How Can We Prevent Mother-to-Child Transmission of HTLV-1?
Abstract
:1. Introduction
2. Mechanisms of HTLV-1 Transmission
2.1. Cell-to-Cell Transmission
2.2. HTLV-1 Life Cycle
2.3. HTLV-1 Replication
3. Modes of HTLV-1 Transmission
3.1. Horizontal Transmission
3.2. Mother-to-Child Transmission
3.2.1. Transmission Routes of MTCT
Antenatal Transmission
Transmission through Breastfeeding
3.2.2. Risk Factors Associated with MTCT
4. Strategies to Prevent HTLV-1 MTCT
4.1. Prevention of MTCT through Nutritional Regimens
4.1.1. Exclusive Formula Feeding (ExFF)
4.1.2. Short-Term Breastfeeding (STBF)
4.1.3. Frozen–Thawed Breast Milk Feeding (FTBMF)
4.1.4. Milk Pasteurization and Banked Human Milk
4.1.5. Mixed Feeding
4.2. Prevention Methods Other Than Nutritional Regimens
5. Screening Program and Strategies for Prevention of MTCT in Japan
5.1. Background
5.2. Screening Program in Practice
5.3. Nutritional Regimens in Japan
5.4. Issues of Nationwide Antenatal Screening Program in Japan
5.4.1. Support for Carrier Mothers
5.4.2. Selection of Nutrition Regimen Considering Risk Factors
5.4.3. Follow-Up of a Child Infected via MTCT
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Moore, P.S.; Chang, Y. Why do viruses cause cancer? Highlights of the first century of human tumour virology. Nat. Rev. Cancer 2010, 10, 878–889. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gallo, R.C. Kyoto Workshop on some specific recent advances in human tumor virology. Cancer Res. 1981, 41, 4738–4739. [Google Scholar]
- Hinuma, Y.; Nagata, K.; Hanaoka, M.; Nakai, M.; Matsumoto, T.; Kinoshita, K.; Shirakawa, S.; Miyoshi, I. Adult T-cell leukemia: Antigen in an ATL cell line and detection of antibodies to the antigen in human sera. Proc. Natl. Acad. Sci. USA 1981, 78, 6476–6480. [Google Scholar] [CrossRef] [Green Version]
- Gessain, A.; Vernant, J.; Maurs, L.; Barin, F.; Gout, O.; Calender, A.; De Thé, G. Antibodies to human t-lymphotropic virus type-i in patients with tropical spastic paraparesis. Lancet 1985, 326, 407–410. [Google Scholar] [CrossRef] [PubMed]
- Osame, M.; Usuku, K.; Izumo, S.; Ijichi, N.; Amitani, H.; Igata, A.; Matsumoto, M.; Tara, M. HTLV-I associated myelopathy, a new clinical entity. Lancet 1986, 1, 1031–1032. [Google Scholar] [CrossRef]
- Iwanaga, M.; Watanabe, T.; Yamaguchi, K. Adult T-cell leukemia: A review of epidemiological evidence. Front. Microbiol. 2012, 3, 322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaplan, J.E.; Osame, M.; Kubota, H.; Igata, A.; Nishitani, H.; Maeda, Y.; Khabbaz, R.F.; Janssen, R.S. The risk of development of HTLV-I-associated myelopathy/tropical spastic paraparesis among persons infected with HTLV-I. J. Acquir. Immune Defic. Syndr. 1990, 3, 1096–1101. [Google Scholar] [PubMed]
- Maloney, E.M.; Cleghorn, F.R.; Morgan, O.S.C.; Rodgers-Johnson, P.; Cranston, B.; Jack, N.; Blattner, W.A.; Bartholomew, C.; Manns, A. Incidence of HTLV-I-Associated Myelopathy/Tropical Spastic Paraparesis (HAM/TSP) in Jamaica and Trinidad. J. Acquir. Immune Defic. Syndr. Hum. Retrovirology 1998, 17, 167–170. [Google Scholar] [CrossRef]
- Kamoi, K. HTLV-1 in Ophthalmology. Front. Microbiol. 2020, 11, 388. [Google Scholar] [CrossRef] [Green Version]
- Schierhout, G.; McGregor, S.; Gessain, A.; Einsiedel, L.; Martinello, M.; Kaldor, J. Association between HTLV-1 infection and adverse health outcomes: A systematic review and meta-analysis of epidemiological studies. Lancet Infect. Dis. 2019, 20, 133–143. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Human T-lymphotropic Virus Type 1, Technical Report [Internet]. Available online: https://www.who.int/publications-detail-redirect/9789240020221 (accessed on 20 November 2022).
- Cook, L.B.M.; Taylor, G.P. HTLV-1, The silent impact revealed. Lancet Infect. Dis. 2019, 20, 12–14. [Google Scholar] [CrossRef] [PubMed]
- Gessain, A.; Cassar, O. Epidemiological Aspects and World Distribution of HTLV-1 Infection. Front. Microbiol. 2012, 3, 388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eusebio-Ponce, E.; Anguita, E.; Paulino-Ramirez, R.; Candel, F.J. HTLV-1 infection: An emerging risk. Pathogenesis, epidemiology, diagnosis and associated diseases. Rev. Esp. Quimioter. 2019, 32, 485–496. [Google Scholar] [PubMed]
- Carneiro-Proietti, A.B.F.; Amaranto-Damasio, M.S.; Leal-Horiguchi, C.F.; Bastos, R.H.C.; Seabra-Freitas, G.; Borowiak, D.R.; Ribeiro, M.A.; Proietti, F.A.; Ferreira, A.S.D.; Martins, M.L. Mother-to-child transmission of human T-Cell lymphotropic viruses-1/2, What we know, and what are the gaps in understanding and preventing this route of infection. J. Pediatric. Infect Dis. Soc. 2014, 3 (Suppl. 1), S24–S29. [Google Scholar] [CrossRef] [PubMed]
- Bartholomew, C.; Jack, N.; Edwards, J.; Charles, W.; Corbin, D.; Cleghorn, F.R.; Blattner, W.A. HTLV-I serostatus of mothers of patients with adult T-cell leukemia and HTLV-I-associated myelopathy/tropical spastic paraparesis. J. Hum. Virol. 1999, 1, 302–305. [Google Scholar]
- Bangham, C.R.M.; Miura, M.; Kulkarni, A.; Matsuoka, M. Regulation of Latency in the Human T Cell Leukemia Virus, HTLV-1. Annu. Rev. Virol. 2019, 6, 365–385. [Google Scholar] [CrossRef]
- Demontis, M.A.; Sadiq, M.T.; Golz, S.; Taylor, G.P. HTLV-1 viral RNA is detected rarely in plasma of HTLV-1 infected subjects. J. Med. Virol. 2015, 87, 2130–2134. [Google Scholar] [CrossRef]
- Sato, H.; Orensteint, J.; Dimitrov, D.; Martin, M. Cell-to-cell spread of HIV-1 occurs within minutes and may not involve the participation of virus particles. Virology 1992, 186, 712–724. [Google Scholar] [CrossRef]
- Jolly, C. Cell-to-cell transmission of retroviruses: Innate immunity and interferon-induced restriction factors. Virology 2011, 411, 251–259. [Google Scholar] [CrossRef] [Green Version]
- Nejmeddine, M.; Bangham, C.R. The HTLV-1 Virological Synapse. Viruses 2010, 2, 1427–1447. [Google Scholar] [CrossRef] [Green Version]
- Van Prooyen, N.; Gold, H.; Andresen, V.; Schwartz, O.; Jones, K.; Ruscetti, F.; Lockett, S.; Gudla, P.; Venzon, D.; Franchini, G. Human T-cell leukemia virus type 1 p8 protein increases cellular conduits and virus transmission. Proc. Natl. Acad. Sci. USA 2010, 107, 20738–20743. [Google Scholar] [CrossRef] [Green Version]
- Pais-Correia, A.M.; Sachse, M.; Guadagnini, S.; Robbiati, V.; Lasserre, R.; Gessain, A.; Gout, O.; Alcover, A.; Thoulouze, M.I. Biofilm-like extracellular viral assemblies mediate HTLV-1 cell-to-cell transmission at virological synapses. Nat. Med. 2010, 16, 83–89. [Google Scholar] [CrossRef] [PubMed]
- Pinto, D.O.; Al Sharif, S.; Mensah, G.; Cowen, M.; Khatkar, P.; Erickson, J.; Branscome, H.; Lattanze, T.; DeMarino, C.; Alem, E.; et al. Extracellular vesicles from HTLV-1 infected cells modulate target cells and viral spread. Retrovirology 2021, 18, 6. [Google Scholar] [CrossRef] [PubMed]
- Hiyoshi, M.; Takahashi, N.; Eltalkhawy, Y.M.; Noyori, O.; Lotfi, S.; Panaampon, J.; Okada, S.; Tanaka, Y.; Ueno, T.; Fujisawa, J.; et al. M-Sec induced by HTLV-1 mediates an efficient viral transmission. Swanstrom R, editor. PLOS Pathog. 2021, 17, e1010126. [Google Scholar] [CrossRef]
- Hirons, A.; Khoury, G.; Purcell, D.F.J. Human T-cell lymphotropic virus type-1, A lifelong persistent infection, yet never truly silent. Lancet Infect. Dis. 2020, 21, e2–e10. [Google Scholar] [CrossRef] [PubMed]
- Pique, C.; Jones, K.S. Pathways of cell-cell transmission of HTLV-1. Front. Microbiol. 2012, 3, 378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manel, N.; Kim, F.J.; Kinet, S.; Taylor, N.; Sitbon, M.; Battini, J.L. The ubiquitous glucose transporter GLUT-1 is a receptor for HTLV. Cell 2003, 115, 449–459. [Google Scholar] [CrossRef] [Green Version]
- Ghez, D.; Lepelletier, Y.; Lambert, S.; Fourneau, J.M.; Blot, V.; Janvier, S.; Arnulf, B.; van Endert, P.M.; Heveker, N.; Pique, C.; et al. Neuropilin-1 Is Involved in Human T-Cell Lymphotropic Virus Type 1 Entry. J. Virol. 2006, 80, 6844–6854. [Google Scholar] [CrossRef] [Green Version]
- Jones, K.S.; Petrow-Sadowski, C.; Bertolette, D.C.; Huang, Y.; Ruscetti, F.W. Heparan sulfate proteoglycans mediate attachment and entry of human T-cell leukemia virus type 1 virions into CD4+ T cells. J. Virol. 2005, 79, 12692–12702. [Google Scholar] [CrossRef] [Green Version]
- Lambert, S.; Bouttier, M.; Vassy, R.; Seigneuret, M.; Petrow-Sadowski, C.; Janvier, S.; Heveker, N.; Ruscetti, F.W.; Perret, G.; Jones, K.S.; et al. HTLV-1 uses HSPG and neuropilin-1 for entry by molecular mimicry of VEGF165. Blood 2009, 113, 5176–5185. [Google Scholar] [CrossRef] [Green Version]
- Jones, K.S.; Petrow-Sadowski, C.; Huang, Y.K.; Bertolette, D.C.; Ruscetti, F.W. Cell-free HTLV-1 infects dendritic cells leading to transmission and transformation of CD4(+) T cells. Nat. Med. 2008, 14, 429–436. [Google Scholar] [CrossRef] [PubMed]
- Jain, P.; Manuel, S.L.; Khan, Z.K.; Ahuja, J.; Quann, K.; Wigdahl, B. DC-SIGN mediates cell-free infection and transmission of human T-cell lymphotropic virus type 1 by dendritic cells. J. Virol. 2009, 83, 10908–10921. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Assil, S.; Futsch, N.; Décembre, E.; Alais, S.; Gessain, A.; Cosset, F.L.; Mahieux, R.; Dreux, M.; Hélène Dutartre, H. Sensing of cell-associated HTLV by plasmacytoid dendritic cells is regulated by dense β-galactoside glycosylation. PLoS Pathog. 2019, 15, e1007589. [Google Scholar] [CrossRef] [Green Version]
- Koyanagi, Y.; Itoyama, Y.; Nakamura, N.; Takamatsu, K.; Kira, J.; Iwamasa, T.; Goto, I.; Yamamoto, N. In vivo infection of human T-cell leukemia virus type I in non-T cells. Virology 1993, 196, 25–33. [Google Scholar] [CrossRef]
- Richardson, J.H.; Edwards, A.J.; Cruickshank, J.K.; Rudge, P.; Dalgleish, A.G. In vivo cellular tropism of human T-cell leukemia virus type 1. J. Virol. 1990, 64, 5682–5687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagai, M.; Brennan, M.B.; Sakai, J.A.; Mora, C.A.; Jacobson, S. CD8(+) T cells are an in vivo reservoir for human T-cell lymphotropic virus type I. Blood 2001, 98, 1858–1861. [Google Scholar] [CrossRef] [Green Version]
- Macatonia, S.E.; Cruickshank, J.K.; Rudge, P.; Knight, S.C. Dendritic cells from patients with tropical spastic paraparesis are infected with HTLV-1 and stimulate autologous lymphocyte proliferation. AIDS Res. Hum. Retroviruses 1992, 8, 1699–1706. [Google Scholar] [CrossRef]
- Hishizawa, M.; Imada, K.; Kitawaki, T.; Ueda, M.; Kadowaki, N.; Uchiyama, T. Depletion and impaired interferon-alpha-producing capacity of blood plasmacytoid dendritic cells in human T-cell leukaemia virus type I-infected individuals. Br. J. Haematol. 2004, 125, 568–575. [Google Scholar] [CrossRef]
- de Castro-Amarante, M.F.; Pise-Masison, C.A.; McKinnon, K.; Washington Parks, R.; Galli, V.; Omsland, M.; Andresen, V.; Massoud, R.; Brunetto, G.; Caruso, B.; et al. Human T Cell Leukemia Virus Type 1 Infection of the Three Monocyte Subsets Contributes to Viral Burden in Humans. J. Virol. 2015, 90, 2195–2207. [Google Scholar] [CrossRef] [Green Version]
- Igakura, T.; Stinchcombe, J.C.; Goon, P.K.C.; Taylor, G.P.; Weber, J.N.; Griffiths, G.M.; Tanaka, Y.; Osame, M.; Bangham, C.R.M. Spread of HTLV-I between lymphocytes by virus-induced polarization of the cytoskeleton. Science 2003, 299, 1713–1716. [Google Scholar] [CrossRef] [Green Version]
- Melamed, A.; Laydon, D.J.; Gillet, N.A.; Tanaka, Y.; Taylor, G.P.; Bangham, C.R.M. Genome-wide determinants of proviral targeting, clonal abundance and expression in natural HTLV-1 infection. PLoS Pathog. 2013, 9, e1003271. [Google Scholar] [CrossRef] [Green Version]
- Miura, M.; Naito, T.; Saito, M. Current Perspectives in Human T-Cell Leukemia Virus Type 1 Infection and Its Associated Diseases. Front. Med. 2022, 9, 867478. [Google Scholar] [CrossRef] [PubMed]
- Martin, J.L.; Maldonado, J.O.; Mueller, J.D.; Zhang, W.; Mansky, L.M. Molecular Studies of HTLV-1 Replication: An Update. Viruses 2016, 8, 31. [Google Scholar] [CrossRef] [PubMed]
- Gillet, N.A.; Malani, N.; Melamed, A.; Gormley, N.; Carter, R.; Bentley, D.; Berry, C.; Bushman, F.D.; Taylor, G.P.; Bangham, C.R.M. The host genomic environment of the provirus determines the abundance of HTLV-1-infected T-cell clones. Blood 2011, 117, 3113–3122. [Google Scholar] [CrossRef]
- Carpentier, A.; Barez, P.Y.; Hamaidia, M.; Gazon, H.; de Brogniez, A.; Perike, S.; Gillet, N.; Willems, L. Modes of Human T Cell Leukemia Virus Type 1 Transmission, Replication and Persistence. Viruses 2015, 7, 3603–3624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kannagi, M.; Harada, S.; Maruyama, I.; Inoko, H.; Igarashi, H.; Kuwashima, G.; Sato, S.; Morita, M.; Kidokoro, M.; Sugimoto, M.; et al. Predominant recognition of human T cell leukemia virus type I (HTLV-I) pX gene products by human CD8+ cytotoxic T cells directed against HTLV-I-infected cells. Int. Immunol. 1991, 3, 761–767. [Google Scholar] [CrossRef]
- Tanaka, A.; Matsuoka, M. HTLV-1 Alters T Cells for Viral Persistence and Transmission. Front. Microbiol. 2018, 9, 461. [Google Scholar] [CrossRef] [Green Version]
- Ma, G.; Yasunaga, J.I.; Matsuoka, M. Multifaceted functions and roles of HBZ in HTLV-1 pathogenesis. Retrovirology 2016, 13, 16. [Google Scholar] [CrossRef] [Green Version]
- Kashanchi, F.; Brady, J.N. Transcriptional and post-transcriptional gene regulation of HTLV-1. Oncogene 2005, 24, 5938–5951. [Google Scholar] [CrossRef] [Green Version]
- Edwards, D.; Fenizia, C.; Gold, H.; de Castro-Amarante, M.F.; Buchmann, C.; Pise-Masison, C.A.; Franchini, G. Orf-I and orf-II-encoded proteins in HTLV-1 infection and persistence. Viruses 2011, 3, 861–885. [Google Scholar] [CrossRef] [Green Version]
- Moles, R.; Sarkis, S.; Galli, V.; Omsland, M.; Purcell, D.F.J.; Yurick, D.; Khoury, G.; Pise-Masison, C.A.; Franchini, G. p30 protein: A critical regulator of HTLV-1 viral latency and host immunity. Retrovirology 2019, 16, 42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Omsland, M.; Silic-Benussi, M.; Moles, R.; Sarkis, S.; Purcell, D.F.J.; Yurick, D.; Khoury, G.; D’Agostino, D.M.; Ciminale, V.; Franchini, G. Functional properties and sequence variation of HTLV-1 p13. Retrovirology 2020, 17, 11. [Google Scholar] [CrossRef]
- Itabashi, K.; Miyazawa, T. Mother-to-Child Transmission of Human T-Cell Leukemia Virus Type 1, Mechanisms and Nutritional Strategies for Prevention. Cancers 2021, 13, 4100. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, S.; Tanaka, M.; Matsuda, H.; Tsukahara, Y.; Kuribayashi, Y.; Nakai, A.; Miyazaki, R.; Kamiya, N.; Sekizawa, A.; Mizutani, N.; et al. Prevalence of human T-cell leukemia virus type 1 carrier in Japanese pregnant women in 2013. J. Clin. Med. Res. 2015, 7, 499–500. [Google Scholar] [CrossRef] [Green Version]
- Itabashi, K.; Miyazawa, T.; Nerome, Y.; Sekizawa, A.; Moriuchi, H.; Saito, S.; Yonemoto, N. Issues of infant feeding for postnatal prevention of human T-cell leukemia/lymphoma virus type-1 mother-to-child transmission. Pediatr. Int. 2021, 63, 284–289. [Google Scholar] [CrossRef] [PubMed]
- Okochi, K.; Sato, H. Transmission of ATLV (HTLV-I) through blood transfusion. Int. Symp. Princess Takamatsu Cancer Res. Fund. 1984, 15, 129–135. [Google Scholar]
- Satake, M.; Iwanaga, M.; Sagara, Y.; Watanabe, T.; Okuma, K.; Hamaguchi, I. Incidence of human T-lymphotropic virus 1 infection in adolescent and adult blood donors in Japan: A nationwide retrospective cohort analysis. Lancet Infect. Dis. 2016, 16, 1246–1254. [Google Scholar] [CrossRef]
- Gallo, R.C.; Willems, L.; Hasegawa, H. Global Virus Network’s Task Force on HTLV-1. Screening transplant donors for HTLV-1 and -2. Blood 2016, 128, 3029–3031. [Google Scholar] [CrossRef] [Green Version]
- Stuver, S.O.; Tachibana, N.; Okayama, A.; Shioiri, S.; Tsunetoshi, Y.; Tsuda, K.; Mueller, N.E. Heterosexual transmission of human T cell leukemia/lymphoma virus type I among married couples in southwestern Japan: An initial report from the Miyazaki Cohort Study. J. Infect. Dis. 1993, 167, 57–65. [Google Scholar] [CrossRef]
- Paiva, A.; Casseb, J. Sexual transmission of human T-cell lymphotropic virus type 1. Rev. Soc. Bras. Med. Trop. 2014, 47, 265–274. [Google Scholar] [CrossRef] [Green Version]
- Silva, M.T.T.; Harab, R.C.; Leite, A.C.; Schor, D.; Araújo, A.; Andrada-Serpa, M.J. Human T lymphotropic virus type 1 (HTLV-1) proviral load in asymptomatic carriers, HTLV-1-associated myelopathy/tropical spastic paraparesis, and other neurological abnormalities associated with HTLV-1 infection. Clin. Infect. Dis. 2007, 44, 689–692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iwanaga, M.; Watanabe, T.; Utsunomiya, A.; Okayama, A.; Uchimaru, K.; Koh, K.R.; Ogata, M.; Kikuchi, H.; Sagara, Y.; Uozumi, K.; et al. Human T-cell leukemia virus type I (HTLV-1) proviral load and disease progression in asymptomatic HTLV-1 carriers: A nationwide prospective study in Japan. Blood 2010, 116, 1211–1219. [Google Scholar] [CrossRef] [Green Version]
- Primo, J.; Siqueira, I.; Nascimento, M.C.F.; Oliveira, M.F.; Farre, L.; Carvalho, E.M.; Bittencourt, A.L. High HTLV-1 proviral load, a marker for HTLV-1 associated myelopathy/tropical spastic paraparesis, is also detected in patients with infective dermatitis associated with HTLV-1. Braz. J. Med. Biol. Res. 2009, 42, 761–764. [Google Scholar] [CrossRef] [Green Version]
- Sugimoto, M.; Mita, S.; Tokunaga, M.; Yamaguchi, K.; Cho, I.; Matsumoto, M.; Mochizuki, M.; Araki, S.; Takatsuki, K.; M Ando, M. Pulmonary involvement in human T-cell lymphotropic virus type-I uveitis: T-lymphocytosis and high proviral DNA load in bronchoalveolar lavage fluid. Eur. Respir. J. 1993, 6, 938–943. [Google Scholar] [CrossRef]
- Gabet, A.S.; Mortreux, F.; Talarmin, A.; Plumelle, Y.; Leclercq, I.; Leroy, A.; Gessain, A.; Clity, E.; Joubert, M.; Wattel, E. High circulating proviral load with oligoclonal expansion of HTLV-1 bearing T cells in HTLV-1 carriers with strongyloidiasis. Oncogene 2000, 19, 4954–4960. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murphy, E.L. Sexual Transmission of Human T-Lymphotropic Virus Type I (HTLV-I). Ann. Intern. Med. 1989, 111, 555. [Google Scholar] [CrossRef] [PubMed]
- Hino, S. Establishment of the milk-borne transmission as a key factor for the peculiar endemicity of human T-lymphotropic virus type 1 (HTLV-1): The ATL Prevention Program Nagasaki. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2011, 87, 152–166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiktor, S.Z.; Pate, E.J.; Rosenberg, P.S.; Barnett, M.; Palmer, P.; Medeiros, D.; Maloney, E.M.; Blattner, W.A. Mother-to-child transmission of human T-cell lymphotropic virus type I associated with prolonged breast-feeding. J. Hum. Virol. 1997, 1, 37–44. [Google Scholar]
- Moriuchi, H.; Masuzaki, H.; Doi, H.; Katamine, S. Mother-to-child transmission of human T-cell lymphotropic virus type 1. Pediatr. Infect. Dis. J. 2013, 32, 175–177. [Google Scholar] [CrossRef] [Green Version]
- Rosadas, C.; Taylor, G.P. Mother-to-Child HTLV-1 Transmission: Unmet Research Needs. Front. Microbiol. 2019, 10, 999. [Google Scholar] [CrossRef] [Green Version]
- Tezuka, K.; Fuchi, N.; Okuma, K.; Tsukiyama, T.; Miura, S.; Hasegawa, Y.; Sasaki, D.; Sasaki, E.; Mizukami, T.; Kuramitsu, M.; et al. HTLV-1 targets human placental trophoblasts in seropositive pregnant women. J. Clin. Invest. 2020, 130, 6171–6186. [Google Scholar] [CrossRef] [PubMed]
- Martin-Latil, S.; Gnadig, N.F.; Mallet, A.; Desdouits, M.; Guivel-Benhassine, F.; Jeannin, P.; Prevost, M.; Schwartz, O.; Gessain, A.; Ozden, S.; et al. Transcytosis of HTLV-1 across a tight human epithelial barrier and infection of subepithelial dendritic cells. Blood 2012, 120, 572–580. [Google Scholar] [CrossRef] [Green Version]
- Kinoshita, K.; Yamanouchi, K.; Ikeda, S.; Momita, S.; Amagasaki, T.; Soda, H.; Ichimaru, M.; Moriuchi, R.; Katamine, S.; Miyamoto, T.; et al. Oral Infection of a Common Marmoset with Human T-Cell Leukemia Virus Type-I (htlv-I) by Inoculating Fresh Human Milk of Htlv-I Carrier Mothers. Jpn. J. Cancer Res. GANN 1985, 76, 1147–1153. [Google Scholar] [PubMed]
- Kashiwagi, K.; Furusyo, N.; Nakashima, H.; Kubo, N.; Kinukawa, N.; Kashiwagi, S.; Hayashi, J. A decrease in mother-to-child transmission of human t lymphotropic virus type i (htlv-i) in okinawa, Japan. Am. J. Trop. Med. Hyg. 2004, 70, 158–163. [Google Scholar] [CrossRef] [PubMed]
- Witkowska-Zimny, M.; Kaminska-El-Hassan, E. Cells of Human Breast Milk. Cell. Mol. Biol. Lett. 2017, 22, 11. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5508878/ (accessed on 26 March 2023). [CrossRef] [Green Version]
- Southern, S.O.; Southern, P.J. Persistent HTLV-I infection of breast luminal epithelial cells: A role in HTLV transmission? Virology 1998, 241, 200–214. [Google Scholar] [CrossRef]
- LeVasseur, R.J.; Southern, S.O.; Southern, P.J. Mammary epithelial cells support and transfer productive human T-cell lymphotropic virus infections. J. Hum. Virol. 1998, 1, 214–223. [Google Scholar]
- Takeuchi, H.; Takahashi, M.; Norose, Y.; Takeshita, T.; Fukunaga, Y.; Takahashi, H. Transformation of breast milk macrophages by HTLV-I: Implications for HTLV-I transmission via breastfeeding. Biomed. Res. 2010, 31, 53–61. [Google Scholar] [CrossRef] [Green Version]
- Percher, F.; Jeannin, P.; Martin-Latil, S.; Gessain, A.; Afonso, P.V.; Vidy-Roche, A.; Ceccaldi, P.E. Mother-to-Child Transmission of HTLV-1 Epidemiological Aspects, Mechanisms and Determinants of Mother-to-Child Transmission. Viruses 2016, 8, 40. [Google Scholar] [CrossRef] [Green Version]
- Ohata, J.; Matsuoka, M.; Yamashita, T.; Tojo, A.; Tani, K.; Asano, S. CD4/CD8 double-positive adult T cell leukemia with preceding cytomegaloviral gastroenterocolitis. Int. J. Hematol. 1999, 69, 92–95. [Google Scholar]
- Tugizov, S.M.; Herrera, R.; Veluppillai, P.; Greenspan, D.; Soros, V.; Greene, W.C.; Ceccaldi, P.E. Differential transmission of HIV traversing fetal oral/intestinal epithelia and adult oral epithelia. J. Virol. 2012, 86, 2556–2570. [Google Scholar] [CrossRef] [Green Version]
- Itabashi, K.; Miyazawa, T.; Sekizawa, A.; Tokita, A.; Saito, S.; Moriuchi, H.; Nerome, Y.; Uchimaru, K.; Watanabe, T. A Nationwide Antenatal Human T-Cell Leukemia Virus Type-1 Antibody Screening in Japan. Front. Microbiol. 2020, 11, 595. [Google Scholar] [CrossRef]
- Rosadas, C.; Taylor, G.P. Current Interventions to Prevent HTLV-1 Mother-to-Child Transmission and Their Effectiveness: A Systematic Review and Meta-Analysis. Microorganisms 2022, 10, 2227. [Google Scholar] [CrossRef]
- Plancoulaine, S.; Buigues, R.P.; Murphy, E.L.; van Beveren, M.; Pouliquen, J.F.; Joubert, M.; Rémy, F.; Tuppin, P.; Tortevoye, P.; de Thé, G.; et al. Demographic and familial characteristics of HTLV-1 infection among an isolated, highly endemic population of African origin in French Guiana. Int. J. Cancer 1998, 76, 331–336. [Google Scholar] [CrossRef]
- Plancoulaine, S.; Gessain, A.; Joubert, M.; Tortevoye, P.; Jeanne, I.; Talarmin, A.; de Thé, G.; Abel, L. Detection of a major gene predisposing to human T lymphotropic virus type I infection in children among an endemic population of African origin. J. Infect. Dis. 2000, 182, 405–412. [Google Scholar] [CrossRef] [PubMed]
- Filippone, C.; Bassot, S.; Betsem, E.; Tortevoye, P.; Guillotte, M.; Mercereau-Puijalon, O.; Plancoulaine, S.; Calattini, S.; Gessain, A. A New and Frequent Human T-Cell Leukemia Virus Indeterminate Western Blot Pattern: Epidemiological Determinants and PCR Results in Central African Inhabitants. J. Clin. Microbiol. 2012, 50, 1663–1672. [Google Scholar] [CrossRef] [Green Version]
- Rosadas, C.; Malik, B.; Taylor, G.P.; Puccioni-Sohler, M. Estimation of HTLV-1 vertical transmission cases in Brazil per annum. PLoS Negl. Trop. Dis. 2018, 12, e0006913. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosadas, C.; Woo, T.; Haddow, J.; Rowan, A.; Taylor, G.P. Anti-HTLV-1/2 IgG Antibodies in the Breastmilk of Seropositive Mothers. Microorganisms 2021, 9, 1413. [Google Scholar] [CrossRef] [PubMed]
- Fuchi, N.; Miura, K.; Tsukiyama, T.; Sasaki, D.; Ishihara, K.; Tsuruda, K.; Hasegawa, H.; Miura, S.; Yanagihara, K.; Masuzaki, H. Natural Course of Human T-Cell Leukemia Virus Type 1 Proviral DNA Levels in Carriers During Pregnancy. J. Infect. Dis. 2018, 217, 1383–1389. [Google Scholar] [CrossRef]
- Paiva, A.M.; Assone, T.; Haziot, M.E.J.; Smid, J.; Fonseca, L.A.M.; Luiz, O.D.C.; de Oliveira, J.A.C.P.; Casseb, J. Risk factors associated with HTLV-1 vertical transmission in Brazil: Longer breastfeeding, higher maternal proviral load and previous HTLV-1-infected offspring. Sci. Rep. 2018, 8, 7742. [Google Scholar] [CrossRef] [PubMed]
- Albenzio, M.; Santillo, A.; Stolfi, I.; Manzoni, P.; Iliceto, A.; Rinaldi, M.; Magaldi, R. Lactoferrin Levels in Human Milk after Preterm and Term Delivery. Amer J. Perinatol. 2016, 33, 1085–1089. [Google Scholar] [CrossRef] [PubMed]
- Ureta-Vidal, A.; Angelin-Duclos, C.; Tortevoye, P.; Murphy, E.; Lepère, J.F.; Buigues, R.P.; Jolly, N.; Joubert, M.; Carles, G.; Pouliquen, J.F.; et al. Mother-to-child transmission of human T-cell-leukemia/lymphoma virus type I: Implication of high antiviral antibody titer and high proviral load in carrier mothers. Int. J. Cancer 1999, 82, 832–836. [Google Scholar] [CrossRef]
- Gotuzzo, E.; Moody, J.; Verdonck, K.; Cabada, M.M.; González, E.; Van Dooren, S.; Vandamme, A.M.; Terashima, A.; Vermund, S.H. Frequent HTLV-1 infection in the offspring of Peruvian women with HTLV-1-associated myelopathy/tropical spastic paraparesis or strongyloidiasis. Rev. Panam. Salud. Publica. 2007, 22, 223–230. [Google Scholar] [CrossRef] [Green Version]
- Yoshinaga, M.; Yashiki, S.; Oki, T.; Fujiyoshi, T.; Nagata, Y.; Sonoda, S. A maternal risk factor for mother-to-child HTLV-I transmission: Viral antigen-producing capacities in culture of peripheral blood and breast milk cells. Jpn. J. Cancer Res. 1995, 86, 649–654. [Google Scholar] [CrossRef] [PubMed]
- Biggar, R.J.; Ng, J.; Kim, N.; Hisada, M.; Li, H.C.; Cranston, B.; Hanchard, B.; Maloney, E.M. Human leukocyte antigen concordance and the transmission risk via breast-feeding of human T cell lymphotropic virus type I. J. Infect. Dis. 2006, 193, 277–282. [Google Scholar] [CrossRef] [Green Version]
- Morita, Y.; Campos-Alberto, E.; Yamaide, F.; Nakano, T.; Ohnisi, H.; Kawamoto, M.; Kawamoto, N.; Matsui, E.; Kondo, N.; Kohno, Y.; et al. TGF-β Concentration in Breast Milk is Associated with the Development of Eczema in Infants. Front. Pediatr. 2018, 6, 162. Available online: https://www.frontiersin.org/articles/10.3389/fped.2018.00162/full (accessed on 26 March 2023). [CrossRef] [Green Version]
- Moriuchi, M.; Moriuchi, H. Transforming growth factor-β enhances human T-cell leukemia virus type I infection. J. Med. Virol. 2002, 67, 427–430. [Google Scholar] [CrossRef]
- Moriuchi, M.; Moriuchi, H. A Milk Protein Lactoferrin Enhances Human T Cell Leukemia Virus Type I and Suppresses HIV-1 Infection. J. Immunol. 2001, 166, 4231–4236. [Google Scholar] [CrossRef] [Green Version]
- Moriuchi, M.; Moriuchi, H. Induction of lactoferrin gene expression in myeloid or mammary gland cells by human T-cell leukemia virus type 1 (HTLV-1) tax: Implications for milk-borne transmission of HTLV-1. J. Virol. 2006, 80, 7118–7126. [Google Scholar] [CrossRef] [Green Version]
- Nerome, Y.; Kojyo, K.; Ninomiya, Y.; Ishikawa, T.; Ogiso, A.; Takei, S.; Kawano, Y.; Douchi, T.; Takezaki, T.; Owaki, T. Current human T-cell lymphotropic virus type 1 mother-to-child transmission prevention status in Kagoshima. Pediatr. Int. 2014, 56, 640–643. [Google Scholar] [CrossRef]
- New WHO Report on Human T-Lymphotropic Virus Type 1 Highlights Strategies for Its Prevention and Control [Internet]. Available online: https://www.who.int/news/item/03-03-2021-new-who-report-on-human-t-lymphotropic-virus-type-1-indicates-the-future-path-for-its-prevention-and-control (accessed on 26 March 2023).
- Miyazawa, T.; Hasebe, Y.; Murase, M.; Sakurai, M.; Itabashi, K.; Yonemoto, N. The Effect of Early Postnatal Nutrition on Human T Cell Leukemia Virus Type 1 Mother-to-Child Transmission: A Systematic Review and Meta-Analysis. Viruses 2021, 13, 819. [Google Scholar] [CrossRef] [PubMed]
- Carroll, C.; Booth, A.; Campbell, F.; Relton, C. Qualitative evidence synthesis of values and preferences to inform infant feeding in the context of non-HIV transmission risk. PLoS ONE 2020, 15, e0242669. [Google Scholar] [CrossRef] [PubMed]
- Millen, S.; Thoma-Kress, A.K. Milk Transmission of HTLV-1 and the Need for Innovative Prevention Strategies. Front. Med. 2022, 9, 867147. [Google Scholar] [CrossRef]
- Masuzaki, H.; Moriuchi, H.; Miura, K.; Uehira, S. 25 Nenkan Keizoku Shita Ninpu no HTLV-Ⅰ Kōtai Kensa Kekka Kara Erareta Boshikansen Yobō Kōka No Kenshō Oyobi Kōseido Sukurīningu Shisutemu Kaihatsu. Health Labour Sciences Research Grant [Internet]. 2013. Available online: https://mhlw-grants.niph.go.jp/niph/search/NIDD00.do?resrchNum=201318019B (accessed on 16 November 2019).
- Takezaki, T. Kagoshima-ken ni okeru HTLV-Ⅰ kyaria haha karano shuseiji ni okeru tuiseki kenkyū. Health Labour Sci. Res. Grant. 2009, 59–61. Available online: https://www.mhlw.go.jp/bunya/kodomo/boshi-hoken16/dl/02_4.pdf (accessed on 30 January 2021). (In Japanese).
- Ekuni, Y. Prevention of HTLV-1 vertical infection: Usefulness of frozen-thawed breast milk. Adv. Obstet. Gynecol. 1997, 49, 171–179. [Google Scholar]
- Ando, Y.; Ekuni, Y.; Matsumoto, Y.; Nakano, S.; Saito, K.; Kakimoto, K.; Tanigawa, T.; Kawa, M.; Toyama, T. Long-term serological outcome of infants who received frozen-thawed milk from human T-lymphotropic virus type-I positive mothers. J. Obstet. Gynaecol. Res. 2004, 30, 436–438. [Google Scholar] [CrossRef] [PubMed]
- Miller, J.; Tonkin, E.; Damarell, R.A.; McPhee, A.J.; Suganuma, M.; Suganuma, H.; Middleton, P.F.; Makrides, M.; Collins, C.T. A Systematic Review and Meta-Analysis of Human Milk Feeding and Morbidity in Very Low Birth Weight Infants. Nutrients 2018, 10, 707. [Google Scholar] [CrossRef] [Green Version]
- Arslanoglu, S.; Bertino, E.; Tonetto, P.; De Nisi, G.; Ambruzzi, A.M.; Biasini, A.; Profeti, C.; Spreghini, M.R.; Moro, G.E.; Italian Association of Human Milk Banks Associazione Italiana Banche del Latte Umano Donato (AIBLUD: www.aiblud.org). Guidelines for the establishment and operation of a donor human milk bank. J. Matern. Fetal. Neonatal. Med. 2010, 23 (Suppl. 2), 1–20. [Google Scholar] [CrossRef]
- Pitino, M.A.; O’Connor, D.L.; McGeer, A.J.; Unger, S. The impact of thermal pasteurization on viral load and detectable live viruses in human milk and other matrices: A rapid review. Appl. Physiol. Nutr. Metab. 2021, 46, 10–26. [Google Scholar] [CrossRef]
- Yamato, K.; Taguchi, H.; Yoshimoto, S.; Fujishita, M.; Yamashita, M.; Ohtsuki, Y.; Hoshino, H.; Miyoshi, I. Inactivation of lymphocyte-transforming activity of human T-cell leukemia virus type I by heat. Jpn. J. Cancer Res. 1986, 77, 13–15. [Google Scholar]
- Rigourd, V.; Meyer, V.; Kieffer, F.; Aubry, S.; Magny, J.F. HTLV and “donating” milk. Bull Soc. Pathol. Exot. 2011, 104, 205–208. [Google Scholar] [CrossRef]
- O’Connor, D.L.; Ewaschuk, J.B.; Unger, S. Human milk pasteurization: Benefits and risks. Curr. Opin. Clin. Nutr. Metab. Care 2015, 18, 269–275. [Google Scholar] [CrossRef] [PubMed]
- Njom Nlend, A.E.; Motaze, A.C.N.; Sandie, A.; Fokam, J. HIV-1 transmission and survival according to feeding options in infants born to HIV-infected women in Yaoundé, Cameroon. BMC Pediatr. 2018, 18, 69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Sullivan, A.; Farver, M.; Smilowitz, J.T. The Influence of Early Infant-Feeding Practices on the Intestinal Microbiome and Body Composition in Infants. Nutr. Metab. Insights 2015, 8 (Suppl. 1), 1–9. [Google Scholar]
- Mepham, S.O.; Bland, R.M.; Newell, M.L. Prevention of mother-to-child transmission of HIV in resource-rich and -poor settings. BJOG 2011, 118, 202–218. [Google Scholar] [CrossRef]
- Bittencourt, A.L.; Sabino, E.C.; Costa, M.C.; Pedroso, C.; Moreira, L. No evidence of vertical transmission of HTLV-I in bottle-fed children. Rev. Do Inst. Med. Trop. São Paulo 2002, 44, 63–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Motedayen Aval, L.; Boullier, M.; Lyall, H.; Collins, G.P.; Ayto, R.; Kelly, D.F.; Tedder, R.S.; Drysdale, S.B.; Taylor, G.P.; Cook, L.B. Adult T cell leukaemia/lymphoma (ATL) in pregnancy: A UK case series. eJHaem 2021, 2, 134–138. [Google Scholar] [CrossRef] [PubMed]
- Sawada, T.; Iwahara, Y.; Ishii, K.; Taguchi, H.; Hoshino, H.; Miyoshi, I. Immunoglobulin prophylaxis against milkborne transmission of human T cell leukemia virus type I in rabbits. J. Infect. Dis. 1991, 164, 1193–1196. [Google Scholar] [CrossRef]
- Tanaka, Y.; Ishii, K.; Sawada, T.; Ohtsuki, Y.; Hoshino, H.; Yanagihara, R.; Miyoshi, I. Prophylaxis against a Melanesian variant of human T-lymphotropic virus type I (HTLV-I) in rabbits using HTLV-I immune globulin from asymptomatically infected Japanese carriers. Blood 1993, 82, 3664–3667. [Google Scholar] [CrossRef]
- Suehiro, Y.; Hasegawa, A.; Iino, T.; Sasada, A.; Watanabe, N.; Matsuoka, M.; Takamori, A.; Tanosaki, R.; Utsunomiya, A.; Choi, I.; et al. Clinical outcomes of a novel therapeutic vaccine with Tax peptide-pulsed dendritic cells for adult T cell leukaemia/lymphoma in a pilot study. Br. J. Haematol. 2015, 169, 356–367. [Google Scholar] [CrossRef]
- Kannagi, M.; Hasegawa, A.; Nagano, Y.; Kimpara, S.; Suehiro, Y. Impact of host immunity on HTLV-1 pathogenesis: Potential of Tax-targeted immunotherapy against ATL. Retrovirology 2019, 16, 23. [Google Scholar] [CrossRef]
- Ratner, L. A role for an HTLV-1 vaccine? Front. Immunol. 2022, 13, 953650. [Google Scholar] [CrossRef]
- UK National Screening Committee. Antenatal Screening for HTLV Infection. 2017. Available online: https://legacyscreening.phe.org.uk/policydb_download.php?doc=704 (accessed on 28 August 2019).
- Satake, M.; Yamaguchi, K.; Tadokoro, K. Current prevalence of HTLV-1 in Japan as determined by screening of blood donors. J. Med. Virol. 2012, 84, 327–335. [Google Scholar] [CrossRef]
- Willems, L.; Hasegawa, H.; Accolla, R.; Bangham, C.; Bazarbachi, A.; Bertazzoni, U.; de Freitas Carneiro-Proietti, A.B.; Hua Cheng, H.; Chieco-Bianchi, L.; Ciminale, V.; et al. Reducing the global burden of HTLV-1 infection: An agenda for research and action. Antiviral. Res. 2017, 137, 41–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okuma, K.; Kuramitsu, M.; Niwa, T.; Taniguchi, T.; Masaki, Y.; Ueda, G.; Sobata, R.; Sagara, Y.; Nakamura, H.; Satake, M.; et al. Establishment of a novel diagnostic test algorithm for human T-cell leukemia virus type 1 infection with line immunoassay replacement of western blotting: A collaborative study for performance evaluation of diagnostic assays in Japan. Retrovirology 2020, 17, 26. [Google Scholar] [CrossRef] [PubMed]
- Kouseioudousyo. HTLV-1 Boshikannsennyoboutaisaku Manyuaru (Dai 2han). Available online: https://www.mhlw.go.jp/bunya/kodomo/boshi-hoken16/dl/06.pdf (accessed on 27 March 2023).
- Shamir, R. The Benefits of Breast Feeding. Nestle Nutr. Inst. Workshop Ser. 2016, 86, 67–76. [Google Scholar] [PubMed] [Green Version]
- Dias, C.C.; Figueiredo, B. Breastfeeding and depression: A systematic review of the literature. J. Affect Disord. 2015, 171, 142–154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Varandas, C.M.N.; da Silva, J.L.S.; Primo, J.R.L.; de Oliveira, M.d.F.S.P.; Moreno-Carvalho, O.; Farre, L.; Bittencourt, A. Early Juvenile Human T-cell Lymphotropic Virus Type-1–Associated Myelopathy/Tropical Spastic Paraparesis: Study of 25 Patients. Clin. Infect. Dis. 2018, 67, 1427–1433. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, P.D.; Kachimarek, A.C.; Bittencourt, A.L. Early Onset of HTLV-1 Associated Myelopathy/Tropical Spastic Paraparesis (HAM/TSP) and Adult T-cell Leukemia/Lymphoma (ATL): Systematic Search and Review. J. Trop Pediatr. 2018, 64, 151–161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwalb, A.; Pérez-Muto, V.; Cachay, R.; Tipismana, M.; Álvarez, C.; Mejía, F.; González-Lagos, E.; Gotuzzo, E. Early-Onset HTLV-1-Associated Myelopathy/Tropical Spastic Paraparesis. Pathogens 2020, 9, 450. [Google Scholar] [CrossRef]
- Yoshida, Y.; Sakamoto, Y.; Yoshimine, A.; Maruyama, Y.; Ikegami, N.; Inose, M.; Imamura, H.; Nakahara, K.; Nakagawa, M.; Osame, M. Three cases of juvenile onset HTLV-I-associated myelopathy with pseudohypoparathyroidism. J. Neurol. Sci. 1993, 118, 145–149. [Google Scholar] [CrossRef]
- Gonçalves, D.U.; Proietti, F.A.; Ribas, J.G.R.; Araújo, M.G.; Pinheiro, S.R.; Guedes, A.C.; Carneiro-Proietti, A.B.F. Epidemiology, treatment, and prevention of human T-cell leukemia virus type 1-associated diseases. Clin. Microbiol. Rev. 2010, 23, 577–589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maloney, E.M.; Yamano, Y.; Vanveldhuisen, P.C.; Sawada, T.; Kim, N.; Cranston, B.; Hanchard, B.; Jacobson, S.; Hisada, M. Natural history of viral markers in children infected with human T lymphotropic virus type I in Jamaica. J. Infect. Dis. 2006, 194, 552–560. [Google Scholar] [CrossRef] [PubMed]
Nutritional Regimens | Effectiveness on MTCT | Comments |
---|---|---|
Exclusive infant formula feeding (ExFF) | Widely used and well evaluated to block MTCT through breast milk | Prevents about 95% or more of MTCT No benefits from breastfeeding Concerns about increased risk of postpartum depression and impaired mother–child bonding |
Short-term breastfeeding (≤3 months) | No apparent difference in the MTCT prevention effect (vs. ExFF) Majority of studies in Japan | Acquisition of some benefits of breastfeeding Approximately 18% of children exceed 4 months of breastfeeding Need to provide adequate support for weaning No data on the preventive effect of postpartum depression or impairment of mother–child bonding |
Short-term breastfeeding (≤6 months) | Approximately three times increased risk of MTCT (vs. ExFF) | Better to avoid this regimen |
Frozen–thawed breast milk feeding | No apparent difference in the MTCT prevention effect (vs. ExFF) Only three small case studies in Japan, with little confidence in preventive effects | Time-consuming Considered for use in infants admitted in the NICU No data on the preventive effect of postpartum depression or impairment of mother–child bonding |
Mixed feeding | Unknown effectiveness of MTCT prevention due to lack of data (vs. ExFF) | Concerns about increased risk of MTCT due to damage to the intestinal mucosa Better to avoid this regimen |
Banked human milk pasteurization | No data available, but expected to be as effective as ExFF in preventing MTCT | No use of breast milk from untested HTLV-1 donors No data on the preventive effect of postpartum depression or impairment of mother–child bonding |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Itabashi, K.; Miyazawa, T.; Uchimaru, K. How Can We Prevent Mother-to-Child Transmission of HTLV-1? Int. J. Mol. Sci. 2023, 24, 6961. https://doi.org/10.3390/ijms24086961
Itabashi K, Miyazawa T, Uchimaru K. How Can We Prevent Mother-to-Child Transmission of HTLV-1? International Journal of Molecular Sciences. 2023; 24(8):6961. https://doi.org/10.3390/ijms24086961
Chicago/Turabian StyleItabashi, Kazuo, Tokuo Miyazawa, and Kaoru Uchimaru. 2023. "How Can We Prevent Mother-to-Child Transmission of HTLV-1?" International Journal of Molecular Sciences 24, no. 8: 6961. https://doi.org/10.3390/ijms24086961
APA StyleItabashi, K., Miyazawa, T., & Uchimaru, K. (2023). How Can We Prevent Mother-to-Child Transmission of HTLV-1? International Journal of Molecular Sciences, 24(8), 6961. https://doi.org/10.3390/ijms24086961