IRAK2, an Immune and Radiation-Response Gene, Correlates with Advanced Disease Features but Predicts Higher Post-Irradiation Local Control in Non-Metastatic and Resected Oral Cancer Patients
Abstract
:1. Introduction
2. Results
2.1. Investigating Irradiation Response Genes in Irradiated OML1 Oral Cancer Cells through Transcriptome Analysis
2.2. Gene Ontology Analysis Shows Enriched Biological Processes of Post-Irradiation (Post-IR) Upregulated Genes
2.3. IRAK2 Expression Predicts Local Control for Patients Who Received Radiotherapy
3. Discussion
4. Materials and Methods
4.1. Clinical Specimens
4.2. Functional Analysis of Radiation-Responsive Genes
4.3. Definition the High or Low Scores of IRAK2
4.4. Research Database of Clinical Outcomes
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huang, S.H.; O’Sullivan, B. Oral cancer: Current role of radiotherapy and chemotherapy. Med. Oral Patol. Oral Cir. Bucal 2013, 18, e233–e240. [Google Scholar] [CrossRef]
- NCCN.org. Clinical Practice Guidelines in Oncology: Head and Neck Cancers. Available online: https://www.nccn.org/professionals/physician_gls/default.aspx (accessed on 27 December 2021).
- Dragovic, A.F.; Caudell, J.J.; Spencer, S.A.; Carroll, W.R.; Nabell, L.A.; Bonner, J.A. Locoregional failure and the risk of distant metastasis after modern radiotherapy for head and neck cancer. Head Neck 2013, 35, 381–387. [Google Scholar] [CrossRef]
- Shukla, L.; Lee, S.A.; Du, M.R.M.; Karnezis, T.; Ritchie, M.E.; Shayan, R. A transcriptomic dataset evaluating the effect of radiotherapy injury on cells of skin and soft tissue. Data Brief 2022, 41, 107828. [Google Scholar] [CrossRef]
- Meng, T.; Lan, Z.; Zhao, X.; Niu, L.; Chen, C.; Zhang, W. Comprehensive Bioinformatics Analysis of Functional Molecules in Colorectal Cancer. J. Gastrointest. Oncol. 2022, 13, 231–245. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Wang, Z.; Yang, N.; Liu, S.; Yan, J.; Song, J.; Yang, S.; Zhang, Y. Identification of Biomarkers for Cervical Cancer Radiotherapy Resistance Based on RNA Sequencing Data. Front. Cell Dev. Biol. 2021, 9, 724172. [Google Scholar] [CrossRef]
- Meylan, E.; Tschopp, J. IRAK2 takes its place in TLR Signaling. Nat. Immunol. 2008, 9, 581–582. [Google Scholar] [CrossRef]
- Ruckdeschel, K.; Mannel, O.; Schrottner, P. Divergence of apoptosis-inducing and preventing signals in bacteria-faced macrophages through myeloid differentiation factor 88 and IL-1 receptor-associated kinase members. J. Immunol. 2002, 168, 4601–4611. [Google Scholar] [CrossRef] [PubMed]
- Benosman, S.; Ravanan, P.; Correa, R.G.; Hou, Y.C.; Yu, M.; Gulen, M.F.; Li, X.; Thomas, J.; Cuddy, M.; Matsuzawa, Y.; et al. Interleukin-1 receptor-associated kinase-2 (IRAK2) is a critical mediator of endoplasmic reticulum (ER) stress signaling. PLoS ONE 2013, 8, e64256. [Google Scholar] [CrossRef] [Green Version]
- Yu, C.C.; Chan, M.W.Y.; Lin, H.Y.; Chiou, W.Y.; Lin, R.I.; Chen, C.A.; Lee, M.S.; Chi, C.L.; Chen, L.C.; Huang, L.W.; et al. IRAK2, an IL1R/TLR Immune Mediator, Enhances Radiosensitivity via Modulating Caspase 8/3-Mediated Apoptosis in Oral Squamous Cell Carcinoma. Front. Oncol. 2021, 11, 647175. [Google Scholar] [CrossRef]
- Yang, J.; Liu, D.J.; Zheng, J.H.; He, R.Z.; Xu, D.P.; Yang, M.W.; Yao, H.F.; Fu, X.L.; Yang, J.Y.; Huo, Y.M.; et al. IRAK2-NF-κB signaling promotes glycolysis-dependent tumor growth in pancreatic cancer. Cell Oncol. 2022, 45, 367–379. [Google Scholar] [CrossRef] [PubMed]
- Ferraro, F.; Steinle, A.; Narasimhan, H.; Bleilevens, A.; Stolzenberg, P.M.; Braunschweig, T.; Stickeler, E.; Maurer, J. IRAK2 Downregulation in Triple-Negative Breast Cancer Cells Decreases Cellular Growth In Vitro and Delays Tumour Progression in Murine Models. Int. J. Mol. Sci. 2023, 24, 2520. [Google Scholar] [CrossRef] [PubMed]
- Hong, M.; Tao, S.; Zhang, L.; Diao, L.T.; Huang, X.; Huang, S.; Xie, S.J.; Xiao, Z.D.; Zhang, H. RNA Sequencing: New Technologies and Applications in Cancer Research. J. Hematol. Oncol. 2020, 13, 166. [Google Scholar] [CrossRef] [PubMed]
- Lhuillier, C.; Vanpouille-Box, C.; Galluzzi, L.; Formenti, S.C.; Demaria, S. Emerging biomarkers for the combination of radiotherapy and immune checkpoint blockers. Semin. Cancer Biol. 2018, 52, 125–134. [Google Scholar] [CrossRef] [PubMed]
- Mills, B.N.; Qiu, H.; Drage, M.G.; Chen, C.; Mathew, J.S.; Garrett-Larsen, J.; Ye, J.; Uccello, T.P.; Murphy, J.D.; Belt, B.A.; et al. Modulation of the Human Pancreatic Ductal Adenocarcinoma Immune Microenvironment by Stereotactic Body Radiotherapy. Clin. Cancer Res. 2022, 28, 150–162. [Google Scholar] [CrossRef]
- Zhou, H.; Yang, P.; Li, H.; Zhang, L.; Li, J.; Zhang, T.; Sheng, C.; Wang, J. Carbon ion radiotherapy boosts anti-tumour immune responses by inhibiting myeloid-derived suppressor cells in melanoma-bearing mice. Cell Death Discov. 2021, 7, 332. [Google Scholar] [CrossRef]
- Ruckert, M.; Flohr, A.S.; Hecht, M.; Gaipl, U.S. Radiotherapy and the immune system: More than just immune suppression. Stem. Cells 2021, 39, 1155–1165. [Google Scholar] [CrossRef]
- Xu, Z.; Feng, J.; Weng, Y.; Jin, Y.; Peng, M. Combination of Immune Checkpoint Inhibitors and Radiotherapy for Advanced Non-Small-Cell Lung Cancer and Prostate Cancer: A Meta-Analysis. J. Oncol. 2021, 2021, 6631643. [Google Scholar] [CrossRef]
- Ruckert, M.; Deloch, L.; Frey, B.; Schlucker, E.; Fietkau, R.; Gaipl, U.S. Combinations of Radiotherapy with Vaccination and Immune Checkpoint Inhibition Differently Affect Primary and Abscopal Tumor Growth and the Tumor Microenvironment. Cancers 2021, 13, 714. [Google Scholar] [CrossRef]
- Ye, Z.H.; Gao, L.; Wen, D.Y.; He, Y.; Pang, Y.Y.; Chen, G. Diagnostic and prognostic roles of IRAK1 in hepatocellular carcinoma tissues: An analysis of immunohistochemistry and RNA-sequencing data from the cancer genome atlas. OncoTargets Ther. 2017, 10, 1711–1723. [Google Scholar] [CrossRef] [Green Version]
- Yang, M.; Qin, X.; Qin, G.; Zheng, X. The role of IRAK1 in breast cancer patients treated with neoadjuvant chemotherapy. OncoTargets Ther. 2019, 12, 2171–2180. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Chen, Y.; Zhang, D.; Grossman, J.; Li, L.; Khurana, N.; Jiang, H.; Grierson, P.M.; Herndon, J.; DeNardo, D.G.; et al. IRAK4 mediates colitis-induced tumorigenesis and chemoresistance in colorectal cancer. JCI Insight 2019, 4, e130867. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.; Chen, Y.; Huang, Q.; Liu, W.; Ji, X.; Hu, F.; Zhu, Y.; Zhang, L.; Dong, G. IRAK2 Counterbalances Oncogenic Smurf1 in Colon Cancer Cells by dictating ER Stress. Cell Signal. 2018, 48, 69–80. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Liu, H.; Liu, S.; Wang, Y.; Xie, J.; Stinchcombe, T.E.; Su, L.; Zhang, R.; Christiani, D.C.; Li, W.; et al. Genetic variant of IRAK2 in the Toll-like Receptor Signaling Pathway and Survival of Non-Small Cell Lung Cancer. Int. J. Cancer 2018, 143, 2400–2408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zu, H.; Wang, F.; Ma, Y.; Xue, Y. Stage-stratified analysis of prognostic significance of tumor size in patients with gastric cancer. PLoS ONE 2013, 8, e54502. [Google Scholar] [CrossRef] [Green Version]
- Shao, X.; Cheng, Z.; Xu, M.; Tan, Z.; Gao, L.; Wang, J.; Zhou, C. Pooled analysis of prognostic value and clinical significance of Rab1A expression in human solid tumors. Medicine 2019, 98, e18370. [Google Scholar] [CrossRef]
- Ding, N.; Pang, Z.; Shen, H.; Ni, Y.; Du, J.; Liu, Q. The Prognostic Value of PLR in Lung Cancer, a Meta-analysis Based on Results from a Large Consecutive Cohort. Sci. Rep. 2016, 6, 34823. [Google Scholar] [CrossRef] [Green Version]
- Liu, P.H.; Shah, R.B.; Li, Y.; Arora, A.; Ung, P.M.; Raman, R.; Gorbatenko, A.; Kozono, S.; Zhou, X.Z.; Brechin, V.; et al. An IRAK1-PIN1 signalling axis drives intrinsic tumour resistance to radiation therapy. Nat. Cell Biol. 2019, 21, 203–213. [Google Scholar] [CrossRef] [Green Version]
- Liu, P.H.; Sidi, S. Targeting the Innate Immune Kinase IRAK1 in Radioresistant Cancer: Double-Edged Sword or One-Two Punch? Front. Oncol. 2019, 9, 1174. [Google Scholar] [CrossRef]
- Lin, H.Y.; Huang, T.T.; Lee, M.S.; Hung, S.K.; Lin, R.I.; Tseng, C.E.; Chang, S.M.; Chiou, W.Y.; Hsu, F.C.; Hsu, W.L.; et al. Unexpected close surgical margin in resected buccal cancer: Very close margin and DAPK promoter hypermethylation predict poor clinical outcomes. Oral Oncol. 2013, 49, 336–344. [Google Scholar] [CrossRef]
GO ID and Term | Count | p | Genes |
---|---|---|---|
0010647: positive regulation of cell communication | 8 | 0.000190 | CD74, ECM1, CSF2, IRAK2, CA2, INHBB, INHBA, HBEGF |
0023056: positive regulation of signaling | 8 | 0.000196 | CD74, ECM1, CSF2, IRAK2, CA2, INHBB, INHBA, HBEGF |
0042221: response to chemical | 11 | 0.000696 | C4B, CD74, HSD3B7, ECM1, FABP3, CSF2, IRAK2, CA2, INHBB, INHBA, HBEGF |
0006950: response to stress | 10 | 0.001559 | C4B, CD74, ECM1, CSF2, IRAK2, CA2, MCAM, INHBB, INHBA, HBEGF |
0045937: positive regulation of phosphate metabolic process | 6 | 0.001669 | CD74, FABP3, CSF2, IRAK2, INHBB, INHBA |
0030334: regulation of cell migration | 5 | 0.002614 | CD74, ECM1, MCAM, PHLDA2, HBEGF |
2001233: regulation of apoptotic signaling pathway | 4 | 0.004272 | CD74, CSF2, INHBB, INHBA |
0002682: regulation of immune system process | 6 | 0.005518 | C4B, CD74, ECM1, IRAK2, CA2, INHBA |
0048608: reproductive structure development | 4 | 0.005576 | CSF2, INHBB, INHBA, PHLDA2 |
0033993: response to lipid | 5 | 0.005924 | FABP3, CSF2, IRAK2, CA2, INHBA |
0001959: regulation of cytokine-mediated signaling pathway | 3 | 0.007031 | CD74, ECM1, IRAK2 |
1901701: cellular response to oxygen-containing compound | 5 | 0.007289 | CSF2, IRAK2, CA2, INHBB, INHBA |
0006952: defense response | 6 | 0.008326 | C4B, CD74, ECM1, IRAK2, INHBB, INHBA |
0042127: regulation of cell proliferation | 6 | 0.009138 | CD74, ECM1, FABP3, CSF2, INHBA, HBEGF |
IRAK2 | p-Value | ||||
---|---|---|---|---|---|
Low-Expressed (n = 87) | High-Expressed (n = 85) | ||||
Age | |||||
Age ≦ 50 | 32 | 36.8% | 32 | 37.6% | 0.91 |
Age > 50 | 55 | 63.2% | 53 | 62.4% | |
Gender | |||||
Male | 76 | 87.4% | 80 | 94.1% | 0.13 |
Female | 11 | 12.6% | 5 | 5.9% | |
Pathology grade | |||||
G1 | 8 | 9.2% | 4 | 4.7% | 0.51 |
G2 | 73 | 83.9% | 75 | 88.2% | |
G3 | 6 | 6.9% | 6 | 7.1% | |
pT | |||||
pT1 | 39 | 44.8% | 20 | 23.5% | 0.01 |
pT2 | 32 | 36.8% | 34 | 40.0% | |
pT3 | 6 | 6.9% | 10 | 11.8% | |
pT4 | 10 | 11.5% | 21 | 24.7% | |
pN | |||||
pN0 | 73 | 83.9% | 61 | 71.8% | 0.14 |
pN1 | 7 | 8.0% | 14 | 16.5% | |
pN2 | 7 | 8.0% | 10 | 11.8% | |
Pathological stage | |||||
I | 36 | 41.4% | 19 | 22.4% | 0.02 |
II | 26 | 29.9% | 24 | 28.2% | |
III | 11 | 12.6% | 15 | 17.6% | |
IVA-IVB | 14 | 16.1% | 27 | 31.8% | |
RT | |||||
No | 44 | 50.6% | 35 | 41.2% | 0.22 |
Yes | 43 | 49.4% | 50 | 58.8% | |
CT | |||||
No | 51 | 58.6% | 43 | 50.6% | 0.29 |
Yes | 36 | 41.4% | 42 | 49.4% | |
CCRT | |||||
No | 64 | 73.6% | 53 | 62.4% | 0.12 |
Yes | 23 | 26.4% | 32 | 37.6% | |
Treatment | |||||
OP alone | 40 | 46.0% | 30 | 35.3% | 0.38 |
OP + RT | 20 | 23.0% | 18 | 21.2% | |
OP + RT/CT | 4 | 4.6% | 5 | 5.9% | |
OP + CCRT | 23 | 26.4% | 32 | 37.6% | |
Margin status | |||||
Margin < 1 mm | 11 | 12.6% | 20 | 23.5% | 0.06 |
Margin ≧ 1 mm | 76 | 87.4% | 65 | 76.5% | |
Bone invasion | |||||
Negative | 81 | 93.1% | 67 | 78.8% | 0.01 |
Positive | 6 | 6.9% | 18 | 21.2% | |
Extracapsular spread of lymph node | |||||
Negative | 85 | 97.7% | 80 | 94.1% | 0.28 |
Positive | 2 | 2.3% | 5 | 5.9% | |
Lymphatic permeation | |||||
Negative | 82 | 94.3% | 74 | 87.1% | 0.10 |
Positive | 5 | 5.7% | 11 | 12.9% | |
Vascular permeation | |||||
Negative | 86 | 98.9% | 80 | 94.1% | 0.12 |
Positive | 1 | 1.1% | 5 | 5.9% | |
Perineural invasion | |||||
Negative | 73 | 83.9% | 70 | 82.4% | 0.79 |
Positive | 14 | 16.1% | 15 | 17.6% | |
Submandibular gland invasion | |||||
Negative | 87 | 100.0% | 83 | 97.6% | 0.24 |
Positive | 0 | .0% | 2 | 2.4% | |
Skin invasion | |||||
Negative | 83 | 95.4% | 82 | 96.5% | 0.72 |
Positive | 4 | 4.6% | 3 | 3.5% |
Crude Estimate (Univariate) | Adjusted Estimate (Multivariate) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Coefficient | HR | 95% CI | p-Value | Coefficient | HR | 95% CI | p-Value | |||
IRAK2 (Low, ref) | −0.90 | 0.41 | 0.16 | 1.02 | 0.056 | −1.33 | 0.26 | 0.10 | 0.71 | 0.008 |
Age (Continuous) | −0.01 | 0.99 | 0.96 | 1.02 | 0.52 | −0.02 | 0.98 | 0.94 | 1.02 | 0.33 |
Gender (Male, ref) | −0.33 | 0.72 | 0.17 | 3.06 | 0.66 | −0.29 | 0.75 | 0.17 | 3.28 | 0.70 |
Grade 1 (ref) | ||||||||||
Grade 2 | 0.52 | 1.69 | 0.23 | 12.51 | 0.61 | −0.17 | 0.85 | 0.10 | 7.04 | 0.88 |
Grade 3 | −12.59 | 0.00 | 0.00 | 0.98 | −12.56 | 0.00 | 0.00 | 0.98 | ||
pStage I (ref) | ||||||||||
pStage II | −0.31 | 0.73 | 0.26 | 2.06 | 0.55 | 0.29 | 1.34 | 0.45 | 3.95 | 0.60 |
pStage III | 0.84 | 2.31 | 0.86 | 6.22 | 0.10 | 1.26 | 3.52 | 1.00 | 12.41 | 0.05 |
pStage IV | 0.51 | 1.66 | 0.36 | 7.71 | 0.51 | 0.88 | 2.40 | 0.39 | 14.81 | 0.35 |
OP (ref) | ||||||||||
OP with adjuvant RT | 1.29 | 3.64 | 1.24 | 10.67 | 0.018 | 1.42 | 4.16 | 1.32 | 13.07 | 0.015 |
OP with adjuvant CT | 1.54 | 4.66 | 0.90 | 24.03 | 0.07 | 1.60 | 4.94 | 0.78 | 31.33 | 0.09 |
OP with adjuvant CCRT | 1.04 | 2.84 | 0.90 | 8.94 | 0.08 | 0.09 | 1.09 | 0.26 | 4.52 | 0.91 |
5-Year Overall Survival | 5-Year Cancer-Cause-Specific Survival | ||||||||
---|---|---|---|---|---|---|---|---|---|
RT Group (%) | p-Value | Non-RT Group (%) | p-Value | RT Group (%) | p-Value | Non-RT Group (%) | p-Value | ||
Pathology Stage I–II | Low IRAK2 | 80.8 | 0.64 | 88.9 | 0.15 | 88.0 | 0.90 | 91.5 | 0.306 |
High IRAK2 | 73.7 | 75 | 89.2 | 83.3 | |||||
Pathology Stage III–IVA/B | Low IRAK2 | 58.8 | 0.63 | 50.0 | 0.63 | 58.8 | 0.72 | 50.0 | 0.633 |
High IRAK2 | 51.6 | 45.5 | 64.6 | 45.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, C.-C.; Lin, H.-Y.; Hsieh, C.-H.; Chan, M.W.Y.; Chiou, W.-Y.; Lee, M.-S.; Chi, C.-L.; Lin, R.-I.; Hsu, F.-C.; Chen, L.-C.; et al. IRAK2, an Immune and Radiation-Response Gene, Correlates with Advanced Disease Features but Predicts Higher Post-Irradiation Local Control in Non-Metastatic and Resected Oral Cancer Patients. Int. J. Mol. Sci. 2023, 24, 6903. https://doi.org/10.3390/ijms24086903
Yu C-C, Lin H-Y, Hsieh C-H, Chan MWY, Chiou W-Y, Lee M-S, Chi C-L, Lin R-I, Hsu F-C, Chen L-C, et al. IRAK2, an Immune and Radiation-Response Gene, Correlates with Advanced Disease Features but Predicts Higher Post-Irradiation Local Control in Non-Metastatic and Resected Oral Cancer Patients. International Journal of Molecular Sciences. 2023; 24(8):6903. https://doi.org/10.3390/ijms24086903
Chicago/Turabian StyleYu, Chih-Chia, Hon-Yi Lin, Chen-Hsi Hsieh, Michael W. Y. Chan, Wen-Yen Chiou, Moon-Sing Lee, Chen-Lin Chi, Ru-Inn Lin, Feng-Chun Hsu, Liang-Cheng Chen, and et al. 2023. "IRAK2, an Immune and Radiation-Response Gene, Correlates with Advanced Disease Features but Predicts Higher Post-Irradiation Local Control in Non-Metastatic and Resected Oral Cancer Patients" International Journal of Molecular Sciences 24, no. 8: 6903. https://doi.org/10.3390/ijms24086903
APA StyleYu, C. -C., Lin, H. -Y., Hsieh, C. -H., Chan, M. W. Y., Chiou, W. -Y., Lee, M. -S., Chi, C. -L., Lin, R. -I., Hsu, F. -C., Chen, L. -C., Chew, C. -H., Yang, H. -J., & Hung, S. -K. (2023). IRAK2, an Immune and Radiation-Response Gene, Correlates with Advanced Disease Features but Predicts Higher Post-Irradiation Local Control in Non-Metastatic and Resected Oral Cancer Patients. International Journal of Molecular Sciences, 24(8), 6903. https://doi.org/10.3390/ijms24086903