The Role of Sperm Membrane Potential and Ion Channels in Regulating Sperm Function
Abstract
:1. Introduction
2. Membrane Potential in Spermatozoa
3. Sperm Motility and Depolarization
3.1. Epithelial Na+ Channels (ENaC)
3.2. Voltage-Gated Na+ Channels (VGSC)
4. Sperm Capacitation and Hyperpolarization
4.1. SLO K+ Channels
4.2. Voltage-Gated Potassium Channels (Kv)
4.3. Inwardly Rectifying K+ Channels (Kir Channels)
4.4. K2P Channels
5. Sperm Capacitation and Alkalinization
Voltage-Gated Proton Channels in Sperm
6. Sperm Hyperactivation and Calcium Influx
7. Acrosome Reaction and Calcium-Dependent Exocytosis
7.1. CatSper Channels
7.2. Voltage-Gated Calcium Channels (Cav)
8. Ion Channel Dysfunction and Associated Pathologies
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zegers-Hochschild, F.; Adamson, G.D.; Dyer, S.; Racowsky, C.; de Mouzon, J.; Sokol, R.; Rienzi, L.; Sunde, A.; Schmidt, L.; Cooke, I.D.; et al. The International Glossary on Infertility and Fertility Care, 2017. Fertil. Steril. 2017, 108, 393–406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Inhorn, M.C.; Patrizio, P. Infertility Around the Globe: New Thinking on Gender, Reproductive Technologies and Global Movements in the 21st Century. Hum. Reprod. Update 2015, 21, 411–426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thoma, M.E.; McLain, A.C.; Louis, J.F.; King, R.B.; Trumble, A.C.; Sundaram, R.; Buck Louis, G.M. Prevalence of Infertility in the United States as Estimated by the Current Duration Approach and a Traditional Constructed Approach. Fertil. Steril. 2013, 99, 1324–1331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Austin, C.R. Observations on the Penetration of the Sperm into the Mammalian Egg. Aust. J. Biol. Sci. 1951, 4, 581–596. [Google Scholar] [CrossRef] [Green Version]
- Chang, M.C. Fertilizing Capacity of Spermatozoa Deposited into the Fallopian Tubes. Nature 1951, 168, 697–698. [Google Scholar] [CrossRef]
- Norman, C.; Goldberg, E.; Porterfield, I.D.; Johnson, C.E. Prolonged Survival of Human Sperm in Chemically Defined Media at Room Temperatures. Nature 1960, 188, 760. [Google Scholar] [CrossRef]
- Edwards, R.G.; Donahue, R.P.; Baramki, T.A.; Jones, H.W. Preliminary Attempts to Fertilize Human Oocytes Matured in Vitro. Am. J. Obstet. Gynecol. 1966, 96, 192–200. [Google Scholar] [CrossRef]
- Calzada, L.; Salazar, E.L.; Macias, H. Hyperpolarization/Depolarization on Human Spermatozoa. Arch. Androl. 1991, 26, 71–78. [Google Scholar] [CrossRef]
- Visconti, P.E.; Stewart-Savage, J.; Blasco, A.; Battaglia, L.; Miranda, P.; Kopf, G.S.; Tezon, J.G. Roles of Bicarbonate, cAMP, and Protein Tyrosine Phosphorylation on Capacitation and the Spontaneous Acrosome Reaction of Hamster Sperm. Biol. Reprod. 1999, 61, 76–84. [Google Scholar] [CrossRef] [Green Version]
- Darszon, A.; Nishigaki, T.; Wood, C.; Treviño, C.L.; Felix, R.; Beltrán, C. Calcium Channels and Ca2+ Fluctuations in Sperm Physiology. Int. Rev. Cytol. 2005, 243, 79–172. [Google Scholar]
- Publicover, S.J.; Giojalas, L.C.; Teves, M.E.; de Oliveira, G.S.; Garcia, A.A.; Barratt, C.L.; Harper, C.V. Ca2+ Signalling in the Control of Motility and Guidance in Mammalian Sperm. Front. Biosci. 2008, 13, 5623–5637. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Babakhanzadeh, E.; Nazari, M.; Ghasemifar, S.; Khodadadian, A. Some of the Factors Involved in Male Infertility: A Prospective Review. Int. J. Gen. Med. 2020, 13, 29–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flesch, F.M.; Gadella, B.M. Dynamics of the Mammalian Sperm Plasma Membrane in the Process of Fertilization. Biochim. Biophys. Acta 2000, 1469, 197–235. [Google Scholar] [CrossRef] [PubMed]
- Lishko, P.V.; Kirichok, Y.; Ren, D.; Navarro, B.; Chung, J.; Clapham, D.E. The Control of Male Fertility by Spermatozoan Ion Channels. Annu. Rev. Physiol. 2012, 74, 453–475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Puga Molina, L.C.; Luque, G.M.; Balestrini, P.A.; Marín-Briggiler, C.I.; Romarowski, A.; Buffone, M.G. Molecular Basis of Human Sperm Capacitation. Front. Cell Dev. Biol. 2018, 6, 72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, M.H. Sperm and Eggs. In Essential Reproduction, 8th ed.; Wiley Blackwell: Hoboken, NJ, USA, 2018; pp. 183–196. [Google Scholar]
- Visconti, P.E.; Westbrook, V.A.; Chertihin, O.; Demarco, I.; Sleight, S.; Diekman, A.B. Novel Signaling Pathways Involved in Sperm Acquisition of Fertilizing Capacity. J. Reprod. Immunol. 2002, 53, 133–150. [Google Scholar] [CrossRef]
- Luconi, M.; Francavilla, F.; Porazzi, I.; Macerola, B.; Forti, G.; Baldi, E. Human Spermatozoa as a Model for Studying Membrane Receptors Mediating Rapid Nongenomic Effects of Progesterone and Estrogens. Steroids 2004, 69, 553–559. [Google Scholar] [CrossRef]
- Buffone, M.G. Sperm Acrosome Biogenesis and Function during Fertilization; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Balbach, M.; Ghanem, L.; Rossetti, T.; Kaur, N.; Ritagliati, C.; Ferreira, J.; Krapf, D.; Puga Molina, L.C.; Santi, C.M.; Hansen, J.N.; et al. Soluble Adenylyl Cyclase Inhibition Prevents Human Sperm Functions Essential for Fertilization. Mol. Hum. Reprod. 2021, 27, 9. [Google Scholar] [CrossRef]
- Vicens, A.; Lüke, L.; Roldan, E.R.S. Proteins Involved in Motility and Sperm-Egg Interaction Evolve More Rapidly in Mouse Spermatozoa. PLoS ONE 2014, 9, e91302. [Google Scholar] [CrossRef] [Green Version]
- Suarez, S.S.; Pacey, A.A. Sperm Transport in the Female Reproductive Tract. Hum. Reprod. Update 2006, 12, 23–37. [Google Scholar] [CrossRef] [Green Version]
- Santi, C.M.; Orta, G.; Salkoff, L.; Visconti, P.E.; Darszon, A.; Treviño, C.L. K+ and Cl− Channels and Transporters in Sperm Function. Curr. Top. Dev. Biol. 2013, 102, 385–421. [Google Scholar]
- Wang, H.; McGoldrick, L.L.; Chung, J. Sperm Ion Channels and Transporters in Male Fertility and Infertility. Nat. Rev. Urol. 2021, 18, 46–66. [Google Scholar] [CrossRef]
- Nowicka-Bauer, K.; Szymczak-Cendlak, M. Structure and Function of Ion Channels Regulating Sperm Motility—An Overview. Int. J. Mol. Sci. 2021, 22, 3259. [Google Scholar] [CrossRef]
- Stival, C.; Puga Molina, L.D.C.; Paudel, B.G.; Buffone, M.G.; Visconti, P.E.; Krapf, D. Sperm Capacitation and Acrosome Reaction in Mammalian Sperm. Adv. Anat. Embryol. Cell. Biol. 2016, 220, 93–106. [Google Scholar]
- Jimenez, T.; Mcdermott, J.P.; Sanchez, G.; Blanco, G. Na, K-ATPase A4 Isoform is Essential for Sperm Fertility. Proc. Natl. Acad. Sci. USA 2011, 108, 644–649. [Google Scholar] [CrossRef] [Green Version]
- Bear, M.; Connors, B.; Paradiso, M.A. Neuroscience: Exploring the Brain, 4th ed.; Jones & Bartlett Learning: Burlington, MA, USA, 2020. [Google Scholar]
- Catterall, W.A. Cellular and Molecular Biology of Voltage-Gated Sodium Channels. Physiol. Rev. 1992, 72, S15–S48. [Google Scholar] [CrossRef]
- Tamargo, J.; Delpón, E.; Pérez, O.; Valenzuela, C. Antiarrhythmic Actions of Drugs Interacting with Sodium Channels. In Ion Channel Pharmacology; Soria, B., Ceña, V., Eds.; Oxford University Press: Oxford, UK, 1998; pp. 74–94. [Google Scholar]
- Südhof, T.C. The Presynaptic Active Zone. Neuron 2012, 75, 11–25. [Google Scholar] [CrossRef] [Green Version]
- Südhof, T.C. Neurotransmitter Release: The Last Millisecond in the Life of a Synaptic Vesicle. Neuron 2013, 80, 675–690. [Google Scholar] [CrossRef] [Green Version]
- Ritagliati, C.; Baro Graf, C.; Stival, C.; Krapf, D. Regulation Mechanisms and Implications of Sperm Membrane Hyperpolarization. Mech. Dev. 2018, 154, 33–43. [Google Scholar] [CrossRef]
- Linares-Hernández, L.; Guzmán-Grenfell, A.M.; Hicks-Gomez, J.J.; González-Martínez, M.T. Voltage-Dependent Calcium Influx in Human Sperm Assessed by Simultaneous Optical Detection of Intracellular Calcium and Membrane Potential. Biochim. Biophys. Acta 1998, 1372, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Mundt, N.; Spehr, M.; Lishko, P.V. TRPV4 is the Temperature-Sensitive Ion Channel of Human Sperm. eLife 2018, 7, e35853. [Google Scholar] [CrossRef] [PubMed]
- Pinto, F.M.; Ravina, C.G.; Fernández-Sánchez, M.; Gallardo-Castro, M.; Cejudo-Román, A.; Candenas, L. Molecular and Functional Characterization of Voltage-Gated Sodium Channels in Human Sperm. Reprod. Biol. Endocrinol. 2009, 7, 71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mansell, S.A.; Publicover, S.J.; Barratt, C.L.R.; Wilson, S.M. Patch Clamp Studies of Human Sperm Under Physiological Ionic Conditions Reveal Three Functionally and Pharmacologically Distinct Cation Channels. Mol. Hum. Reprod. 2014, 20, 392–408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patrat, C.; Serres, C.; Jouannet, P. Induction of a Sodium Ion Influx by Progesterone in Human Spermatozoa. Biol. Reprod. 2000, 62, 1380–1386. [Google Scholar] [CrossRef] [Green Version]
- Patrat, C.; Serres, C.; Jouannet, P. Progesterone Induces Hyperpolarization after a Transient Depolarization Phase in Human Spermatozoa. Biol. Reprod. 2002, 66, 1775–1780. [Google Scholar] [CrossRef] [Green Version]
- López-González, I.; Torres-Rodríguez, P.; Sánchez-Carranza, O.; Solís-López, A.; Santi, C.M.; Darszon, A.; Treviño, C.L. Membrane Hyperpolarization during Human Sperm Capacitation. Mol. Hum. Reprod. 2014, 20, 619–629. [Google Scholar] [CrossRef] [Green Version]
- Baro Graf, C.; Ritagliati, C.; Stival, C.; Balestrini, P.A.; Buffone, M.G.; Krapf, D. Determination of a Robust Assay for Human Sperm Membrane Potential Analysis. Front. Cell Dev. Biol. 2019, 7, 101. [Google Scholar] [CrossRef]
- De Blas, G.A.; Roggero, C.M.; Tomes, C.N.; Mayorga, L.S. Dynamics of SNARE Assembly and Disassembly during Sperm Acrosomal Exocytosis. PLoS Biol. 2005, 3, e323. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Martínez, H.; Kvist, U.; Ernerudh, J.; Sanz, L.; Calvete, J.J. Seminal Plasma Proteins: What Role do they Play? Am. J. Reprod. Immunol. 2011, 66, 11–22. [Google Scholar] [CrossRef] [Green Version]
- Jodar, M.; Soler-Ventura, A.; Oliva, R. Semen Proteomics and Male Infertility. J. Proteom. 2017, 162, 125–134. [Google Scholar] [CrossRef]
- Samanta, L.; Parida, R.; Dias, T.R.; Agarwal, A. The Enigmatic Seminal Plasma: A Proteomics Insight from Ejaculation to Fertilization. Reprod. Biol. Endocrinol. 2018, 16, 41. [Google Scholar] [CrossRef] [Green Version]
- Candenas, L.; Chianese, R. Exosome Composition and Seminal Plasma Proteome: A Promising Source of Biomarkers of Male Infertility. Int. J. Mol. Sci. 2020, 21, 7022. [Google Scholar] [CrossRef]
- Nishigaki, T.; José, O.; González-Cota, A.L.; Romero, F.; Treviño, C.L.; Darszon, A. Intracellular pH in Sperm Physiology. Biochem. Biophys. Res. Commun. 2014, 450, 1149–1158. [Google Scholar] [CrossRef] [Green Version]
- Jimenez-Gonzalez, C.; Michelangeli, F.; Harper, C.V.; Barratt, C.L.R.; Publicover, S.J. Calcium Signalling in Human Spermatozoa: A Specialized ‘toolkit’ of Channels, Transporters and Stores. Hum. Reprod. Update 2006, 12, 253–267. [Google Scholar] [CrossRef] [Green Version]
- Jimenez, T.; Sánchez, G.; Wertheimer, E.; Blanco, G. Activity of the Na, K-ATPase alpha4 isoform is important for membrane potential, intracellular Ca2+, and pH to maintain motility in rat spermatozoa. Reproduction 2010, 139, 835–845. [Google Scholar] [CrossRef] [Green Version]
- Demarco, I.A.; Espinosa, F.; Edwards, J.; Sosnik, J.; de la Vega-Beltrán, J.L.; Hockensmith, J.W.; Kopf, G.S.; Darszon, A.; Visconti, P.E. Involvement of a Na+/HCO3−Cotransporter in Mouse Sperm Capacitation. J. Biol. Chem. 2003, 278, 7001–7009. [Google Scholar] [CrossRef] [Green Version]
- Hernández-González, E.O.; Treviño, C.L.; Castellano, L.E.; de la Vega-Beltrán, J.L.; Ocampo, A.Y.; Wertheimer, E.; Visconti, P.E.; Darszon, A. Involvement of Cystic Fibrosis Transmembrane Conductance Regulator in Mouse Sperm Capacitation. J. Biol. Chem. 2007, 282, 24397–24406. [Google Scholar] [CrossRef] [Green Version]
- Poulsen, H.; Morth, P.; Egebjerg, J.; Nissen, P. Phosphorylation of the Na+,K+-ATPase and the H+,K+-ATPase. FEBS Lett. 2010, 584, 2589–2595. [Google Scholar] [CrossRef] [Green Version]
- Daniel, L.; Etkovitz, N.; Weiss, S.R.; Rubinstein, S.; Ickowicz, D.; Breitbart, H. Regulation of the Sperm EGF Receptor by Ouabain Leads to Initiation of the Acrosome Reaction. Dev. Biol. 2010, 344, 650–657. [Google Scholar] [CrossRef] [Green Version]
- Newton, L.D.; Kastelic, J.P.; Wong, B.; van der Hoorn, F.; Thundathil, J. Elevated Testicular Temperature Modulates Expression Patterns of Sperm Proteins in Holstein Bulls. Mol. Reprod. Dev. 2009, 76, 109–118. [Google Scholar] [CrossRef]
- McDermott, J.; Sánchez, G.; Nangia, A.K.; Blanco, G. Role of Human Na, K-ATPase Alpha 4 in Sperm Function, Derived from Studies in Transgenic Mice. Mol. Reprod. Dev. 2015, 82, 167–181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kong, X.; Ma, H.; Li, H.; Xiong, C. Blockade of Epithelial Sodium Channels Improves Sperm Motility in Asthenospermia Patients. Int. J. Androl. 2009, 32, 330–336. [Google Scholar] [CrossRef] [PubMed]
- Hernández-González, E.O.; Sosnik, J.; Edwards, J.; Acevedo, J.J.; Mendoza-Lujambio, I.; López-González, I.; Demarco, I.; Wertheimer, E.; Darszon, A.; Visconti, P.E. Sodium and Epithelial Sodium Channels Participate in the Regulation of the Capacitation-Associated Hyperpolarization in Mouse Sperm. J. Biol. Chem. 2006, 281, 5623–5633. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Puga Molina, L.C.; Pinto, N.A.; Torres, N.I.; González-Cota, A.L.; Luque, G.M.; Balestrini, P.A.; Romarowski, A.; Krapf, D.; Santi, C.M.; Treviño, C.L.; et al. CFTR/ENaC-Dependent Regulation of Membrane Potential during Human Sperm Capacitation is Initiated by Bicarbonate Uptake through NBC. J. Biol. Chem. 2018, 293, 9924–9936. [Google Scholar] [CrossRef] [Green Version]
- Gündoğdu, A.Ç.; Kaplanoğlu, G.T.; Ören, S.; Baykal, B.; Korkmaz, C.; Gümüşlü, S.; Karabacak, R.O. Impact of 5′-AMP-Activated Protein Kinase (AMPK) on Epithelial Sodium Channels (ENaCs) in Human Sperm. Tissue Cell 2022, 78, 101896. [Google Scholar] [CrossRef]
- Candenas, L.; Seda, M.; Noheda, P.; Buschmann, H.; Cintado, C.G.; Martin, J.D.; Pinto, F.M. Molecular Diversity of Voltage-Gated Sodium Channel A and Β Subunit mRNAs in Human Tissues. Eur. J. Pharmacol. 2006, 541, 9–16. [Google Scholar] [CrossRef]
- Cejudo-Roman, A.; Pinto, F.M.; Subirán, N.; Ravina, C.G.; Fernández-Sánchez, M.; Pérez-Hernández, N.; Pérez, R.; Pacheco, A.; Irazusta, J.; Candenas, L. The Voltage-Gated Sodium Channel Nav1.8 is Expressed in Human Sperm. PLoS ONE 2013, 8, e76084. [Google Scholar] [CrossRef] [Green Version]
- Chauhan, D.S.; Swain, D.K.; Shah, N.; Yadav, H.P.; Sharma, A.; Yadav, B.; Yadav, S.; Nigam, R.; Garg, S.K. Modulation of Voltage-Gated Sodium Channels Induces Capacitation in Bull Spermatozoa through Phosphorylation of Tyrosine Containing Proteins. Theriogenology 2018, 108, 207–216. [Google Scholar] [CrossRef]
- Alvarez de la Rosa, D.; Canessa, C.M.; Fyfe, G.K.; Zhang, P. Structure and Regulation of Amiloride-Sensitive Sodium Channels. Annu. Rev. Physiol. 2000, 62, 573–594. [Google Scholar] [CrossRef]
- Kellenberger, S.; Schild, L. Epithelial Sodium Channel/Degenerin Family of Ion Channels: A Variety of Functions for a Shared Structure. Physiol. Rev. 2002, 82, 735–767. [Google Scholar] [CrossRef] [Green Version]
- Candenas, L.; Pinto, F.M.; Cejudo-Román, A.; González-Ravina, C.; Fernández-Sánchez, M.; Pérez-Hernández, N.; Irazusta, J.; Subirán, N. Veratridine-Sensitive Na+ Channels Regulate Human Sperm Fertilization Capacity. Life Sci. 2018, 196, 48–55. [Google Scholar] [CrossRef]
- Catterall, W.A.; Striessnig, J.; Snutch, T.P.; Perez-Reyes, E. International Union of Pharmacology. XL. Compendium of Voltage-Gated Ion Channels: Calcium Channels. Pharmacol. Rev. 2003, 55, 579–581. [Google Scholar] [CrossRef] [Green Version]
- Wood, J.N.; Boorman, J.P.; Okuse, K.; Baker, M.D. Voltage-gated Sodium Channels and Pain Pathways. J. Neurobiol. 2004, 61, 55–71. [Google Scholar] [CrossRef]
- Yu, F.H.; Catterall, W.A. Overview of the Voltage-Gated Sodium Channel Family. Genome Biol. 2003, 4, 207. [Google Scholar] [CrossRef] [Green Version]
- Swain, D.K.; Sharma, P.; Shah, N.; Sethi, M.; Mahajan, A.; Gupta, S.; Mishra, A.K.; Yadav, S. Introduction to the Pathways Involved in the Activation and Regulation of Sperm Motility: A Review of the Relevance of Ion Channels. Anim. Reprod. Sci. 2022, 246, 107052. [Google Scholar] [CrossRef]
- Chauhan, D.S.; Swain, D.K.; Shah, N.; Yadav, H.P.; Nakade, U.P.; Singh, V.K.; Nigam, R.; Yadav, S.; Garg, S.K. Functional and Molecular Characterization of Voltage Gated Sodium Channel Nav 1.8 in Bull Spermatozoa. Theriogenology 2017, 90, 210–218. [Google Scholar] [CrossRef]
- Ureña, I.; Gonzalez, C.; Ramon, M.; Godia, M.; Clop, A.; Calvo, J.H.; Carabano, M.f.J.; Serrano, M. Exploring the Ovine Sperm Transcriptome by RNAseq Techniques. I Effect of Seasonal Conditions on Transcripts Abundance. PLoS ONE 2022, 17, e0264978. [Google Scholar] [CrossRef]
- Cross, N.L. Role of Cholesterol in Sperm Capacitation. Biol. Reprod. 1998, 59, 7–11. [Google Scholar] [CrossRef] [Green Version]
- Davis, B.K.; Bilayer, L. Interaction of Lipids with the Plasma Membrane of Sperm Cells. I. the Antifertilization Action of Cholesterol. Arch. Androl. 1980, 5, 249–254. [Google Scholar] [CrossRef]
- Gadella, B.M.; Harrison, R.A. The Capacitating Agent Bicarbonate Induces Protein Kinase A-Dependent Changes in Phospholipid Transbilayer Behavior in the Sperm Plasma Membrane. Development 2000, 127, 2407–2420. [Google Scholar] [CrossRef]
- Krapf, D.; Arcelay, E.; Wertheimer, E.V.; Sanjay, A.; Pilder, S.H.; Salicioni, A.M.; Visconti, P.E. Inhibition of Ser/Thr Phosphatases Induces Capacitation-Associated Signaling in the Presence of Src Kinase Inhibitors. J. Biol. Chem. 2010, 285, 7977–7985. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rahban, R.; Nef, S. CatSper: The Complex Main Gate of Calcium Entry in Mammalian Spermatozoa. Mol. Cell. Endocrinol. 2020, 518, 110951. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.M.; Shi, Q.X.; Chen, W.Y.; Zhou, C.X.; Ni, Y.; Rowlands, D.K.; Liu, G.Y.; Zhu, H.; Ma, Z.G.; Wang, X.F.; et al. Cystic Fibrosis Transmembrane Conductance Regulator is Vital to Sperm Fertilizing Capacity and Male Fertility. Proc. Natl. Acad. Sci. USA 2007, 104, 9816–9821. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akbari, A.; Pipitone, G.B.; Anvar, Z.; Jaafarinia, M.; Ferrari, M.; Carrera, P.; Totonchi, M. ADCY10 Frameshift Variant Leading to Severe Recessive Asthenozoospermia and Segregating with Absorptive Hypercalciuria. Hum. Reprod. 2019, 34, 1155–1164. [Google Scholar] [CrossRef]
- Ferreira, J.J.; Lybaert, P.; Puga-Molina, L.C.; Santi, C.M. Conserved Mechanism of Bicarbonate-Induced Sensitization of CatSper Channels in Human and Mouse Sperm. Front. Cell. Dev. Biol. 2021, 9, 733653. [Google Scholar] [CrossRef]
- Escoffier, J.; Navarrete, F.; Haddad, D.; Santi, C.M.; Darszon, A.; Visconti, P.E. Flow Cytometry Analysis Reveals that Only a Subpopulation of Mouse Sperm Undergoes Hyperpolarization during Capacitation. Biol. Reprod. 2015, 92, 121. [Google Scholar] [CrossRef]
- Li, C.; Jiang, L.; Chen, W.; Li, K.; Sheng, H.; Ni, Y.; Lu, J.; Xu, W.; Zhang, S.; Shi, Q. CFTR is Essential for Sperm Fertilizing Capacity and is Correlated with Sperm Quality in Humans. Hum. Reprod. 2010, 25, 317–327. [Google Scholar] [CrossRef] [Green Version]
- Acevedo, J.J.; Mendoza-Lujambio, I.; de la Vega-Beltrán, J.L.; Treviño, C.L.; Felix, R.; Darszon, A. KATP Channels in Mouse Spermatogenic Cells and Sperm, and their Role in Capacitation. Dev. Biol. 2006, 289, 395–405. [Google Scholar] [CrossRef] [Green Version]
- Brown, S.G.; Publicover, S.J.; Barratt, C.L.R.; Martins da Silva, S.J. Human Sperm Ion Channel (Dys)Function: Implications for Fertilization. Hum. Reprod. Update 2019, 25, 758–776. [Google Scholar] [CrossRef]
- Brenker, C.; Zhou, Y.; Müller, A.; Echeverry, F.A.; Trötschel, C.; Poetsch, A.; Xia, X.; Bönigk, W.; Lingle, C.J.; Kaupp, B.; et al. The Ca2+-Activated K+ Current of Human Sperm is Mediated by Slo3. eLife 2014, 3, e01438. [Google Scholar] [CrossRef]
- Gonzalez-Perez, V.; Zhou, Y.; Ciorba, M.A.; Lingle, C.J. The LRRC Family of BK Channel Regulatory Subunits: Potential Roles in Health and Disease. J. Physiol. 2022, 600, 1357–1371. [Google Scholar] [CrossRef]
- Jacob, A.; Hurley, I.R.; Goodwin, L.O.; Cooper, G.W.; Benoff, S. Molecular Characterization of a Voltage-Gated Potassium Channel Expressed in Rat Testis. Mol. Hum. Reprod. 2000, 6, 303–313. [Google Scholar] [CrossRef] [Green Version]
- Muñoz-Garay, C.; De la Vega-Beltrán, J.L.; Delgado, R.; Labarca, P.; Felix, R.; Darszon, A. Inwardly Rectifying K+ Channels in Spermatogenic Cells: Functional Expression and Implication in Sperm Capacitation. Dev. Biol. 2001, 234, 261–274. [Google Scholar] [CrossRef] [Green Version]
- Chow, G.E.; Muller, C.H.; Curnow, E.C.; Hayes, E.S. Expression of Two-Pore Domain Potassium Channels in Nonhuman Primate Sperm. Fertil. Steril. 2007, 87, 397–404. [Google Scholar] [CrossRef] [Green Version]
- Yeung, C.H.; Cooper, T.G. Potassium Channels Involved in Human Sperm Volume Regulation-Quantitative Studies at the Protein and mRNA Levels. Mol. Reprod. Dev. 2008, 75, 659–668. [Google Scholar] [CrossRef]
- Mannowetz, N.; Naidoo, N.M.; Choo, S.S.; Smith, J.F.; Lishko, P.V. Slo1 is the Principal Potassium Channel of Human Spermatozoa. eLife 2013, 2, e01009. [Google Scholar] [CrossRef]
- Sánchez-Carranza, O.; Torres-Rodríguez, P.; Darszon, A.; Treviño, C.L.; López-González, I. Pharmacology of hSlo3 Channels and their Contribution in the Capacitation-Associated Hyperpolarization of Human Sperm. Biochem. Biophys. Res. Commun. 2015, 466, 554–559. [Google Scholar] [CrossRef]
- Zeng, X.; Yang, C.; Kim, S.T.; Lingle, C.J.; Xia, X. Deletion of the Slo3 Gene Abolishes Alkalization-Activated K+ Current in Mouse Spermatozoa. Proc. Natl. Acad. Sci. USA 2011, 108, 5879–5884. [Google Scholar] [CrossRef] [Green Version]
- Zeng, X.; Navarro, B.; Xia, X.; Clapham, D.E.; Lingle, C.J. Simultaneous Knockout of Slo3 and CatSper1 Abolishes all Alkalization- and Voltage-Activated Current in Mouse Spermatozoa. J. Gen. Physiol. 2013, 142, 305–313. [Google Scholar] [CrossRef] [Green Version]
- Lv, M.; Liu, C.; Ma, C.; Yu, H.; Shao, Z.; Gao, Y.; Liu, Y.; Wu, H.; Tang, D.; Tan, Q.; et al. Homozygous Mutation in SLO3 Leads to Severe Asthenoteratozoospermia due to Acrosome Hypoplasia and Mitochondrial Sheath Malformations. Reprod. Biol. Endocrinol. 2022, 20, 5. [Google Scholar] [CrossRef]
- Yang, C.; Zeng, X.; Xia, X.; Lingle, C.J. Interactions between Β Subunits of the KCNMB Family and Slo3: Β4 Selectively Modulates Slo3 Expression and Function. PLoS ONE 2009, 4, e6135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uebele, V.N.; Lagrutta, A.; Wade, T.; Figueroa, D.J.; Liu, Y.; McKenna, E.; Austin, C.P.; Bennett, P.B.; Swanson, R. Cloning and Functional Expression of Two Families of Beta-Subunits of the Large Conductance Calcium-Activated K+ Channel. J. Biol. Chem. 2000, 275, 23211–23218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, J.; Aldrich, R.W. BK Potassium Channel Modulation by Leucine-Rich Repeat-Containing Proteins. Proc. Natl. Acad. Sci. USA 2012, 109, 7917–7922. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, C.; Zeng, X.; Zhou, Y.; Xia, X.; Lingle, C.J. LRRC52 (Leucine-Rich-Repeat-Containing Protein 52), a Testis-Specific Auxiliary Subunit of the Alkalization-Activated Slo3 Channel. Proc. Natl. Acad. Sci. USA 2011, 108, 19419–19424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeng, X.; Yang, C.; Xia, X.; Liu, M.; Lingle, C.J. SLO3 Auxiliary Subunit LRRC52 Controls Gating of Sperm KSPER Currents and is Critical for Normal Fertility. Proc. Natl. Acad. Sci. USA 2015, 112, 2599–2604. [Google Scholar] [CrossRef] [Green Version]
- Felix, R.; Serrano, C.J.; Treviño, C.L.; Muñoz-Garay, C.; Bravo, A.; Navarro, A.; Pacheco, J.; Tsutsumi, V.; Darszon, A. Identification of Distinct K+ Channels in Mouse Spermatogenic Cells and Sperm. Zygote 2002, 10, 183–188. [Google Scholar] [CrossRef]
- Gupta, R.K.; Swain, D.K.; Singh, V.; Anand, M.; Choudhury, S.; Yadav, S.; Saxena, A.; Garg, S.K. Molecular Characterization of Voltage-Gated Potassium Channel (Kv) and its Importance in Functional Dynamics in Bull Spermatozoa. Theriogenology 2018, 114, 229–236. [Google Scholar] [CrossRef]
- Barfield, J.P.; Yeung, C.H.; Cooper, T.G. Characterization of Potassium Channels Involved in Volume Regulation of Human Spermatozoa. Mol. Hum. Reprod. 2005, 11, 891–897. [Google Scholar] [CrossRef] [Green Version]
- Regnier, G.; Bocksteins, E.; Marei, W.F.; Pintelon, I.; Timmermans, J.; Leroy, J.L.M.R.; Snyders, D.J. Targeted Deletion of the Kv6.4 Subunit Causes Male Sterility due to Disturbed Spermiogenesis. Reprod. Fertil. Dev. 2017, 29, 1567–1575. [Google Scholar] [CrossRef]
- Gao, T.; Li, K.; Liang, F.; Yu, J.; Liu, A.; Ni, Y.; Sun, P. KCNQ1 Potassium Channel Expressed in Human Sperm is Involved in Sperm Motility, Acrosome Reaction, Protein Tyrosine Phosphorylation, and Ion Homeostasis during Capacitation. Front. Physiol. 2021, 12, 761910. [Google Scholar] [CrossRef]
- Dixon, A.K.; Gubitz, A.K.; Ashford, M.L.J.; Richardson, P.J.; Freeman, T.C. Distribution of mRNA Encoding the Inwardly Rectifying K+ Channel, BIR1 in Rat Tissues. FEBS Lett. 1995, 374, 135–140. [Google Scholar] [CrossRef] [Green Version]
- Inanobe, A.; Horio, Y.; Fujita, A.; Tanemoto, M.; Hibino, H.; Inageda, K.; Kurachi, Y. Molecular Cloning and Characterization of a Novel Splicing Variant of the Kir3.2 Subunit Predominantly Expressed in Mouse Testis. J. Physiol. 1999, 521 Pt 1, 19–30. [Google Scholar] [CrossRef]
- Poli, G.; Hasan, S.; Belia, S.; Cenciarini, M.; Tucker, S.J.; Imbrici, P.; Shehab, S.; Pessia, M.; Brancorsini, S.; D’Adamo, M.C. Kcnj16 (Kir5.1) Gene Ablation Causes Subfertility and Increases the Prevalence of Morphologically Abnormal Spermatozoa. Int. J. Mol. Sci. 2021, 22, 5972. [Google Scholar] [CrossRef]
- Salvatore, L.; D’adamo, M.C.; Polishchuk, R.; Salmona, M.; Pessia, M. Localization and age-dependent expression of the inward rectifier K+ channel subunit Kir 5.1 in a mammalian reproductive system. FEBS Lett. 1999, 449, 146–152. [Google Scholar] [CrossRef] [Green Version]
- Bond, C.T.; Pessia, M.; Xia, X.M.; Lagrutta, A.; Kavanaugh, M.P.; Adelman, J.P. Cloning and Expression of a Family of Inward Rectifier Potassium Channels. Recept. Channels 1994, 2, 183–191. [Google Scholar]
- Zhou, M.; He, H.; Tanaka, O.; Sekiguchi, M.; Kawahara, K.; Abe, H. Different Localization of ATP Sensitive K+ Channel Subunits in Rat Testis. Anat. Rec. 2011, 294, 729–737. [Google Scholar] [CrossRef]
- Lybaert, P.; Vanbellinghen, A.M.; Quertinmont, E.; Petein, M.; Meuris, S.; Lebrun, P. KATP Channel Subunits are Expressed in the Epididymal Epithelium in several Mammalian Species. Biol. Reprod. 2008, 79, 253–261. [Google Scholar] [CrossRef] [Green Version]
- Salkoff, L.; Butler, A.; Ferreira, G.; Santi, C.; Wei, A. High-Conductance Potassium Channels of the SLO Family. Nat. Rev. Neurosci. 2006, 7, 921–931. [Google Scholar] [CrossRef]
- Taura, J.; Kircher, D.M.; Gameiro-Ros, I.; Slesinger, P.A. Comparison of K+ Channel Families. Handb. Exp. Pharmacol. 2021, 267, 1–49. [Google Scholar]
- Dudem, S.; Sergeant, G.P.; Thornbury, K.D.; Hollywood, M.A. Calcium-Activated K+ Channels (KCa) and Therapeutic Implications. Handb. Exp. Pharmacol. 2021, 267, 379–416. [Google Scholar]
- Brown, S.G.; Costello, S.; Kelly, M.C.; Ramalingam, M.; Drew, E.; Publicover, S.J.; Barratt, C.L.R.; Da Silva, S.M. Complex CatSper-Dependent and Independent [Ca2+]i Signalling in Human Spermatozoa Induced by Follicular Fluid. Hum. Reprod. 2017, 32, 1995–2006. [Google Scholar] [CrossRef] [Green Version]
- Schreiber, M.; Wei, A.; Yuan, A.; Gaut, J.; Saito, M.; Salkoff, L. Slo3, a Novel pH-Sensitive K+ Channel from Mammalian Spermatocytes. J. Biol. Chem. 1998, 273, 3509–3516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lishko, P.V.; Kirichok, Y. The Role of Hv1 and CatSper Channels in Sperm Activation. J. Physiol. 2010, 588, 4667–4672. [Google Scholar] [CrossRef] [PubMed]
- Leonetti, M.D.; Yuan, P.; Hsiung, Y.; Mackinnon, R. Functional and Structural Analysis of the Human SLO3 pH- and Voltage-Gated K+ Channel. Proc. Natl. Acad. Sci. USA 2012, 109, 19274–19279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geng, Y.; Ferreira, J.J.; Dzikunu, V.; Butler, A.; Lybaert, P.; Yuan, P.; Magleby, K.L.; Salkoff, L.; Santi, C.M. A Genetic Variant of the Sperm-Specific SLO3 K+ Channel has Altered pH and Ca2+ Sensitivities. J. Biol. Chem. 2017, 292, 8978–8987. [Google Scholar] [CrossRef] [Green Version]
- Coetzee, W.A.; Amarillo, Y.; Chiu, J.; Chow, A.; Lau, D.; Mccormack, T.; Morena, H.; Nadal, M.S.; Ozaita, A.; Pountney, D.; et al. Molecular Diversity of K+ Channels. Ann. N. Y. Acad. Sci. 1999, 868, 233–285. [Google Scholar] [CrossRef]
- Chung, I.; Schlichter, L.C. Regulation of Native Kv1.3 Channels by cAMP-Dependent Protein Phosphorylation. Am. J. Physiol. 1997, 273, C622–C633. [Google Scholar] [CrossRef]
- Holmes, T.C.; Fadool, D.A.; Levitan, I.B. Tyrosine Phosphorylation of the Kv1.3 Potassium Channel. J. Neurosci. 1996, 16, 1581–1590. [Google Scholar] [CrossRef]
- Benoff, S. Receptors and Channels Regulating Acrosome Reactions. Hum. Fertil. 1999, 2, 42–55. [Google Scholar] [CrossRef]
- Benoff, S.; Jacob, A.; Hurley, I.R. Male Infertility and Environmental Exposure to Lead and Cadmium. Hum. Reprod. Update 2000, 6, 107–121. [Google Scholar] [CrossRef]
- Cui, M.; Cantwell, L.; Zorn, A.; Logothetis, D.E. Kir Channel Molecular Physiology, Pharmacology, and Therapeutic Implications. Handb. Exp. Pharmacol. 2021, 267, 277–356. [Google Scholar]
- Doring, F.; Derst, C.; Wischmeyer, E.; Karschin, C.; Schneggenburger, R.; Daut, J.; Karschin, A. The Epithelial Inward Rectifier Channel Kir7.1 Displays Unusual K+ Permeation Properties. J. Neurosci. 1998, 18, 8625–8636. [Google Scholar] [CrossRef] [Green Version]
- Wassermann, G.F.; Loss, E.S. Testosterone Action on the Sertoli Cell Membrane: A KIR6.X Channel Related Effect. Curr. Pharm. Des. 2004, 10, 2649–2656. [Google Scholar]
- Visconti, P.E.; Krapf, D.; de la Vega-Beltrán, J.L.; Acevedo, J.J.; Darszon, A. Ion Channels, Phosphorylation and Mammalian Sperm Capacitation. Asian J. Androl. 2011, 13, 395–405. [Google Scholar] [CrossRef] [Green Version]
- Hibino, H.; Inanobe, A.; Furutani, K.; Murakami, S.; Findlay, I.; Kurachi, Y. Inwardly Rectifying Potassium Channels: Their Structure, Function, and Physiological Roles. Physiol. Rev. 2010, 90, 291–366. [Google Scholar] [CrossRef] [Green Version]
- Mikhailov, M.V.; Campbell, J.D.; de Wet, H.; Shimomura, K.; Zadek, B.; Collins, R.F.; Sansom, M.S.P.; Ford, R.C.; Ashcroft, F.M. 3-D Structural and Functional Characterization of the Purified KATP Channel Complex Kir6.2-SUR1. EMBO J. 2005, 24, 4166–4175. [Google Scholar] [CrossRef] [Green Version]
- Kamuene, J.M.; Xu, Y.; Plant, L.D. The Pharmacology of Two-Pore Domain Potassium Channels. Handb. Exp. Pharmacol. 2021, 267, 417–443. [Google Scholar]
- Brown, S.G.; Publicover, S.J.; Mansell, S.A.; Lishko, P.V.; Williams, H.L.; Ramalingam, M.; Wilson, S.M.; Barratt, C.L.R.; Sutton, K.A.; Da Silva, S.M. Depolarization of Sperm Membrane Potential is a Common Feature of Men with Subfertility and is Associated with Low Fertilization Rate at IVF. Hum. Reprod. 2016, 31, 1147–1157. [Google Scholar] [CrossRef] [Green Version]
- Noto, F.; Recuero, S.; Valencia, J.; Saporito, B.; Robbe, D.; Bonet, S.; Carluccio, A.; Yeste, M. Inhibition of Potassium Channels Affects the Ability of Pig Spermatozoa to Elicit Capacitation and Trigger the Acrosome Exocytosis Induced by Progesterone. Int. J. Mol. Sci. 2021, 22, 1992. [Google Scholar] [CrossRef]
- Babcock, D.F.; Rufo, G.A., Jr.; Lardy, H.A. Potassium-dependent increases in cytosolic pH stimulate metabolism and motility of mammalian sperm. Proc. Natl. Acad. Sci. USA 1983, 80, 1327–1331. [Google Scholar] [CrossRef] [Green Version]
- Mony, L.; Stroebel, D.; Isacoff, E.Y. Dimer Interaction in the Hv1 Proton Channel. Proc. Natl. Acad. Sci. USA 2020, 117, 20898–20907. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, M.; Takagi, M.; Okamura, Y. A voltage sensor-domain protein is a voltage-gated proton channel. Science 2006, 312, 589–592. [Google Scholar] [CrossRef] [PubMed]
- Ramsey, I.S.; Moran, M.M.; Chong, J.A.; Clapham, D.E. A Voltage-Gated Proton-Selective Channel Lacking the Pore Domain. Nature 2006, 440, 1213–1216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, R.; Kennedy, K.; De Blas, G.A.; Orta, G.; Pavarotti, M.A.; Arias, R.J.; De La Vega-Beltrán, J.L.; Li, Q.; Dai, H.; Perozo, E.; et al. Role of Human Hv1 Channels in Sperm Capacitation and White Blood Cell Respiratory Burst Established by a Designed Peptide Inhibitor. Proc. Natl. Acad. Sci. USA 2018, 115, E11847–E11856. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DeCoursey, T.E. Gating Currents Indicate Complex Gating of Voltage-Gated Proton Channels. Proc. Natl. Acad. Sci. USA 2018, 115, 9057–9059. [Google Scholar] [CrossRef] [Green Version]
- Bernardino, R.L.; Carrageta, D.F.; Sousa, M.; Alves, M.G.; Oliveira, P.F. pH and Male Fertility: Making Sense on pH Homeodynamics Throughout the Male Reproductive Tract. Cell. Mol. Life Sci. 2019, 76, 3783–3800. [Google Scholar] [CrossRef]
- Morales, P.; Overstreet, J.W.; Katz, D.F. Changes in Human Sperm Motion during Capacitation in Vitro. J. Reprod. Fertil. 1988, 83, 119–128. [Google Scholar] [CrossRef] [Green Version]
- Suarez, S.S.; Osman, R.A. Initiation of Hyperactivated Flagellar Bending in Mouse Sperm within the Female Reproductive Tract. Biol. Reprod. 1987, 36, 1191–1198. [Google Scholar] [CrossRef] [Green Version]
- Suarez, S.S.; Ho, H.C. Hyperactivation of Mammalian Sperm. Cell. Mol. Biol. 2003, 49, 351–356. [Google Scholar]
- White, D.R.; Aitken, R.J. Relationship between Calcium, Cyclic AMP, ATP, and Intracellular pH and the Capacity of Hamster Spermatozoa to Express Hyperactivated Motility. Gamete Res. 1989, 22, 163–177. [Google Scholar] [CrossRef]
- Eisenbach, M.; Giojalas, L.C. Sperm Guidance in Mammals—An Unpaved Road to the Egg. Nat. Rev. Mol. Cell. Biol. 2006, 7, 276–285. [Google Scholar] [CrossRef]
- Suarez, S.S. Control of Hyperactivation in Sperm. Hum. Reprod. Update 2008, 14, 647–657. [Google Scholar] [CrossRef] [Green Version]
- Alasmari, W.; Costello, S.; Correia, J.; Oxenham, S.K.; Morris, J.; Fernandes, L.; Ramalho-Santos, J.; Kirkman-Brown, J.; Michelangeli, F.; Publicover, S.; et al. Ca2+ Signals Generated by CatSper and Ca2+ Stores Regulate Different Behaviors in Human Sperm. J. Biol. Chem. 2013, 288, 6248–6258. [Google Scholar] [CrossRef] [Green Version]
- De Blas, G.; Michaut, M.; Treviño, C.L.; Tomes, C.N.; Yunes, R.; Darszon, A.; Mayorga, L.S. The Intraacrosomal Calcium Pool Plays a Direct Role in Acrosomal Exocytosis. J. Biol. Chem. 2002, 277, 49326–49331. [Google Scholar] [CrossRef] [Green Version]
- Costello, S.; Michelangeli, F.; Nash, K.; Lefievre, L.; Morris, J.; Machado-Oliveira, G.; Barratt, C.; Kirkman-Brown, J.; Publicover, S. Ca2+-Stores in Sperm: Their Identities and Functions. Reproduction 2009, 138, 425–437. [Google Scholar] [CrossRef] [Green Version]
- Jin, J.; Jin, N.; Zheng, H.; Ro, S.; Tafolla, D.; Sanders, K.M.; Yan, W. Catsper3 and Catsper4 are Essential for Sperm Hyperactivated Motility and Male Fertility in the Mouse. Biol. Reprod. 2007, 77, 37–44. [Google Scholar] [CrossRef]
- Ren, D.; Navarro, B.; Perez, G.; Jackson, A.C.; Hsu, S.; Shi, Q.; Tilly, J.L.; Clapham, D.E. A Sperm Ion Channel Required for Sperm Motility and Male Fertility. Nature 2001, 413, 603–609. [Google Scholar] [CrossRef]
- Torrezan-Nitao, E.; Brown, S.G.; Mata-Martínez, E.; Treviño, C.L.; Barratt, C.; Publicover, S. [Ca2+]i Oscillations in Human Sperm are Triggered in the Flagellum by Membrane Potential-Sensitive Activity of CatSper. Hum. Reprod. 2021, 36, 293–304. [Google Scholar] [CrossRef]
- Marquez, B.; Ignotz, G.; Suarez, S.S. Contributions of Extracellular and Intracellular Ca2+ to Regulation of Sperm Motility: Release of Intracellular Stores can Hyperactivate CatSper1 and CatSper2 Null Sperm. Dev. Biol. 2007, 303, 214–221. [Google Scholar] [CrossRef] [Green Version]
- Ho, H.; Suarez, S.S. An Inositol 1,4,5-Trisphosphate Receptor-Gated Intracellular Ca2+ Store is Involved in Regulating Sperm Hyperactivated Motility. Biol. Reprod. 2001, 65, 1606–1615. [Google Scholar] [CrossRef] [Green Version]
- Carlson, A.E.; Westenbroek, R.E.; Quill, T.; Ren, D.; Clapham, D.E.; Hille, B.; Garbers, D.L.; Babcock, D.F. CatSper1 Required for Evoked Ca2+ Entry and Control of Flagellar Function in Sperm. Proc. Natl. Acad. Sci. USA 2003, 100, 14864–14868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chung, J.; Navarro, B.; Krapivinsky, G.; Krapivinsky, L.; Clapham, D.E. A Novel Gene Required for Male Fertility and Functional CATSPER Channel Formation in Spermatozoa. Nat. Commun. 2011, 2, 153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Avenarius, M.R.; Hildebrand, M.S.; Zhang, Y.; Meyer, N.C.; Smith, L.L.H.; Kahrizi, K.; Najmabadi, H.; Smith, R.J.H. Human Male Infertility Caused by Mutations in the CATSPER1 Channel Protein. Am. J. Hum. Genet. 2009, 84, 505–510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Y.; Wang, H.; Wiesehoefer, C.; Shah, N.B.; Reetz, E.; Hwang, J.Y.; Huang, X.; Wang, T.; Lishko, P.V.; Davies, K.M.; et al. 3D Structure and in Situ Arrangements of CatSper Channel in the Sperm Flagellum. Nat. Commun. 2022, 13, 3439. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.; Ke, M.; Zhang, Y.; Yan, Z.; Wu, J. Structure of a Mammalian Sperm Cation Channel Complex. Nature 2021, 595, 746–750. [Google Scholar] [CrossRef]
- Zhang, D.; Chen, J.; Saraf, A.; Cassar, S.; Han, P.; Rogers, J.C.; Brioni, J.D.; Sullivan, J.P.; Gopalakrishnan, M. Association of Catsper1 Or -2 with Ca(V)3.3 Leads to Suppression of T-Type Calcium Channel Activity. J. Biol. Chem. 2006, 281, 22332–22341. [Google Scholar] [CrossRef] [Green Version]
- Qi, H.; Moran, M.M.; Navarro, B.; Chong, J.A.; Krapivinsky, G.; Krapivinsky, L.; Kirichok, Y.; Ramsey, I.S.; Quill, T.A.; Clapham, D.E. All Four CatSper Ion Channel Proteins are Required for Male Fertility and Sperm Cell Hyperactivated Motility. Proc. Natl. Acad. Sci. USA 2007, 104, 1219–1223. [Google Scholar] [CrossRef] [Green Version]
- Quill, T.A.; Ren, D.; Clapham, D.E.; Garbers, D.L. A Voltage-Gated Ion Channel Expressed Specifically in Spermatozoa. Proc. Natl. Acad. Sci. USA 2001, 98, 12527–12531. [Google Scholar] [CrossRef] [Green Version]
- Avidan, N.; Tamary, H.; Dgany, O.; Cattan, D.; Pariente, A.; Thulliez, M.; Borot, N.; Moati, L.; Barthelme, A.; Shalmon, L.; et al. CATSPER2, a Human Autosomal Nonsyndromic Male Infertility Gene. Eur. J. Hum. Genet. 2003, 11, 497–502. [Google Scholar] [CrossRef] [Green Version]
- Smith, J.F.; Syritsyna, O.; Fellous, M.; Serres, C.; Mannowetz, N.; Kirichok, Y.; Lishko, P.V. Disruption of the Principal, Progesterone-Activated Sperm Ca2+ Channel in a CatSper2-Deficient Infertile Patient. Proc. Natl. Acad. Sci. USA 2013, 110, 6823–6828. [Google Scholar] [CrossRef] [Green Version]
- Luo, T.; Chen, H.; Zou, Q.; Wang, T.; Cheng, Y.; Wang, H.; Wang, F.; Jin, Z.; Chen, Y.; Weng, S.Q.; et al. A Novel Copy Number Variation in CATSPER2 Causes Idiopathic Male Infertility with Normal Semen Parameters. Hum. Reprod. 2019, 34, 414–423. [Google Scholar] [CrossRef]
- Lobley, A.; Pierron, V.; Reynolds, L.; Allen, L.; Michalovich, D. Identification of Human and Mouse CatSper3 and CatSper4 Genes: Characterisation of a Common Interaction Domain and Evidence for Expression in Testis. Reprod. Biol. Endocrinol. 2003, 1, 53. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Xia, J.; Cho, K.; Clapham, D.E.; Ren, D. CatSperbeta, a Novel Transmembrane Protein in the CatSper Channel Complex. J. Biol. Chem. 2007, 282, 18945–18952. [Google Scholar] [CrossRef] [Green Version]
- Chung, J.; Shim, S.; Everley, R.A.; Gygi, S.P.; Zhuang, X.; Clapham, D.E. Structurally Distinct Ca2+ Signaling Domains of Sperm Flagella Orchestrate Tyrosine Phosphorylation and Motility. Cell 2014, 157, 808–822. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Liu, J.; Cho, K.; Ren, D. A Novel, Single, Transmembrane Protein CATSPERG is Associated with CATSPER1 Channel Protein. Biol. Reprod. 2009, 81, 539–544. [Google Scholar] [CrossRef] [Green Version]
- Brown, S.G.; Miller, M.R.; Lishko, P.V.; Lester, D.H.; Publicover, S.J.; Barratt, C.L.R.; Martins Da Silva, S. Homozygous in-frame deletion in CATSPERE in a man producing spermatozoa with loss of CatSper function and compromised fertilizing capacity. Hum. Reprod. 2018, 33, 1812–1816. [Google Scholar] [CrossRef] [Green Version]
- Chung, J.; Miki, K.; Kim, D.; Shim, S.; Shi, H.F.; Hwang, J.Y.; Cai, X.; Iseri, Y.; Zhuang, X.; Clapham, D.E. CatSperζ Regulates the Structural Continuity of Sperm Ca2+ Signaling Domains and is Required for Normal Fertility. eLife 2017, 6, e23082. [Google Scholar] [CrossRef]
- Hwang, J.Y.; Mannowetz, N.; Zhang, Y.; Everley, R.A.; Gygi, S.P.; Bewersdorf, J.; Lishko, P.V.; Chung, J. Dual Sensing of Physiologic pH and Calcium by EFCAB9 Regulates Sperm Motility. Cell 2019, 177, 1480–1494. [Google Scholar] [CrossRef]
- Hwang, J.Y.; Wang, H.; Lu, Y.; Ikawa, M.; Chung, J.J. C2cd6-encoded CatSperτ targets sperm calcium channel to Ca2+ signaling domains in the flagellar membrane. Cell. Rep. 2022, 38, 110226. [Google Scholar] [CrossRef]
- Yang, F.; Gracia Gervasi, M.; Orta, G.; Tourzani, D.A.; De la Vega-Beltran, J.L.; Ruthel, G.; Darszon, A.; Visconti, P.E.; Wang, P.J. C2CD6 Regulates Targeting and Organization of the CatSper Calcium Channel Complex in Sperm Flagella. Development 2022, 149, dev199988. [Google Scholar] [CrossRef]
- Westenbroek, R.E.; Babcock, D.F. Discrete Regional Distributions Suggest Diverse Functional Roles of Calcium Channel Alpha1 Subunits in Sperm. Dev. Biol. 1999, 207, 457–469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Espinosa, F.; López-González, I.; Serrano, C.J.; Gasque, G.; de la Vega-Beltrán, J.L.; Treviño, C.L.; Darszon, A. Anion Channel Blockers Differentially Affect T-Type Ca2+ Currents of Mouse Spermatogenic Cells, alpha1E Currents Expressed in Xenopus Oocytes and the Sperm Acrosome Reaction. Dev. Genet. 1999, 25, 103–114. [Google Scholar] [CrossRef]
- Park, J.Y.; Ahn, H.J.; Gu, J.G.; Lee, K.H.; Kim, J.S.; Kang, H.W.; Lee, J.H. Molecular Identification of Ca2+ Channels in Human Sperm. Exp. Mol. Med. 2003, 35, 285–292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Serrano, C.J.; Treviño, C.L.; Felix, R.; Darszon, A. Voltage-Dependent Ca2+ Channel Subunit Expression and Immunolocalization in Mouse Spermatogenic Cells and Sperm. FEBS Lett. 1999, 462, 171–176. [Google Scholar] [CrossRef] [Green Version]
- Wennemuth, G.; Westenbroek, R.E.; Xu, T.; Hille, B.; Babcock, D.F. CaV2.2 and CaV2.3 (N- and R-Type) Ca2+ Channels in Depolarization-Evoked Entry of Ca2+ into Mouse Sperm. J. Biol. Chem. 2000, 275, 21210–21217. [Google Scholar] [CrossRef] [Green Version]
- José, O.; Hernández-Hernández, O.; Chirinos, M.; González-González, M.E.; Larrea, F.; Almanza, A.; Felix, R.; Darszon, A.; Treviño, C.L. Recombinant Human ZP3-Induced Sperm Acrosome Reaction: Evidence for the Involvement of T- and L-Type Voltage-Gated Calcium Channels. Biochem. Biophys. Res. Commun. 2010, 395, 530–534. [Google Scholar] [CrossRef]
- De La Vega-Beltran, J.L.; Sánchez-Cárdenas, C.; Krapf, D.; Hernandez-González, E.O.; Wertheimer, E.; Treviño, C.L.; Visconti, P.E.; Darszon, A. Mouse Sperm Membrane Potential Hyperpolarization is Necessary and Sufficient to Prepare Sperm for the Acrosome Reaction. J. Biol. Chem. 2012, 287, 44384–44393. [Google Scholar] [CrossRef] [Green Version]
- Keshtgar, S.; Ghanbari, H.; Ghani, E.; Mostafa, S.; Moosavi, S. Effect of CatSper and Hv1 Channel Inhibition on Progesterone Stimulated Human Sperm. J. Reprod. Infertil. 2018, 19, 133–139. [Google Scholar]
- Belmonte, S.A.; Mayorga, L.S.; Tomes, C.N. The Molecules of Sperm Exocytosis. Adv. Anat. Embryol. Cell Biol. 2016, 220, 71–92. [Google Scholar]
- Correia, J.; Michelangeli, F.; Publicover, S. Regulation and Roles of Ca2+ Stores in Human Sperm. Reproduction 2015, 150, R65–R76. [Google Scholar] [CrossRef] [Green Version]
- Mayorga, L.S.; Tomes, C.N.; Belmonte, S.A. Acrosomal Exocytosis, a Special Type of Regulated Secretion. IUBMB Life 2007, 59, 286–292. [Google Scholar] [CrossRef]
- Brukman, N.G.; Nuñez, S.Y.; Puga Molina, L.D.C.; Buffone, M.G.; Darszon, A.; Cuasnicu, P.S.; Da Ros, V.G. Tyrosine Phosphorylation Signaling Regulates Ca2+ Entry by Affecting Intracellular pH during Human Sperm Capacitation. J. Cell. Physiol. 2019, 234, 5276–5288. [Google Scholar] [CrossRef]
- Kirichok, Y.; Navarro, B.; Clapham, D.E. Whole-Cell Patch-Clamp Measurements of Spermatozoa Reveal an Alkaline-Activated Ca2+ Channel. Nature 2006, 439, 737–740. [Google Scholar] [CrossRef]
- Orta, G.; de la Vega-Beltran, J.L.; Martín-Hidalgo, D.; Santi, C.M.; Visconti, P.E.; Darszon, A. CatSper Channels are Regulated by Protein Kinase A. J. Biol. Chem. 2018, 293, 16830–16841. [Google Scholar] [CrossRef] [Green Version]
- Brenker, C.; Goodwin, N.; Weyand, I.; Kashikar, N.D.; Naruse, M.; Krähling, M.; Müller, A.; Kaupp, U.B.; Strünker, T. The CatSper Channel: A Polymodal Chemosensor in Human Sperm. EMBO J. 2012, 31, 1654–1665. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Miyatab, H.; Wanga, H.; Moric, G.; Iida-Noritab, R.; Ikawab, M.; Percudanic, R.; Chung, J.J. A CUG-initiated CATSPERθ functions in the CatSper channel assembly and serves as a checkpoint for flagellar trafficking. bioRxiv 2023. [Google Scholar] [CrossRef]
- Urizar-Arenaza, I.; Osinalde, N.; Akimov, V.; Puglia, M.; Candenas, L.; Pinto, F.M.; Muñoa-Hoyos, I.; Gianzo, M.; Matorras, R.; Irazusta, J.; et al. Phosphoproteomic and Functional Analyses Reveal Sperm-Specific Protein Changes Downstream of Kappa Opioid Receptor in Human Spermatozoa. Mol. Cell. Proteom. 2019, 18, S118–S131. [Google Scholar] [CrossRef] [Green Version]
- Strünker, T.; Goodwin, N.; Brenker, C.; Kashikar, N.D.; Weyand, I.; Seifert, R.; Kaupp, U.B. The CatSper Channel Mediates Progesterone-Induced Ca2+ Influx in Human Sperm. Nature 2011, 471, 382–386. [Google Scholar] [CrossRef]
- Darszon, A.; Nishigaki, T.; Beltran, C.; Treviño, C.L. Calcium Channels in the Development, Maturation, and Function of Spermatozoa. Physiol. Rev. 2011, 91, 1305–1355. [Google Scholar] [CrossRef] [Green Version]
- Benoff, S. Voltage Dependent Calcium Channels in Mammalian Spermatozoa. Front. Biosci. 1998, 3, D1220–D1240. [Google Scholar] [CrossRef] [Green Version]
- Catterall, W.A.; Few, A.P. Calcium Channel Regulation and Presynaptic Plasticity. Neuron 2008, 59, 882–901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calzada, L.; Tellez, J. Defective Function of Membrane Potential (psi) on Sperm of Infertile Men. Arch. Androl. 1997, 38, 151–155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Z.; Yang, Y.; Wu, H.; Zhang, H.; Zhang, H.; Mao, J.; Liu, D.; Zhao, L.; Lin, H.; Tang, W.; et al. Sodium-Hydrogen-Exchanger Expression in Human Sperm and its Relationship with Semen Parameters. J. Assist. Reprod. Genet. 2017, 34, 795–801. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; King, S.M.; Quill, T.A.; Doolittle, L.K.; Garbers, D.L. A New Sperm-Specific Na+/H+ Exchanger Required for Sperm Motility and Fertility. Nat. Cell Biol. 2003, 5, 1117–1122. [Google Scholar] [CrossRef] [PubMed]
- Williams, H.L.; Mansell, S.; Alasmari, W.; Brown, S.G.; Wilson, S.M.; Sutton, K.A.; Miller, M.R.; Lishko, P.V.; Barratt, C.L.R.; Publicover, S.J.; et al. Specific Loss of CatSper Function is Sufficient to Compromise Fertilizing Capacity of Human Spermatozoa. Hum. Reprod. 2015, 30, 2737–2746. [Google Scholar] [CrossRef]
- Krausz, C.; Riera-Escamilla, A. Genetics of Male Infertility. Nat. Rev. Urol. 2018, 15, 369–384. [Google Scholar] [CrossRef]
- El Khouri, E.; Whitfield, M.; Stouvenel, L.; Kini, A.; Riederer, B.; Lores, P.; Roemermann, D.; di Stefano, G.; Drevet, J.R.; Saez, F.; et al. Slc26a3 Deficiency is Associated with Epididymis Dysplasia and Impaired Sperm Fertilization Potential in the Mouse. Mol. Reprod. Dev. 2018, 85, 682–695. [Google Scholar] [CrossRef]
- Dirami, T.; Rode, B.; Jollivet, M.; Da Silva, N.; Escalier, D.; Gaitch, N.; Norez, C.; Tuffery, P.; Wolf, J.; Becq, F.; et al. Missense Mutations in SLC26A8, Encoding a Sperm-Specific Activator of CFTR, are Associated with Human Asthenozoospermia. Am. J. Hum. Genet. 2013, 92, 760–766. [Google Scholar] [CrossRef] [Green Version]
- Hihnala, S.; Kujala, M.; Toppari, J.; Kere, J.; Holmberg, C.; Höglund, P. Expression of SLC26A3, CFTR and NHE3 in the Human Male Reproductive Tract: Role in Male Subfertility Caused by Congenital Chloride Diarrhoea. Mol. Hum. Reprod. 2006, 12, 107–111. [Google Scholar] [CrossRef] [Green Version]
- Höglund, P.; Hihnala, S.; Kujala, M.; Tiitinen, A.; Dunkel, L.; Holmberg, C. Disruption of the SLC26A3-Mediated Anion Transport is Associated with Male Subfertility. Fertil. Steril. 2006, 85, 232–235. [Google Scholar] [CrossRef]
Protein Family | Protein | Gene | Transmembrane Domains (TM) | Detection Methods | References |
---|---|---|---|---|---|
Epithelial Sodium Channels (ENaC) | α subunit | SCNN1A | 2TM (heteromultimeric) | Western blot, immunofluorescence, RT-PCR (mouse spermatids), immunohistochemistry (human spermatocytes and spermatids) | [56,57] |
β subunit | SCNN1B | 2TM (heteromultimeric) | Western blot, immunofluorescence, ELISA | [15,58,59] | |
δ subunit * | Scnn1d | 2TM (heteromultimeric) | RT-PCR (mouse sspermatids), Western blot (mouse sperm), immunofluorescence (mouse sperm) | [57] | |
Voltage-gated Sodium Channels (Nav) | Pore-forming α subunit | ||||
Nav1.1 | SCN1A | 24 TM | RT-PCR (low expression) | [36,60] | |
Nav1.2 | SCN2A | 24 TM | RT-PCR, immunofluorescence | [36,60] | |
Nav1.3 | SCN3A | 24 TM | RT-PCR (low expression) | [36,60] | |
Nav1.4 | SCN4A | 24 TM | RT-PCR, immunofluorescence | [36,60] | |
Nav1.5 | SCN5A | 24 TM | RT-PCR, immunofluorescence | [36,60] | |
Nav1.6 | SCN8A | 24 TM | RT-PCR, immunofluorescence | [36,60] | |
Nav1.7 | SCN9A | 24 TM | RT-PCR, immunofluorescence | [36,60] | |
Nav1.8 | SCN10A | 24 TM | RT-PCR, Western blot, immunofluorescence, functional studies | [36,60,61,62] | |
Nav1.9 | SCN11A | 24 TM | RT-PCR, immunofluorescence | [36] | |
Nax | SCN7A | 24 TM | RT-PCR, immunofluorescence | [36] | |
Auxiliary β subunits | |||||
β1 | SCN1B | 1 TM | RT-PCR | [36] | |
β3 | SCN3B | 1 TM | RT-PCR | [36] | |
β4 | SCN4B | 1 TM | RT-PCR | [36] |
Protein Family | Protein | Gene | Transmembrane Domains (TM) | Detection Methods | References |
---|---|---|---|---|---|
Ca2+-activated K+ channels (KCa) | Pore-forming α subunit | ||||
SLO1 (BK or Maxi-K channel) KCa1.1 | KCNMA1 | 7 TM × 4 (homotetramer) | Electrophysiology, immunofluorescence Western blot, RT-PCR | [40,90] | |
SLO3 KCa5.1 | KCNU1 | 7 TM × 4 (homotetramer) | Electrophysiology, immunofluorescence, Western blot, RT-PCR, human gene mutation (asthenoteratozooospermia), gene deletion (mouse, infertile) | [40,84,91,92,93,94] | |
Auxiliary subunits | |||||
β subunits | |||||
β1 * | Kcnmb1 | 2 TM | RT-PCR (mouse testis and epididymal sperm) | [95] | |
β2 * | Kcnmb2 | 2 TM | RT-PCR (mouse testis and epididymal sperm) | [95] | |
β3 | KCNMB3 | 2 TM | RT-PCR | [90,95,96] | |
β4 * | Kcnmb4 | 2 TM | RT-PCR, coexpression with SLO3 (Xenopus oocytes), gene deletion (mouse, fertile) | [95] | |
γ subunits | |||||
γ1 | LRRC26 | 1 TM | RT-PCR (testis) | [97] | |
γ2 | LRRC52 | 1 TM | RT-PCR (testis), Western blot, coexpression with SLO3, and gene deletion (mouse, infertile) | [97,98,99] | |
γ3 | LRRC55 | 1 TM | RT-PCR (testis) | [97] | |
γ4 | LRRC38 | 1 TM | RT-PCR (testis) | [97] | |
Voltage-gated K+ Channels (Kv) | Pore-forming α subunit | ||||
Kv1.1 * | Kcna1 | 6 TM × 4 (homo- or heterotetramer) | RT-PCR (mouse spermatogenic cells), Western blot (bull sperm), immunofluorescence (mouse epididymal sperm, bull sperm) | [100,101] | |
Kv1.2 * | Kcna2 | 6 TM × 4 (homo- or heterotetramer | RT-PCR (mouse spermatogenic cells), immunofluorescence (mouse epididymal sperm) | [100] | |
Kv1.3 * | Kcna3 | 6 TM × 4 (homo- or heterotetramer | RT-PCR (mouse spermatogenic cells), immunofluorescence (mouse epididymal sperm) | [100] | |
Kv1.5 | KCNA5 | 6 TM × 4 (homo- or heterotetramer | RT-PCR, immunofluorescence, Western blot, flow cytometry | [89,102] | |
Kv6.4 * | Kcng4 | 6 TM × 4 (homo- or heterotetramer | RT-PCR (mouse testis), Western blot Gene deletion (mouse, infertile) | [103] | |
Kv7.1 | KCNQ1 | 6 TM × 4 (homo- or heterotetramer | RT-PCR, immunofluorescence, Western blot, functional studies | [104] | |
Inwardly Rectifying K+ channels (Kir) | Pore-forming α subunit | ||||
Kir3.1 (GIRK1) * | Kcnj3 | 2 TM × 4 (homo- or heterotetramer) | RT-PCR (mouse spermatogenic cells, rat testis), Western blot, immunofluorescence (mouse spermatocytes, epididymal sperm) | [100,105,106] | |
Kir3.2d (GIRK2) * | Kcnj6 | 2 TM × 4 (homotetramer) | Immunofluorescence (mouse spermatids), Western blot (mouse testis), RT-PCR (mouse testis), gene deletion (mouse, infertile) | [106] | |
Kir4.1 * | Kcnj10 | 2 TM × 4 (homo- or heterotetramer) | Immunofluorescence (mouse epididymis) | [107] | |
Kir5.1 * | Kcnj16 | 2 TM × 4 (homo- or heterotetramer) | RT-PCR (rat testis, spermatocytes, and spermatozoa), immunofluorescence (rat testis, mouse epididymis and sperm), and gene deletion (mouse, subfertile) | [107,108,109] | |
Auxiliary subunit of Kv and Kir | |||||
β | KCNE1 | 1 TM | RT-PCR, Western blot, immunofluorescence, coexpression with Kv7.1, flow cytometry | [89,104] | |
KATP subfamily Pore-forming α subunit | |||||
Kir6.1 * | Kcnj8 | 2 TM × 4 (homo- or heterotetramer) | RT-PCR (mouse spermatids), Western blot (rat testis and spermatids), immunofluorescence (mouse sperm) | [82,110] | |
Kir6.2 | KCNJ11 | 2 TM × 4 (homo- or eterotetramer) | Immunofluorescence, RT-PCR (rat and mouse epididymis, mouse spermatids), Western blot (rat epididymis, testis, and spermatids) | [82,110,111] | |
KATP auxiliary subunits | |||||
SUR1 * | Abcc8 | 5 +6 +6 TM | RT-PCR (mouse spermatids, rat testis), immunofluorescence (mouse sperm) | [82,110] | |
SUR2A | ABCC9 | 5 +6 +6 TM | Immunofluorescence, RT-PCR (rat and mouse epididymis, mouse spermatids), Western blot (rat epididymis, testis and spermatids) | [82,110,111] | |
SUR2B * | Abcc9 | 5 +6 +6 TM | RT-PCR (mouse spermatids), Western blot (rat testis and spermatids), immunofluorescence (mouse sperm) | [82,110] | |
Two-pore domain K+ Channels (K2P) | Pore-forming α subunit | ||||
K2P2 (TREK1) * | KCNK2 | 4 TM × 2 (2 dimers) | Immunofluorescence, Western blot (non-human primates) | [88] | |
K2P4 (TRAAK) * | KCNK4 | 4 TM × 2 (2 dimers) | Immunofluorescence, Western blot, functional studies (non-human primates) | [88] | |
K2P5 (TASK2) | KCNK5 | 4 TM × 2 (2 dimers) | Immunofluorescence, Western blot (non-human primates), RT-PCR, flow cytometry | [88,89,102] | |
K2P9 (TASK3) | KCNK9 | 4 TM × 2 (2 dimers) | Western blot | [102] |
Protein Family | Protein | Gene | Transmembrane Domains (TM) | Detection Methods | References |
---|---|---|---|---|---|
Voltage-gated Ca2+ Channels: CatSper | Pore-forming α subunit | ||||
CATSPER1 | CATSPER1 | 6 TM | RT-PCR, electrophysiology, immunofluorescence, 3D STORM imaging, mass spectrometry, cryo-ET, human gene mutation (asthenozoospermia and infertility), functional studies (mouse sperm), cryo-EM and MS (mouse sperm), gene deletion (mouse, infertile) | [151,155,156,157,158,159,160,161] | |
CATSPER2 | CATSPER2 | 6 TM | RT-PCR, electrophysiology, immunofluorescence, 3D STORM imaging, Western blot, cryo-ET, mass spectrometry, in situ hybridization, human gene deletion (asthenozoospermia and infertility), cryo-EM and MS (mouse sperm), gene deletion (mouse, infertile) | [158,159,160,161,162,163,164,165] | |
CATSPER3 | CATSPER3 | 6 TM | RT-PCR, electrophysiology, immunofluorescence, 3D STORM imaging, in situ hybridization, cryo-ET, human gene mutation (AR failure and infertility), cryo-EM and MS (mouse sperm), gene deletion (mouse, infertile) | [24,150,158,159,161,166] | |
CATSPER4 | CATSPER4 | 6 TM | RT-PCR, electrophysiology, immunofluorescence, cryo-ET, in situ hybridization, cryo-EM and MS (mouse sperm), gene deletion (mouse, infertile) | [150,158,159,161,166] | |
Auxiliary subunits | |||||
CATSPERβ | CATSPERB | 2 TM | Cryo-ET, RT-PCR (testis), Western blot, and cryo-EM and MS (mouse sperm) | [156,158,159,167] | |
CATSPERγ | CATSPERG | 1 TM | Cryo-ET, RT-PCR (mouse testis), Western blot, immunofluorescence, Cryo-EM and MS (mouse sperm) | [156,158,159,168,169] | |
CATSPER∂ | CATSPERD | 1 TM | Cryo-ET, RT-PCR (mouse testis), electrophysiology, Western blot, mass spectrometry, immunofluorescence, cryo-EM and MS (mouse sperm), gene deletion (mouse, infertile) | [156,158,159,168] | |
CATSPERε | CATSPERE | 1 TM | Cryo-ET, Western blot, immunofluorescence, human gene mutation (impaired sperm function) RT-PCR (mouse testis), cryo-EM and MS (mouse sperm) | [158,159,168,170,171] | |
CATSPERζ | CATSPERZ | Intracellular | Cryo-ET, immunofluorescence, Western blot, RT-PCR (mouse testis), cryo-EM and MS (mouse sperm), gene deletion (mouse, subfertile) | [158,159,171,172] | |
EFCAB9 | EFCAB9 | Intracellular | Cryo-ET, immunoflurescence, RT-PCR (mouse testis), Western blot (mouse sperm), functional studies (mouse sperm), cryo-EM and MS (mouse sperm), gene deletion (mouse, subfertile) | [158,159,172] | |
CATSPERτ | C2CD6 | Intracellular | Immunofluorescence, Western blot (mouse testis and round spermatids), SIM (mouse spermatids), functional studies (mouse sperm), gene deletion (mouse, infertile) | [173,174] | |
CATSPERŋ | Tmem262/Catsperh | 3 TM | Cryo-EM and MS (mouse sperm) | [159] | |
Voltage Gated Calcium Channels: Cav | Pore-forming α subunit | ||||
Cav1.2 (α1C) | CACNA1C | 24 TM | RT-PCR, Western blot (mouse sperm), immunofluorescence (mouse sperm) | [175,176,177,178] | |
Cav2.1 * (α1A) | Cacna1a | 24 TM | Western blot (mouse sperm), immunofluorescence (mouse sperm) | [175,178] | |
Cav2.2 (α1B) | CACNA1B | 24 TM | RT-PCR, Western blot (mouse sperm), immunofluorescence (mouse sperm) | [177,179] | |
Cav2.3 (α1E) | CACNA1E | 24 TM | RT-PCR, Western blot (mouse sperm), immunofluorescence (mouse sperm) | [175,177,179] | |
Cav3.1 (α1G) | CACNA1G | 24 TM | RT-PCR, immunofluorescence (mouse spermatocytes) | [176,177] | |
Cav3.2 (α1H) | CACNA1H | 24 TM | RT-PCR, immunofluorescence (mouse spermatocytes) | [176,177] | |
Cav3.3 (α1I) | CACNA1I | 24 TM | RT-PCR, Western Blot, immunofluorescence, Co-immunoprecipitation with CATSPER1 and CATSPER2 (HEK cells) | [160,177] | |
Auxiliary β subunits | |||||
β1 | CACNB1 | -Intracellular | RT-PCR, immunofluorescence (mouse sperm) | [178,180] | |
β2 | CACNB2 | -Intracellular | RT-PCR, immunofluorescence (mouse spermatogenic cells) | [178,180] | |
β3 * | Cacnb3 | -Intracellular | RT-PCR (mouse sperm), immunofluorescence (mouse sperm) | [178] | |
β4 | CACNB4 | -Intracellular | RT-PCR | [178,180] | |
Auxiliary α2δ subunit | |||||
α2δ1 | CACNA2D1 | 1 TM | RT-PCR | [180] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pinto, F.M.; Odriozola, A.; Candenas, L.; Subirán, N. The Role of Sperm Membrane Potential and Ion Channels in Regulating Sperm Function. Int. J. Mol. Sci. 2023, 24, 6995. https://doi.org/10.3390/ijms24086995
Pinto FM, Odriozola A, Candenas L, Subirán N. The Role of Sperm Membrane Potential and Ion Channels in Regulating Sperm Function. International Journal of Molecular Sciences. 2023; 24(8):6995. https://doi.org/10.3390/ijms24086995
Chicago/Turabian StylePinto, Francisco M., Ainize Odriozola, Luz Candenas, and Nerea Subirán. 2023. "The Role of Sperm Membrane Potential and Ion Channels in Regulating Sperm Function" International Journal of Molecular Sciences 24, no. 8: 6995. https://doi.org/10.3390/ijms24086995
APA StylePinto, F. M., Odriozola, A., Candenas, L., & Subirán, N. (2023). The Role of Sperm Membrane Potential and Ion Channels in Regulating Sperm Function. International Journal of Molecular Sciences, 24(8), 6995. https://doi.org/10.3390/ijms24086995