V.; Cabaro, S.; Rengo, G.; Caruso, A.; Grimaldi, M.G.; Baldascino, F.; De Bellis, A.; Vitale, D.; et al. Statin therapy modulates thickness and inflammatory profile of human epicardial adipose tissue. Int. J. Cardiol. 2019, 274, 326–330. [Google Scholar] [CrossRef] [Green Version]
- Preiss, D.; Campbell, R.T.; Murray, H.M.; Ford, I.; Packard, C.J.; Sattar, N.; Rahimi, K.; Colhoun, H.M.; Waters, D.D.; LaRosa, J.C.; et al. The effect of statin therapy on heart failure events: A collaborative meta-analysis of unpublished data from major randomized trials. Eur. Heart J. 2015, 36, 1536–1546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kjekshus, J.; Apetrei, E.; Barrios, V.; Boehm, M.; Cleland, J.G.F.; Cornel, J.H.; Dunselman, P.; Fonseca, C.; Goudev, A.; Grande, P.; et al. Rosuvastatin in Older Patients with Systolic Heart Failure. N. Engl. J. Med. 2007, 357, 2248–2261. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, Y.; Wu, Y.; Jia, L.; Wang, J.; Xie, B.; Hui, M.; Du, J. 5TNF-alpha and IL-1beta neutralization ameliorates angiotensin II-induced cardiac damage in male mice. Endocrinology 2014, 155, 2677–2687. [Google Scholar] [CrossRef]
- Van Tassell, B.W.; Trankle, C.R.; Canada, J.M.; Carbone, S.; Buckley, L.; Kadariya, D.; Del Buono, M.G.; Billingsley, H.; Wohlford, G.; Viscusi, M.; et al. IL-1 Blockade in Patients with Heart Failure with Preserved Ejection Fraction. Circ. Heart Fail. 2018, 11, e005036. [Google Scholar] [CrossRef] [PubMed]
- Van Tassell, B.W.; Arena, R.; Biondi-Zoccai, G.; Canada, J.M.; Oddi, C.; Abouzaki, N.A.; Jahangiri, A.; Falcao, R.A.; Kontos, M.C.; Shah, K.B.; et al. Effects of interleukin-1 blockade with anakinra on aerobic exercise capacity in patients with heart failure and preserved ejection fraction (from the D-HART pilot study). Am. J. Cardiol. 2014, 113, 321–327. [Google Scholar] [CrossRef] [Green Version]
- Everett, B.M.; Cornel, J.H.; Lainscak, M.; Anker, S.D.; Abbate, A.; Thuren, T.; Libby, P.; Glynn, R.J.; Ridker, P.M. Anti-Inflammatory Therapy with Canakinumab for the Prevention of Hospitalization for Heart Failure. Circulation 2019, 139, 1289–1299. [Google Scholar] [CrossRef]
- Mann, D.L.; McMurray, J.J.; Packer, M.; Swedberg, K.; Borer, J.S.; Colucci, W.S.; Djian, J.; Drexler, H.; Feldman, A.; Kober, L.; et al. Targeted anticytokine therapy in patients with chronic heart failure: Results of the Randomized Etanercept Worldwide Evaluation (RENEWAL). Circulation 2004, 109, 1594–1602. [Google Scholar] [CrossRef] [Green Version]
- Chung, E.S.; Packer, M.; Lo, K.H.; Fasanmade, A.A.; Willerson, J.T.; Anti TNFTACHFI. Randomized, double-blind, placebo-controlled, pilot trial of infliximab, a chimeric monoclonal antibody to tumor necrosis factor-alpha, in patients with moderate-to-severe heart failure: Results of the anti-TNF Therapy Against Congestive Heart Failure (ATTACH) trial. Circulation 2003, 107, 3133–3140. [Google Scholar]
- Vaduganathan, M.; Docherty, K.F.; Claggett, B.L.; Jhund, P.S.; de Boer, R.A.; Hernandez, A.F.; Inzucchi, S.E.; Kosiborod, M.N.; Lam, C.S.P.; Martinez, F.; et al. SGLT2 inhibitors in patients with heart failure: A comprehensive meta-analysis of five randomised controlled trials. Lancet 2022, 400, 757–767. [Google Scholar] [CrossRef]
- Monzo, L.; Ferrari, I.; Cicogna, F.; Tota, C.; Calo, L. What proportion of patients with heart failure and preserved ejection fraction are eligible for empagliflozin? J. Cardiovasc. Med. 2022, 23, 567–569. [Google Scholar] [CrossRef]
- Monzo, L.; Ferrari, I.; Cicogna, F.; Tota, C.; Calò, L. Sodium–glucose co-transporter-2 inhibitors eligibility in patients with heart failure with reduced ejection fraction. Int. J. Cardiol. 2021, 341, 56–59. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.-C.; Shiou, Y.-L.; Jhuo, S.-J.; Chang, C.-Y.; Liu, P.-L.; Jhuang, W.-J.; Dai, Z.-K.; Chen, W.-Y.; Chen, Y.-F.; Lee, A.-S. The sodium–glucose co-transporter 2 inhibitor empagliflozin attenuates cardiac fibrosis and improves ventricular hemodynamics in hypertensive heart failure rats. Cardiovasc. Diabetol. 2019, 18, 45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Byrne, N.J.; Parajuli, N.; Levasseur, J.L.; Boisvenue, J.; Beker, D.L.; Masson, G.; Fedak, P.W.; Verma, S.; Dyck, J.R. Empagliflozin Prevents Worsening of Cardiac Function in an Experimental Model of Pressure Overload-Induced Heart Failure. JACC Basic Transl. Sci. 2017, 2, 347–354. [Google Scholar] [CrossRef] [PubMed]
- Sato, T.; Aizawa, Y.; Yuasa, S.; Kishi, S.; Fuse, K.; Fujita, S.; Ikeda, Y.; Kitazawa, H.; Takahashi, M.; Sato, M.; et al. The effect of dapagliflozin treatment on epicardial adipose tissue volume. Cardiovasc. Diabetol. 2018, 17, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Requena-Ibanez, J.A.; Santos-Gallego, C.G.; Rodriguez-Cordero, A.; Vargas-Delgado, A.P.; Mancini, D.; Sartori, S.; Atallah-Lajam, F.; Giannarelli, C.; Macaluso, F.; Lala, A.; et al. Mechanistic Insights of Empagliflozin in Nondiabetic Patients with HFrEF: From the EMPA-TROPISM Study. JACC Heart Fail. 2021, 9, 578–589. [Google Scholar] [CrossRef]
- Margulies, K.B.; Hernandez, A.F.; Redfield, M.M.; Givertz, M.M.; Oliveira, G.H.; Cole, R.; Mann, D.L.; Whellan, D.J.; Kiernan, M.S.; Felker, G.M.; et al. Effects of Liraglutide on Clinical Stability Among Patients with Advanced Heart Failure and Reduced Ejection Fraction: A Randomized Clinical Trial. JAMA 2016, 316, 500–508. [Google Scholar] [CrossRef]
- Jorsal, A.; Kistorp, C.; Holmager, P.; Tougaard, R.S.; Nielsen, R.; Hanselmann, A.; Nilsson, B.; Moller, J.E.; Hjort, J.; Rasmussen, J.; et al. Effect of liraglutide, a glucagon-like peptide-1 analogue, on left ventricular function in stable chronic heart failure patients with and without diabetes (LIVE)-a multicentre, double-blind, randomised, placebo-controlled trial. Eur. J. Heart Fail. 2017, 19, 69–77. [Google Scholar] [CrossRef]
- Dozio, E.; Vianello, E.; Malavazos, A.E.; Tacchini, L.; Schmitz, G.; Iacobellis, G.; Corsi Romanelli, M.M. Epicardial adipose tissue GLP-1 receptor is associated with genes involved in fatty acid oxidation and white-to-brown fat differentiation: A target to modulate cardiovascular risk? Int. J. Cardiol. 2019, 292, 218–224. [Google Scholar] [CrossRef] [Green Version]
- Iacobellis, G.; Fricke, A.C.V. Effects of Semaglutide Versus Dulaglutide on Epicardial Fat Thickness in Subjects with Type 2 Diabetes and Obesity. J. Endocr. Soc. 2020, 4, bvz042. [Google Scholar] [CrossRef]
- Queen, N.J.; Bates, R.; Huang, W.; Xiao, R.; Appana, B.; Cao, L. Visceral adipose tissue-directed FGF21 gene therapy improves metabolic and immune health in BTBR mice. Mol. Ther. Methods Clin. Dev. 2021, 20, 409–422. [Google Scholar] [CrossRef]
Manuscript | Study Design | Sample Size | Method | Major Findings |
---|---|---|---|---|
Obokata, 2017 [31] | Retrospective single center study | 99 obese HFpEF patients (mean age 65 ± 11 years, 38% male, BMI 40.8 ± 5.6 kg/m2), 96 non-obese HFpEF patients (mean age 70 ± 10 years, 38% male, BMI 26.0 ± 2.7 kg/m2), 71 non-obese control subjects free of HF (mean age 62 ± 10 years, 42% male, BMI 25.4 ± 2.8 kg/m2) | Echocardiography (EAT thickness) | Compared to non-obese HFpEF and controls, obese HFpEF patients had an increased EAT (10 ± 2 versus 7 ± 2 and 6 ± 2 mm; p < 0.0001), worse exercise capacity (peak oxygen consumption, 7.7 ± 2.3 versus 10.0 ± 3.4 and 12.9 ± 4.0 mL/min·kg; p < 0.0001), increased plasma volume, more concentric LV remodeling, and lower N-proBNP values. Pulmonary capillary wedge pressure was correlated with body mass and plasma volume in obese HFpEF (r = 0.22 and 0.27, both p < 0.05) but not in non-obese HFpEF. The increase in heart volumes in obese HFpEF was associated with greater pericardial restraint and heightened ventricular interdependence. |
Van Woerden, 2018 [57] | Observational prospective single center study | 64 HFpEF patients (median age 70 ± 10.7 years, 63% male, BMI 29.6 ± 5.7 kg/m2) vs. 20 controls (median age 66 ± 5.5 years, 65% male, BMI 27.2 ± 4.6 kg/m2) | Cardiac magnetic resonance (EAT volume) | Total EAT volume higher in HFpEF compared to controls (107 mL/m2 vs. 77 mL/m2, p < 0.0001). HFpEF patients with atrial fibrillation and/or type 2 diabetes mellitus had more EAT than HF patients without these co-morbidities (116 vs. 100 mL/m2, p = 0.03, and 120 vs. 97 mL/m2, p = 0.001, respectively). |
Wu, 2020 [51] | National Taiwan University Hospital CMRI registry | 163 HFpEF patients (mean age 61 ± 15 years, 63% male, BMI 26 ± 4 kg/ m2), 34 HFrEF patients (mean age 55 ± 15 years, 82% male, BMI 25 ± 5 kg/ m2), 28 HFmrEF patients, 108 non-HF controls | Cardiac magnetic resonance (EAT volume and intramyocardial mass) | Intramyocardial fat higher in HFpEF than HFrEF patients or non-HF controls [intramyocardial fat content 1.56% (1.26, 1.89) vs. 0.75% (0.50, 0.87) and 1.0% (0.79, 1.15), p < 0.05]. Intramyocardial fat correlated with LV diastolic dysfunction parameters in HFpEF patients independently of age, co-morbidities, BMI, gender, and myocardial fibrosis (β = −0.34, p = 0.03; β = 0.29, p = 0.025; and β = 0.25, p = 0.02, respectively). |
Gorter, 2020 [54] | Observational prospective single center study | 75 HFpEF patients (mean age 74 ± 9 years; 32% male, BMI 29 ± 6 kg/m2, 36% obese) | Echocardiography (EAT thickness) | Increased EAT associated with higher right ventricular end-diastolic pressure and with lower VO2-max independently from pulmonary venous resistance (OR 1.16 [1.02 to 1.34], p = 0.03, and OR 0.64 [0.49 to 0.84], p = 0.002, respectively), and obesity (OR 0.69 [0.53 to 0.92], p = 0.01). EAT thickness was not associated with left-sided filling pressures. |
Koepp, 2020 [60] | Observational prospective single center study | 77 patients with HFpEF, obesity and increased EAT (mean age 67 ± 12 years, 32% male, BMI 39.9 ± 6.6 kg/m2) vs. 92 patients with HFpEF, obesity and reduced EAT (mean age 66 ± 10 years, 43% male, BMI 34.5 ± 4.2 kg/m2) | Echocardiography (EAT thickness) | Obese patients with HFpEF with increased EAT had higher right atrial, pulmonary artery, and pulmonary capillary wedge pressures at rest and during exercise and lower peak oxygen consumption (VO2) |
Van Woerden, 2021 [55] | Observational prospective single center study | 102 HFpEF patients with LVEF > 40% (mean age 70 ± 10 years, male 51%, BMI 29.5 ± 5.8 kg/m2) | Cardiac magnetic resonance (EAT volume) | Right ventricular EAT was positively associated with RV mass after adjusting for total EAT, sex, NT-proBNP, renal function, and blood glucose. Atrial EAT was increased in patients with atrial fibrillation compared to those without atrial fibrillation (30 vs. 26 mL/m2, p = 0.04). |
Pugliese, 2021 [56] | Observational prospective single center study | 205 HFrEF patients (median age 65 (IQR: 55–74) years, 65% male, BMI 27 (IQR: 21–33) kg/m2), 188 HFpEF patients (median age 73 (IQR: 64–80) years, 48% male, BMI 31.5 (IQR: 29–36) kg/m2), 44 healthy controls (median age 61 (IQR: 54–70) years, 59% male, BMI 23 (IQR: 22–24) kg/m2). | Echocardiography (EAT thickness) | HFpEF patients displayed the highest EAT. In HFpEF, EAT had a direct association with troponin T, C-reactive protein, and right ventriculo–arterial uncoupling, whereas an inverse correlation with peak VO2 and AVO2diff was observed. Increased EAT in HFpEF was related to a higher risk of adverse events. |
Ying, 2021 [59] | Observational prospective single center study | 55 HFpEF patients (mean age 67 ± 11 years, 25% male), 33 controls (mean age 57 ± 10 years, 36% male) | Cardiac magnetic resonance (EAT thickness) | HFpEF patient had higher EAT (4.6 [IQR 2.0]) vs. controls (3.2 [IQR 1.4], p < 0.001). Increased EAT was associated with lower well-being scores. |
Van Woerden, 2022 [58] | Observational prospective single center study | 105 HFpEF patients (mean age 72 ± 8 years, 50% male, and mean LVEF 53 ± 8%), median follow-up of 24 (17–25) months | Cardiac magnetic resonance (EAT volume) | EAT was associated with all-cause mortality (HR, 2.06 [1.26–3.37], p = 0.004) and HF hospitalizations (HR, 1.54 [1.04–2.30], p = 0.03). |
Venkateshvaran, 2022 [45] | Prospective, multinational study (PROMIS-HFpEF) | 182 HFpEF patients: n = 54 patients with increased EAT ≥ 9 mm (mean age 73 (68–77) years, 57% male, and mean LVEF 62 (56–66)%), vs. n = 128 patients with reduced EAT < 9 mm (mean age 76 (70–82) years, 54% male, mean LVEF 58 (54–64)%). | Echocardiography (EAT thickness) | Patients with increased EAT had higher body mass index (32 (28–40) vs. 27 (23–30) kg/m2; p < 0.001), lower NT-proBNP (466 (193–1133) vs.1120 (494–1990) pg/mL; p < 0.001), smaller indexed LV end-diastolic and LA volumes. EAT was moderately and significantly correlated with BMI (r = 0.49, p < 0.001). When adjusted for BMI, EAT was associated with LV septal wall thickness (B = 1.02, [1–1.04], p = 0.018) and mitral E wave deceleration time (B01.03, [1.01–1.05], p = 0.005). Increased EAT was associated with proteomic markers of adipose biology and inflammation, insulin resistance, endothelial dysfunction, and dyslipidaemia. |
Jin, 2022 [61] | Observational retrospective, 2 different cohorts | 99 HFpEF patients (mean age 65 ± 11 years, 63% male, BMI 29 ± 6.3 kg/m2); 366 HFrEF/HFmrEF patients (mean age 57 ± 11 years, 84% male, BMI 27 ± 5.6 kg/m2); 149 controls (mean age 58 ± 10.8 years, 46% male, BMI 25 ± 3.9 kg/m2). | Echocardiography (EAT thickness) | EAT thickness lower in HFrEF/HFmrEF (7.3 ± 2.5) vs. HFpEF (8.3 ± 2.6 mm, p < 0.05). Greater EAT thickness associated with higher LV and LA function in HFrEF but not in HFpEF. Increased EAT associated with LA dysfunction in HFpEF but not in HFrEF/HFmrEF. |
Manuscript | Study Design | Sample Size | Method | Major Findings |
---|---|---|---|---|
Doesch, 2010 [36] | Retrospective single center study | 66 patients with symptomatic HF and LVEF ≤ 35% (mean age 63 ± 2 years, 82% male, BMI 27 ± 4 kg/m2), 32 controls (mean age 57 ± 11 years, 78% male, BMI 28 ± 4 kg/m2) | Cardiac magnetic resonance (EAT volume) | Reduced EAT volume and mass in HfrEF irrespective of underlying aetiology. Lower EAT mass/LV mass ratio compared to healthy controls. |
Tromp, 2021 [71] | Observational prospective nationwide study (Canada) | 204 patients with HF diagnosis (mean age 55 ± 11 years, 82% male, BMI 26 kg/m2), 113 community-based controls without HF (mean age 59 ± 10 years, 44% male, BMI 24 kg/m2) | Cardiac magnetic resonance (EAT volume) and echocardiography (EAT thickness) | EAT mass higher in HfrEF |
Pugliese, 2021 [56] | Observational prospective single center study | 205 HfrEF patients (median age 65 (IQR: 55–74) years, 65% male, BMI 27 (IQR: 21–33) kg/m2), 188 HfpEF patients (median age 73 (IQR: 64–80) years, 48% male, BMI 31.5 (IQR: 29–36) kg/m2), 44 healthy controls (median age 61 (IQR: 54–70) years, 59% male, BMI 23 (IQR: 22–24) kg/m2). | Echocardiography (EAT thickness) | Reduced EAT thickness in HfrEF as compared to HfpEF and healthy controls. In HfrEF, a reduced EAT thickness was associated with higher NT-proBNP, hs-CRP, and hs-TnT values; with a reduced execise capacity as expressed by peak VO2; and with an increased LV mass. Worse cardiovascular outcome in HFrEF patients with reduced EAT thickness. |
Treatment with Potential Effect on EAT | Rationale | Evidence |
---|---|---|
Statins | Pleiotropic effect (especially on myocardial inflammation) | |
Anticytokines (e.g., anti-TNF alpha, anti-IL1) | Reduction in systemic inflammation | Indirect (and controversial) evidence on reduction in systemic inflammatory biomarkers with hypothesis-generating data [74,75,76,77,78,79] |
SGLT2 inhibitors | Reduction in cardiac inflammation and fibrosis | Reduction in EAT mass and fibrosis and inflammatory biomarkers [85,86] |
Other oral antidiabetic agents (e.g., metformin, GLP1-RA) | Anti-inflammatory and anti-oxidative stress effects, role on adipogenesis and adipocyte function | Reduction in EAT mass and EAT-related inflammation with hypothesis generated through controversial data |
Fibroblast growth factor 21 gene therapy | Improvement in energy homeostasis in visceral adipose tissue | Intraperitoneal injection associated with lower adiposity, inflammatory cytokines, insulin resistance, and glycemic processing in mice [89] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rossi, V.A.; Gruebler, M.; Monzo, L.; Galluzzo, A.; Beltrami, M. The Different Pathways of Epicardial Adipose Tissue across the Heart Failure Phenotypes: From Pathophysiology to Therapeutic Target. Int. J. Mol. Sci. 2023, 24, 6838. https://doi.org/10.3390/ijms24076838
Rossi VA, Gruebler M, Monzo L, Galluzzo A, Beltrami M. The Different Pathways of Epicardial Adipose Tissue across the Heart Failure Phenotypes: From Pathophysiology to Therapeutic Target. International Journal of Molecular Sciences. 2023; 24(7):6838. https://doi.org/10.3390/ijms24076838
Chicago/Turabian StyleRossi, Valentina A., Martin Gruebler, Luca Monzo, Alessandro Galluzzo, and Matteo Beltrami. 2023. "The Different Pathways of Epicardial Adipose Tissue across the Heart Failure Phenotypes: From Pathophysiology to Therapeutic Target" International Journal of Molecular Sciences 24, no. 7: 6838. https://doi.org/10.3390/ijms24076838
APA StyleRossi, V. A., Gruebler, M., Monzo, L., Galluzzo, A., & Beltrami, M. (2023). The Different Pathways of Epicardial Adipose Tissue across the Heart Failure Phenotypes: From Pathophysiology to Therapeutic Target. International Journal of Molecular Sciences, 24(7), 6838. https://doi.org/10.3390/ijms24076838