Pharmaco-Omics in Psoriasis: Paving the Way towards Personalized Medicine
Abstract
:1. Introduction
2. Pathophysiology of Psoriasis
3. Traditional Therapies
3.1. Acitretin
3.2. Cyclosporine
3.3. Methotrexate
3.4. Phototherapy
4. Small Molecules
4.1. Apremilast
4.2. Fumaric Acid Esters
4.3. JAK and TYK2 Inhibitors
Study, Year | Drug | Method | Sample | Time Sample | Clinical Outcome | Time Point | Sample Size | Main Results |
---|---|---|---|---|---|---|---|---|
Pharmacogenetics | ||||||||
Gambichler et al., 2013 [94] | DMF | Genotyping | gDNA | n.p. | PASI75 | 3 months | 106 | No evidence for association for GSTT1 alleles. |
Pharmacogenomics | ||||||||
Verbenko et al., 2020 [87] | APR | GWAS | gDNA | n.p. | PASI75 | 6 months | 34 | Association of the ARSF rs35084576 SNP. |
Pharmacotranscriptomics | ||||||||
Onderdijk et al., 2014 [95] | FAEs | Microarray | Lesional skin | Baseline, 12 weeks | PASI75 | 3 months | 50 | Overexpression of anti-inflammatory pathways after FAE treatment. |
Tahvili et al., 2015 [96] | DMF | RT-qPCR | Plasma | Baseline | n.p. | n.p. | 35 | DMF suppressed TH1 and TH17 signaling post-treatment. |
Catlett et al., 2022 [100] | DEUC | RNA-seq | Lesional skin | Baseline, 2 weeks, 12 weeks | n.s. | 3 months | 267 | Alleviation of central pathogenic molecules post-treatment. |
Additional approaches | ||||||||
Garcet et al., 2018 [90] | APR | Immunoassay | Plasma | Baseline, 2,4,16,24,32,52 weeks | PASI75 | 4 months | 129 | Suppression of circulating psoriasis pathogenic molecules, including IL-17 cytokine family and TNF. |
Campanati et al., 2020 [91] | APR | ICC, IHC | Lesional skin | Baseline, 12 weeks | PASI75 | 3 months | 9 | Suppressed expression of VEGF, iNOS and IDO in keratinocytes. |
Medvedeva et al., 2020 [92] | APR | Protein and RNA profiling | Plasma | Baseline | PASI75 | 4 months | 93 | Suppression of IL-17A and KLK-7 levels post-treatment. |
Mazzilli et al., 2020 [93] | APR | Metabolic profiling | Plasma | Baseline, 24 weeks, 52 weeks | n.s. | 12 months | 113 | APR reversed metabolic markers. |
Holzer et al., 2020 [97] | FAEs | Luminex Assay | Plasma | Baseline, 3 months, 6 months | PASI75 | 3 months | 32 | FAEs reduce apolipoprotein B and cholesterol. |
Gambichler et al., 2012 [98] | DMF, MMF | ELISA | Plasma | Baseline, 3 months | n.s. | 3 months | 32 | AMP levels increased post-treatment. |
5. Biological Agents
5.1. Anti-TNF Agents
5.2. Anti-IL23 Agents
5.3. Anti-IL17 Agents
6. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Motulsky, A.G. Drug Reactions, Enzymes, and Biochemical Genetics. JAMA 1957, 165, 835. [Google Scholar] [CrossRef] [PubMed]
- Kalow, W. Human Pharmacogenomics: The Development of a Science. Hum. Genom. 2004, 1, 375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miteva-Marcheva, N.N.; Ivanov, H.Y.; Dimitrov, D.K.; Stoyanova, V.K. Application of Pharmacogenetics in Oncology. Biomark. Res. 2020, 8, 32. [Google Scholar] [CrossRef] [PubMed]
- Yun, C.-H.; Mengwasser, K.E.; Toms, A.V.; Woo, M.S.; Greulich, H.; Wong, K.-K.; Meyerson, M.; Eck, M.J. The T790M Mutation in EGFR Kinase Causes Drug Resistance by Increasing the Affinity for ATP. Proc. Natl. Acad. Sci. USA 2008, 105, 2070–2075. [Google Scholar] [CrossRef] [Green Version]
- DISCO (Deciphering disorders Involving Scoliosis and COmorbidities) Study; Liu, J.; Zhou, Y.; Liu, S.; Song, X.; Yang, X.-Z.; Fan, Y.; Chen, W.; Akdemir, Z.C.; Yan, Z.; et al. The Coexistence of Copy Number Variations (CNVs) and Single Nucleotide Polymorphisms (SNPs) at a Locus Can Result in Distorted Calculations of the Significance in Associating SNPs to Disease. Hum. Genet. 2018, 137, 553–567. [Google Scholar] [CrossRef] [PubMed]
- Eichelbaum, M.; Ingelman-Sundberg, M.; Evans, W.E. Pharmacogenomics and Individualized Drug Therapy. Annu. Rev. Med. 2006, 57, 119–137. [Google Scholar] [CrossRef] [PubMed]
- Evans, W.E.; Relling, M.V. Moving towards Individualized Medicine with Pharmacogenomics. Nature 2004, 429, 464–468. [Google Scholar] [CrossRef]
- Klein, T.E.; Chang, J.T.; Cho, M.K.; Easton, K.L.; Fergerson, R.; Hewett, M.; Lin, Z.; Liu, Y.; Liu, S.; Oliver, D.E.; et al. Integrating Genotype and Phenotype Information: An Overview of the PharmGKB Project. Pharm. J. 2001, 1, 167–170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dinama, O.; Warren, A.M.; Kulkarni, J. The Role of Pharmacogenomic Testing in Psychiatry: Real World Examples. Aust. N. Z. J. Psychiatry 2014, 48, 778. [Google Scholar] [CrossRef]
- Wang, B.; Yang, L.-P.; Zhang, X.-Z.; Huang, S.-Q.; Bartlam, M.; Zhou, S.-F. New Insights into the Structural Characteristics and Functional Relevance of the Human Cytochrome P450 2D6 Enzyme. Drug Metab. Rev. 2009, 41, 573–643. [Google Scholar] [CrossRef]
- Yan, S.-K.; Liu, R.-H.; Jin, H.-Z.; Liu, X.-R.; Ye, J.; Shan, L.; Zhang, W.-D. “Omics” in Pharmaceutical Research: Overview, Applications, Challenges, and Future Perspectives. Chin. J. Nat. Med. 2015, 13, 3–21. [Google Scholar] [CrossRef]
- Pivarcsi, A.; Meisgen, F.; Xu, N.; Ståhle, M.; Sonkoly, E. Changes in the Level of Serum MicroRNAs in Patients with Psoriasis after Antitumour Necrosis Factor-α Therapy. Br. J. Dermatol. 2013, 169, 563–570. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Deng, J.; Xu, K.; Zhu, T.; Han, L.; Yan, Y.; Yao, D.; Deng, H.; Wang, D.; Sun, Y.; et al. In-Depth Serum Proteomics Reveals Biomarkers of Psoriasis Severity and Response to Traditional Chinese Medicine. Theranostics 2019, 9, 2475–2488. [Google Scholar] [CrossRef]
- Kamleh, M.A.; Snowden, S.G.; Grapov, D.; Blackburn, G.J.; Watson, D.G.; Xu, N.; Ståhle, M.; Wheelock, C.E. LC–MS Metabolomics of Psoriasis Patients Reveals Disease Severity-Dependent Increases in Circulating Amino Acids That Are Ameliorated by Anti-TNFα Treatment. J. Proteome Res. 2015, 14, 557–566. [Google Scholar] [CrossRef] [Green Version]
- Rosenblum, M.D.; Gratz, I.K.; Paw, J.S.; Abbas, A.K. Treating Human Autoimmunity: Current Practice and Future Prospects. Sci. Transl. Med. 2012, 4, 125sr1. [Google Scholar] [CrossRef] [Green Version]
- Greiner, W.; Patel, K.; Crossman-Barnes, C.-J.; Rye-Andersen, T.V.; Hvid, C.; Vandebrouck, T. High-Expenditure Disease in the EU-28: Does Drug Spend Correspond to Clinical and Economic Burden in Oncology, Autoimmune Disease and Diabetes? Pharm. Econ. Open 2021, 5, 385–396. [Google Scholar] [CrossRef] [PubMed]
- Parisi, R.; Iskandar, I.Y.K.; Kontopantelis, E.; Augustin, M.; Griffiths, C.E.M.; Ashcroft, D.M. National, Regional, and Worldwide Epidemiology of Psoriasis: Systematic Analysis and Modelling Study. BMJ 2020, 369, m1590. [Google Scholar] [CrossRef]
- Lønnberg, A.S.; Skov, L.; Skytthe, A.; Kyvik, K.O.; Pedersen, O.B.; Thomsen, S.F. Heritability of Psoriasis in a Large Twin Sample. Br. J. Dermatol. 2013, 169, 412–416. [Google Scholar] [CrossRef]
- Tsoi, L.C.; Stuart, P.E.; Tian, C.; Gudjonsson, J.E.; Das, S.; Zawistowski, M.; Ellinghaus, E.; Barker, J.N.; Chandran, V.; Dand, N.; et al. Large Scale Meta-Analysis Characterizes Genetic Architecture for Common Psoriasis Associated Variants. Nat. Commun. 2017, 8, 15382. [Google Scholar] [CrossRef] [Green Version]
- Nakamizo, S.; Dutertre, C.-A.; Khalilnezhad, A.; Zhang, X.M.; Lim, S.; Lum, J.; Koh, G.; Foong, C.; Yong, P.J.A.; Tan, K.J.; et al. Single-Cell Analysis of Human Skin Identifies CD14+ Type 3 Dendritic Cells Co-Producing IL1B and IL23A in Psoriasis. J. Exp. Med. 2021, 218, e20202345. [Google Scholar] [CrossRef] [PubMed]
- Ji, Y.-Z.; Liu, S.-R. Koebner Phenomenon Leading to the Formation of New Psoriatic Lesions: Evidences and Mechanisms. Biosci. Rep. 2019, 39, BSR20193266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balak, D.; Hajdarbegovic, E. Drug-Induced Psoriasis: Clinical Perspectives. PTT 2017, 7, 87–94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teng, Y.; Xie, W.; Tao, X.; Liu, N.; Yu, Y.; Huang, Y.; Xu, D.; Fan, Y. Infection-provoked Psoriasis: Induced or Aggravated (Review). Exp. Ther. Med. 2021, 21, 567. [Google Scholar] [CrossRef]
- Nestle, F.O.; Conrad, C.; Tun-Kyi, A.; Homey, B.; Gombert, M.; Boyman, O.; Burg, G.; Liu, Y.-J.; Gilliet, M. Plasmacytoid Predendritic Cells Initiate Psoriasis through Interferon-α Production. J. Exp. Med. 2005, 202, 135–143. [Google Scholar] [CrossRef] [PubMed]
- Lande, R.; Botti, E.; Jandus, C.; Dojcinovic, D.; Fanelli, G.; Conrad, C.; Chamilos, G.; Feldmeyer, L.; Marinari, B.; Chon, S.; et al. The Antimicrobial Peptide LL37 Is a T-Cell Autoantigen in Psoriasis. Nat. Commun. 2014, 5, 5621. [Google Scholar] [CrossRef] [Green Version]
- Gisondi, P.; Del Giglio, M.; Girolomoni, G. Treatment Approaches to Moderate to Severe Psoriasis. Int. J. Mol. Sci. 2017, 18, 2427. [Google Scholar] [CrossRef] [Green Version]
- Gubán, B.; Vas, K.; Balog, Z.; Manczinger, M.; Bebes, A.; Groma, G.; Széll, M.; Kemény, L.; Bata-Csörgő, Z. Abnormal Regulation of Fibronectin Production by Fibroblasts in Psoriasis. Br. J. Dermatol. 2016, 174, 533–541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, Y.; Wang, C.; Zeng, B.; Tang, X.; Zhang, Y.; Xiang, L.; Mi, L.; Pan, Y.; Wang, H.; Yang, Z. MiR124-3p/FGFR2 Axis Inhibits Human Keratinocyte Proliferation and Migration and Improve the Inflammatory Microenvironment in Psoriasis. Mol. Immunol. 2020, 122, 89–98. [Google Scholar] [CrossRef] [PubMed]
- Kanda, N.; Hoashi, T.; Saeki, H. The Defect in Regulatory T Cells in Psoriasis and Therapeutic Approaches. J. Clin. Med. 2021, 10, 3880. [Google Scholar] [CrossRef]
- Yawalkar, N.; Karlen, S.; Hunger, R.; Brand, C.U.; Braathen, L.R. Expression of Interleukin-12 Is Increased in Psoriatic Skin. J. Investig. Dermatol. 1998, 111, 1053–1057. [Google Scholar] [CrossRef]
- Di Cesare, A.; Di Meglio, P.; Nestle, F.O. The IL-23/Th17 Axis in the Immunopathogenesis of Psoriasis. J. Investig. Dermatol. 2009, 129, 1339–1350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilson, N.J.; Boniface, K.; Chan, J.R.; McKenzie, B.S.; Blumenschein, W.M.; Mattson, J.D.; Basham, B.; Smith, K.; Chen, T.; Morel, F.; et al. Development, Cytokine Profile and Function of Human Interleukin 17–Producing Helper T Cells. Nat. Immunol. 2007, 8, 950–957. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, E.; Sato, Y.; Minagawa, A.; Okuyama, R. Pathogenesis of Psoriasis and Development of Treatment. J. Dermatol. 2018, 45, 264–272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gottlieb, A.B.; Krueger, J.G.; Wittkowski, K.; Dedrick, R.; Walicke, P.A.; Garovoy, M. Psoriasis as a Model for T-Cell–Mediated Disease: Immunobiologic and Clinical Effects of Treatment With Multiple Doses of Efalizumab, an Anti–CD11a Antibody. Arch. Dermatol. 2002, 138, 591–600. [Google Scholar] [CrossRef] [Green Version]
- Clark, R.A. Resident Memory T Cells in Human Health and Disease. Sci. Transl. Med. 2015, 7, 269rv1. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Chang, H.-W.; Huang, Z.-M.; Nakamura, M.; Sekhon, S.; Ahn, R.; Munoz-Sandoval, P.; Bhattarai, S.; Beck, K.M.; Sanchez, I.M.; et al. Single-Cell RNA Sequencing of Psoriatic Skin Identifies Pathogenic Tc17 Cell Subsets and Reveals Distinctions between CD8+ T Cells in Autoimmunity and Cancer. J. Allergy Clin. Immunol. 2021, 147, 2370–2380. [Google Scholar] [CrossRef] [PubMed]
- Di Meglio, P.; Villanova, F.; Navarini, A.A.; Mylonas, A.; Tosi, I.; Nestle, F.O.; Conrad, C. Targeting CD8+ T Cells Prevents Psoriasis Development. J. Allergy Clin. Immunol. 2016, 138, 274–276.e6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elnabawi, Y.A.; Garshick, M.S.; Tawil, M.; Barrett, T.J.; Fisher, E.A.; Lo Sicco, K.; Neimann, A.L.; Scher, J.U.; Krueger, J.; Berger, J.S. CCL20 in Psoriasis: A Potential Biomarker of Disease Severity, Inflammation, and Impaired Vascular Health. J. Am. Acad. Dermatol. 2021, 84, 913–920. [Google Scholar] [CrossRef] [PubMed]
- Grossman, R.M.; Krueger, J.; Yourish, D.; Granelli-Piperno, A.; Murphy, D.P.; May, L.T.; Kupper, T.S.; Sehgal, P.B.; Gottlieb, A.B. Interleukin 6 Is Expressed in High Levels in Psoriatic Skin and Stimulates Proliferation of Cultured Human Keratinocytes. Proc. Natl. Acad. Sci. USA 1989, 86, 6367–6371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lemster, B.H.; Carroll, P.B.; Rilo, H.R.; Johnson, N.; Nikaein, A.; Thomson, A.W. IL-8/IL-8 Receptor Expression in Psoriasis and the Response to Systemic Tacrolimus (FK506) Therapy. Clin. Exp. Immunol. 2008, 99, 148–154. [Google Scholar] [CrossRef] [PubMed]
- Edson-Heredia, E.; Sterling, K.L.; Alatorre, C.I.; Cuyun Carter, G.; Paczkowski, R.; Zarotsky, V.; Maeda-Chubachi, T. Heterogeneity of Response to Biologic Treatment: Perspective for Psoriasis. J. Investig. Dermatol. 2014, 134, 18–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carretero, G. Risk of Serious Adverse Events Associated With Biologic and Nonbiologic Psoriasis Systemic Therapy: Patients Ineligible vs Eligible for Randomized Controlled Trials. Arch. Dermatol. 2012, 148, 463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spuls, P.I.; Lecluse, L.L.A.; Poulsen, M.-L.N.F.; Bos, J.D.; Stern, R.S.; Nijsten, T. How Good Are Clinical Severity and Outcome Measures for Psoriasis?: Quantitative Evaluation in a Systematic Review. J. Investig. Dermatol. 2010, 130, 933–943. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, C.S.; Li, K. A Review of Acitretin for the Treatment of Psoriasis. Expert Opin. Drug Saf. 2009, 8, 769–779. [Google Scholar] [CrossRef]
- Nast, A.; Smith, C.; Spuls, P.I.; Avila Valle, G.; Bata-Csörgö, Z.; Boonen, H.; De Jong, E.; Garcia-Doval, I.; Gisondi, P.; Kaur-Knudsen, D.; et al. EuroGuiDerm Guideline on the Systemic Treatment of Psoriasis Vulgaris—Part 2: Specific Clinical and Comorbid Situations. Acad. Dermatol. Venereol. 2021, 35, 281–317. [Google Scholar] [CrossRef] [PubMed]
- Young, H.S.; Summers, A.M.; Read, I.R.; Fairhurst, D.A.; Plant, D.J.; Campalani, E.; Smith, C.H.; Brenchley, P.E.C.; Griffiths, C.E.M. Interaction between Genetic Control of Vascular Endothelial Growth Factor Production and Retinoid Responsiveness in Psoriasis. J. Investig. Dermatol. 2006, 126, 453–459. [Google Scholar] [CrossRef]
- Chen, W.; Wu, L.; Zhu, W.; Chen, X. The Polymorphisms of Growth Factor Genes (VEGFA & EGF) Were Associated with Response to Acitretin in Psoriasis. Pers. Med. 2018, 15, 181–188. [Google Scholar] [CrossRef]
- Campalani, E.; Allen, M.H.; Fairhurst, D.; Young, H.S.; Mendonca, C.O.; Burden, A.D.; Griffiths, C.E.M.; Crook, M.A.; Barker, J.N.W.N.; Smith, C.H. Apolipoprotein E Gene Polymorphisms Are Associated with Psoriasis but Do Not Determine Disease Response to Acitretin. Br. J. Dermatol. 2006, 154, 345–352. [Google Scholar] [CrossRef]
- Zhu, T.; Jin, H.; Shu, D.; Li, F.; Wu, C. Association of IL36RN Mutations with Clinical Features, Therapeutic Response to Acitretin, and Frequency of Recurrence in Patients with Generalized Pustular Psoriasis. Eur. J. Dermatol. 2018, 28, 217–224. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; He, Y.; Kuang, Y.; Chen, W.; Zhu, W. HLA-DQA1 and DQB1 Alleles Are Associated with Acitretin Response in Patients with Psoriasis. Front. Biosci. 2022, 27, 266. [Google Scholar] [CrossRef]
- Chen, W.; Zhang, X.; Zhang, W.; Peng, C.; Zhu, W.; Chen, X. Polymorphisms of SLCO1B1 Rs4149056 and SLC22A1 Rs2282143 Are Associated with Responsiveness to Acitretin in Psoriasis Patients. Sci. Rep. 2018, 8, 13182. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Zhu, W.; Shen, M.; He, Y.; Peng, C.; Kuang, Y.; Su, J.; Zhao, S.; Chen, X.; Chen, W. Frizzled-Related Proteins 4 (SFRP4) Rs1802073G Allele Predicts the Elevated Serum Lipid Levels during Acitretin Treatment in Psoriatic Patients from Hunan, China. PeerJ 2018, 6, e4637. [Google Scholar] [CrossRef] [Green Version]
- Baran, A.; Kiluk, P.; Świderska, M.; Maciaszek, M.; Myśliwiec, H.; Flisiak, I. Adipocyte Fatty Acid-Binding Protein as a Novel Marker of Psoriasis and Clinical Response to Acitretin. Lipids 2019, 54, 445–452. [Google Scholar] [CrossRef] [PubMed]
- Antonatos, C.; Patsatsi, A.; Zafiriou, E.; Stavrou, E.F.; Liaropoulos, A.; Kyriakoy, A.; Evangelou, E.; Digka, D.; Roussaki-Schulze, A.; Sotiriadis, D.; et al. Protein Network and Pathway Analysis in a Pharmacogenetic Study of Cyclosporine Treatment Response in Greek Patients with Psoriasis. Pharm. J. 2023, 23, 8–13. [Google Scholar] [CrossRef] [PubMed]
- O’Rielly, D.D.; Rahman, P. Pharmacogenetics of Psoriasis. Pharmacogenomics 2011, 12, 87–101. [Google Scholar] [CrossRef] [PubMed]
- Vasilopoulos, Y.; Sarri, C.; Zafiriou, E.; Patsatsi, A.; Stamatis, C.; Ntoumou, E.; Fassos, I.; Tsalta, A.; Karra, A.; Roussaki-Schulze, A.; et al. A Pharmacogenetic Study of ABCB1 Polymorphisms and Cyclosporine Treatment Response in Patients with Psoriasis in the Greek Population. Pharm. J. 2014, 14, 523–525. [Google Scholar] [CrossRef] [PubMed]
- Chernov, A.; Kilina, D.; Smirnova, T.; Galimova, E. Pharmacogenetic Study of the Impact of ABCB1 Single Nucleotide Polymorphisms on the Response to Cyclosporine in Psoriasis Patients. Pharmaceutics 2022, 14, 2441. [Google Scholar] [CrossRef] [PubMed]
- Haider, A.S.; Lowes, M.A.; Suárez-Fariñas, M.; Zaba, L.C.; Cardinale, I.; Khatcherian, A.; Novitskaya, I.; Wittkowski, K.M.; Krueger, J.G. Identification of Cellular Pathways of “Type 1,” Th17 T Cells, and TNF- and Inducible Nitric Oxide Synthase-Producing Dendritic Cells in Autoimmune Inflammation through Pharmacogenomic Study of Cyclosporine A in Psoriasis. J. Immunol. 2008, 180, 1913–1920. [Google Scholar] [CrossRef] [Green Version]
- Grabarek, B.O.; Wcisło-Dziadecka, D.; Michalska-Bańkowska, A.; Gola, J. Evaluation of Expression Pattern of Selected Genes Associated with IL12/23 Signaling Paths in Psoriatic Patients during Cyclosporine A Therapy. Dermatol. Ther. 2019, 32, e13129. [Google Scholar] [CrossRef] [PubMed]
- Michalska-Bańkowska, A.; Wcisło-Dziadecka, D.; Grabarek, B.; Brzezińska-Wcisło, L.; Mazurek, U.; Salwowska, N.; Bańkowski, M. Variances in the MRNA Expression Profile of TGF-Β1–3 Isoforms and Its TGF-ΒRI–III Receptors during Cyclosporin a Treatment of Psoriatic Patients. Pdia 2018, 35, 502–509. [Google Scholar] [CrossRef]
- Eşrefoğlu, M.; Gül, M.; Seyhan, M. Ultrastructural Findings and Tumor Necrosis Factor-Alpha and Intercellular Adhesion Molecule-1 Expression in Psoriasis Patients Before and After Oral Cyclosporin A Therapy. Ultrastruct. Pathol. 2006, 30, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Yan, K.; Zhang, Y.; Han, L.; Huang, Q.; Zhang, Z.; Fang, X.; Zheng, Z.; Yawalkar, N.; Chang, Y.; Zhang, Q.; et al. Safety and Efficacy of Methotrexate for Chinese Adults With Psoriasis With and Without Psoriatic Arthritis. JAMA Dermatol. 2019, 155, 327. [Google Scholar] [CrossRef] [PubMed]
- Fan, Z.; Zhang, Z.; Huang, Q.; Han, L.; Fang, X.; Yang, K.; Wu, S.; Zheng, Z.; Yawalkar, N.; Wang, Z.; et al. The Impact of ANxA6 Gene Polymorphism on the Efficacy of Methotrexate Treatment in Psoriasis Patients. Dermatology 2021, 237, 579–587. [Google Scholar] [CrossRef] [PubMed]
- West, J.; Ogston, S.; Berg, J.; Palmer, C.; Fleming, C.; Kumar, V.; Foerster, J. HLA-Cw6-Positive Patients with Psoriasis Show Improved Response to Methotrexate Treatment. Clin. Exp. Dermatol. 2017, 42, 651–655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mao, M.; Kuang, Y.; Chen, M.; Yan, K.; Lv, C.; Liu, P.; Lu, Y.; Chen, X.; Zhu, W.; Chen, W. The HLA-Cw*06 Allele May Predict the Response to Methotrexate (MTX) Treatment in Chinese Arthritis-Free Psoriasis Patients. Arch. Dermatol. Res. 2022, 2022, 1–7. [Google Scholar] [CrossRef]
- Yan, K.X.; Zhang, Y.J.; Han, L.; Huang, Q.; Zhang, Z.H.; Fang, X.; Zheng, Z.Z.; Yawalkar, N.; Chang, Y.L.; Zhang, Q.; et al. TT Genotype of Rs10036748 in TNIP 1 Shows Better Response to Methotrexate in a Chinese Population: A Prospective Cohort Study. Br. J. Dermatol. 2019, 181, 778–785. [Google Scholar] [CrossRef]
- Warren, R.B.; Smith, R.L.; Campalani, E.; Eyre, S.; Smith, C.H.; Barker, J.N.W.N.; Worthington, J.; Griffiths, C.E.M. Genetic Variation in Efflux Transporters Influences Outcome to Methotrexate Therapy in Patients with Psoriasis. J. Investig. Dermatol. 2008, 128, 1925–1929. [Google Scholar] [CrossRef]
- Grželj, J.; Marovt, M.; Marko, P.B.; Mlinarič-Raščan, I.; Gmeiner, T.; Šmid, A. Polymorphism in Gene for ABCC2 Transporter Predicts Methotrexate Drug Survival in Patients with Psoriasis. Medicina 2021, 57, 1050. [Google Scholar] [CrossRef] [PubMed]
- Voron’ko, O.E.; Baskaev, K.K.; Sobolev, V.V.; Denisova, E.V.; Korsunskaya, I.M. Genetic Markers of Therapeutic Efficacy of Methotrexate in Patients with Psoriasis. Bull. Exp. Biol. Med. 2022, 172, 460–463. [Google Scholar] [CrossRef] [PubMed]
- Grželj, J.; Mlinarič-Raščan, I.; Marko, P.B.; Marovt, M.; Gmeiner, T.; Šmid, A. Polymorphisms in GNMT and DNMT3b Are Associated with Methotrexate Treatment Outcome in Plaque Psoriasis. Biomed. Pharmacother. 2021, 138, 111456. [Google Scholar] [CrossRef]
- Campalani, E.; Arenas, M.; Marinaki, A.M.; Lewis, C.M.; Barker, J.N.W.N.; Smith, C.H. Polymorphisms in Folate, Pyrimidine, and Purine Metabolism Are Associated with Efficacy and Toxicity of Methotrexate in Psoriasis. J. Investig. Dermatol. 2007, 127, 1860–1867. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Ding, X.; Meng, Z.; Chen, M.; Zheng, X.; Cai, M.; Wu, J.; Chang, Y.; Zhang, Q.; Jin, L.; et al. A Genome-wide Association Study Identified HLA-C Associated with the Effectiveness of Methotrexate for Psoriasis Treatment. Acad. Dermatol. Venereol. 2021, 35, e898–e900. [Google Scholar] [CrossRef] [PubMed]
- Goldminz, A.M.; Suárez-Fariñas, M.; Wang, A.C.; Dumont, N.; Krueger, J.G.; Gottlieb, A.B. CCL20 and IL22 Messenger RNA Expression After Adalimumab vs Methotrexate Treatment of Psoriasis: A Randomized Clinical Trial. JAMA Dermatol. 2015, 151, 837. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esawy, F.M.E.; Ahmed, I.A.; Fallah, A.A.E.; Salem, R.M. Methotrexate Mechanism of Action in Plaque Psoriasis: Something New in the Old View. J. Clin. Aesthet. Dermatol. 2022, 15, 42–46. [Google Scholar]
- Correa da Rosa, J.; Kim, J.; Tian, S.; Tomalin, L.E.; Krueger, J.G.; Suárez-Fariñas, M. Shrinking the Psoriasis Assessment Gap: Early Gene-Expression Profiling Accurately Predicts Response to Long-Term Treatment. J. Investig. Dermatol. 2017, 137, 305–312. [Google Scholar] [CrossRef] [Green Version]
- Indhumathi, S.; Rajappa, M.; Chandrashekar, L.; Ananthanarayanan, P.H.; Thappa, D.M.; Negi, V.S. Pharmacogenetic Markers to Predict the Clinical Response to Methotrexate in South Indian Tamil Patients with Psoriasis. Eur. J. Clin. Pharmacol. 2017, 73, 965–971. [Google Scholar] [CrossRef] [PubMed]
- Abdelaal, N.H.; Elhefnawy, N.G.; Abdulmonem, S.R.; Sayed, S.; Saleh, N.A.; Saleh, M.A. Evaluation of the Expression of the Stromal Cell-derived Factor-1 Alpha (CXCL 12) in Psoriatic Patients after Treatment with Methotrexate. J. Cosmet. Dermatol. 2020, 19, 253–258. [Google Scholar] [CrossRef]
- Yan, K.X.; Meng, Q.; He, H.; Zhu, H.W.; Wang, Z.C.; Han, L.; Huang, Q.; Zhang, Z.H.; Yawalkar, N.; Zhou, H.; et al. iTRAQ-based Quantitative Proteomics Reveals Biomarkers/Pathways in Psoriasis That Can Predict the Efficacy of Methotrexate. Acad. Dermatol. Venereol. 2022, 36, 1784–1795. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Q.; Deng, J.; Deng, H.; Yao, D.; Yan, Y.; Ye, S.; Shang, X.; Deng, Y.; Han, L.; Zheng, G.; et al. Association of the Characteristics of the Blood Metabolome and Gut Microbiome with the Outcome of Methotrexate Therapy in Psoriasis. Front. Immunol. 2022, 13, 937539. [Google Scholar] [CrossRef] [PubMed]
- Wong, T.; Hsu, L.; Liao, W. Phototherapy in Psoriasis: A Review of Mechanisms of Action. J. Cutan. Med. Surg. 2013, 17, 6–12. [Google Scholar] [CrossRef]
- Hairutdinov, V.; Moshkalov, A.; Samtsov, A.; Buslov, K.; Kuligina, E.; Mitiushkina, N.; Suspitsin, E.; Togo, A.; Hanson, K.; Imyanitov, E. Apoptosis-Deficient Pro Allele of Gene Is Associated with the Resistance of Psoriasis to the UV-Based Therapy. J. Dermatol. Sci. 2005, 37, 185–187. [Google Scholar] [CrossRef] [PubMed]
- Ryan, C.; Renfro, L.; Collins, P.; Kirby, B.; Rogers, S. Clinical and Genetic Predictors of Response to Narrowband Ultraviolet B for the Treatment of Chronic Plaque Psoriasis: Predictors of Response to NB-UVB for Psoriasis. Br. J. Dermatol. 2010, 163, 1056–1063. [Google Scholar] [CrossRef] [PubMed]
- Rácz, E.; Prens, E.P.; Kurek, D.; Kant, M.; de Ridder, D.; Mourits, S.; Baerveldt, E.M.; Ozgur, Z.; van IJcken, W.F.J.; Laman, J.D.; et al. Effective Treatment of Psoriasis with Narrow-Band UVB Phototherapy Is Linked to Suppression of the IFN and Th17 Pathways. J. Investig. Dermatol. 2011, 131, 1547–1558. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hochberg, M.; Zeligson, S.; Amariglio, N.; Rechavi, G.; Ingber, A.; Enk, C.D. Genomic-Scale Analysis of Psoriatic Skin Reveals Differentially Expressed Insulin-like Growth Factor-Binding Protein-7 after Phototherapy. Br. J. Dermatol. 2007, 156, 289–300. [Google Scholar] [CrossRef] [PubMed]
- Ele-Refaei, A.M.; El-Esawy, F.M. Effect of Narrow-Band Ultraviolet B Phototherapy and Methotrexate on MicroRNA (146a) Levels in Blood of Psoriatic Patients. Dermatol. Res. Pract. 2015, 2015, 145769. [Google Scholar] [CrossRef] [Green Version]
- Lo, Y.-H.; Torii, K.; Saito, C.; Furuhashi, T.; Maeda, A.; Morita, A. Serum IL-22 Correlates with Psoriatic Severity and Serum IL-6 Correlates with Susceptibility to Phototherapy. J. Dermatol. Sci. 2010, 58, 225–227. [Google Scholar] [CrossRef]
- Verbenko, D.A.; Karamova, A.E.; Artamonova, O.G.; Deryabin, D.G.; Rakitko, A.; Chernitsov, A.; Krasnenko, A.; Elmuratov, A.; Solomka, V.S.; Kubanov, A.A. Apremilast Pharmacogenomics in Russian Patients with Moderate-to-Severe and Severe Psoriasis. J. Pers. Med. 2020, 11, 20. [Google Scholar] [CrossRef] [PubMed]
- Oehrl, S.; Prakash, H.; Ebling, A.; Trenkler, N.; Wölbing, P.; Kunze, A.; Döbel, T.; Schmitz, M.; Enk, A.; Schäkel, K. The Phosphodiesterase 4 Inhibitor Apremilast Inhibits Th1 but Promotes Th17 Responses Induced by 6-Sulfo LacNAc (Slan) Dendritic Cells. J. Dermatol. Sci. 2017, 87, 110–115. [Google Scholar] [CrossRef] [Green Version]
- Schafer, P.H.; Truzzi, F.; Parton, A.; Wu, L.; Kosek, J.; Zhang, L.-H.; Horan, G.; Saltari, A.; Quadri, M.; Lotti, R.; et al. Phosphodiesterase 4 in Inflammatory Diseases: Effects of Apremilast in Psoriatic Blood and in Dermal Myofibroblasts through the PDE4/CD271 Complex. Cell. Signal. 2016, 28, 753–763. [Google Scholar] [CrossRef] [Green Version]
- Garcet, S.; Nograles, K.; Correa da Rosa, J.; Schafer, P.H.; Krueger, J.G. Synergistic Cytokine Effects as Apremilast Response Predictors in Patients with Psoriasis. J. Allergy Clin. Immunol. 2018, 142, 1010–1013.e6. [Google Scholar] [CrossRef] [PubMed]
- Campanati, A.; Caffarini, M.; Diotallevi, F.; Radi, G.; Lucarini, G.; Di Vincenzo, M.; Orciani, M.; Offidani, A. The Efficacy of in Vivo Administration of Apremilast on Mesenchymal Stem Cells Derived from Psoriatic Patients. Inflamm. Res. 2021, 70, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Medvedeva, I.V.; Stokes, M.E.; Eisinger, D.; LaBrie, S.T.; Ai, J.; Trotter, M.W.B.; Schafer, P.; Yang, R. Large-Scale Analyses of Disease Biomarkers and Apremilast Pharmacodynamic Effects. Sci. Rep. 2020, 10, 605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mazzilli, S.; Lanna, C.; Chiaramonte, C.; Cesaroni, G.M.; Zangrilli, A.; Palumbo, V.; Cosio, T.; Dattola, A.; Gaziano, R.; Galluzzo, M.; et al. Real Life Experience of Apremilast in Psoriasis and Arthritis Psoriatic Patients: Preliminary Results on Metabolic Biomarkers. J. Dermatol. 2020, 47, 578–582. [Google Scholar] [CrossRef] [PubMed]
- Gambichler, T.; Kreuter, A.; Susok, L.; Skrygan, M.; Rotterdam, S.; Höxtermann, S.; Müller, M.; Tigges, C.; Altmeyer, P.; Lahner, N. Glutathione-S-Transferase T1 Genotyping and Phenotyping in Psoriasis Patients Receiving Treatment with Oral Fumaric Acid Esters. J. Eur. Acad. Dermatol. Venereol. 2014, 28, 574–580. [Google Scholar] [CrossRef] [PubMed]
- Onderdijk, A.J.; Balak, D.M.W.; Baerveldt, E.M.; Florencia, E.F.; Kant, M.; Laman, J.D.; IJcken, W.F.J.; Racz, E.; Ridder, D.; Thio, H.B.; et al. Regulated Genes in Psoriatic Skin during Treatment with Fumaric Acid Esters. Br. J. Dermatol. 2014, 171, 732–741. [Google Scholar] [CrossRef] [PubMed]
- Tahvili, S.; Zandieh, B.; Amirghofran, Z. The Effect of Dimethyl Fumarate on Gene Expression and the Level of Cytokines Related to Different T Helper Cell Subsets in Peripheral Blood Mononuclear Cells of Patients with Psoriasis. Int. J. Dermatol. 2015, 54, e254–e260. [Google Scholar] [CrossRef]
- Holzer, G.; Hoke, M.; Sabeti-Sandor, S.; Perkmann, T.; Rauscher, A.; Strassegger, B.; Radakovic, S.; Tanew, A. Disparate Effects of Adalimumab and Fumaric Acid Esters on Cardiovascular Risk Factors in Psoriasis Patients: Results from a Prospective, Randomized, Observer-blinded Head-to-head Trial. Acad. Dermatol. Venereol. 2021, 35, 441–449. [Google Scholar] [CrossRef]
- Gambichler, T.; Bechara, F.G.; Scola, N.; Rotterdam, S.; Altmeyer, P.; Skrygan, M. Serum Levels of Antimicrobial Peptides and Proteins Do Not Correlate with Psoriasis Severity and Are Increased after Treatment with Fumaric Acid Esters. Arch. Dermatol. Res. 2012, 304, 471–474. [Google Scholar] [CrossRef]
- Shang, L.; Cao, J.; Zhao, S.; Zhang, J.; He, Y. TYK2 in Immune Responses and Treatment of Psoriasis. JIR 2022, 15, 5373–5385. [Google Scholar] [CrossRef]
- Catlett, I.M.; Hu, Y.; Gao, L.; Banerjee, S.; Gordon, K.; Krueger, J.G. Molecular and Clinical Effects of Selective Tyrosine Kinase 2 Inhibition with Deucravacitinib in Psoriasis. J. Allergy Clin. Immunol. 2022, 149, 2010–2020.e8. [Google Scholar] [CrossRef]
- Tian, F.; Chen, Z.; Xu, T. Efficacy and Safety of Tofacitinib for the Treatment of Chronic Plaque Psoriasis: A Systematic Review and Meta-Analysis. J. Int. Med. Res. 2019, 47, 2342–2350. [Google Scholar] [CrossRef] [PubMed]
- Bing, N.; Zhou, H.; Chen, X.; Hirose, T.; Kochi, Y.; Tsuchida, Y.; Ishigaki, K.; Sumitomo, S.; Fujio, K.; Zhang, B.; et al. Contribution of a European-Prevalent Variant near CD83 and an East Asian–Prevalent Variant near IL17RB to Herpes Zoster Risk in Tofacitinib Treatment: Results of Genome-Wide Association Study Meta-Analyses. Arthritis Rheumatol. 2021, 73, 1155–1166. [Google Scholar] [CrossRef]
- Krueger, J.; Clark, J.D.; Suárez-Fariñas, M.; Fuentes-Duculan, J.; Cueto, I.; Wang, C.Q.; Tan, H.; Wolk, R.; Rottinghaus, S.T.; Whitley, M.Z.; et al. Tofacitinib Attenuates Pathologic Immune Pathways in Patients with Psoriasis: A Randomized Phase 2 Study. J. Allergy Clin. Immunol. 2016, 137, 1079–1090. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ludbrook, V.J.; Hicks, K.J.; Hanrott, K.E.; Patel, J.S.; Binks, M.H.; Wyres, M.R.; Watson, J.; Wilson, P.; Simeoni, M.; Schifano, L.A.; et al. Investigation of Selective JAK1 Inhibitor GSK2586184 for the Treatment of Psoriasis in a Randomized Placebo-Controlled Phase IIa Study. Br. J. Dermatol. 2016, 174, 985–995. [Google Scholar] [CrossRef]
- Kim, J.; Tomalin, L.; Lee, J.; Fitz, L.J.; Berstein, G.; Correa-da Rosa, J.; Garcet, S.; Lowes, M.A.; Valdez, H.; Wolk, R.; et al. Reduction of Inflammatory and Cardiovascular Proteins in the Blood of Patients with Psoriasis: Differential Responses between Tofacitinib and Etanercept after 4 Weeks of Treatment. J. Investig. Dermatol. 2018, 138, 273–281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, J.J.; Strober, B.E.; Hansen, P.R.; Ahlehoff, O.; Egeberg, A.; Qureshi, A.A.; Robertson, D.; Valdez, H.; Tan, H.; Wolk, R. Effects of Tofacitinib on Cardiovascular Risk Factors and Cardiovascular Outcomes Based on Phase III and Long-Term Extension Data in Patients with Plaque Psoriasis. J. Am. Acad. Dermatol. 2016, 75, 897–905. [Google Scholar] [CrossRef] [PubMed]
- Brownstone, N.; Hong, J.; Mosca, M.; Hadeler, E.; Liao, W.; Bhutani, T.; Koo, J. Biologic Treatments of Psoriasis: An Update for the Clinician. BTT 2021, 15, 39–51. [Google Scholar] [CrossRef]
- Vasilopoulos, Y.; Manolika, M.; Zafiriou, E.; Sarafidou, T.; Bagiatis, V.; Krüger-Krasagaki, S.; Tosca, A.; Patsatsi, A.; Sotiriadis, D.; Mamuris, Z.; et al. Pharmacogenetic Analysis of TNF, TNFRSF1A, and TNFRSF1B Gene Polymorphisms and Prediction of Response to Anti-TNF Therapy in Psoriasis Patients in the Greek Population. Mol. Diagn. Ther. 2012, 16, 29–34. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Kong, L.; Zhang, H.; Sun, F.; Guo, Z.; Zhang, R.; Dou, Y. Tumor Necrosis Factor Alpha -308G/A Gene Polymorphisms Combined with Neutrophil-to-Lymphocyte and Platelet-to-Lymphocyte Ratio Predicts the Efficacy and Safety of Anti-TNF-α Therapy in Patients with Ankylosing Spondylitis, Rheumatoid Arthritis, and Psoriasis Arthritis. Front. Pharmacol. 2022, 12, 811719. [Google Scholar] [CrossRef]
- Ito, M.; Hirota, T.; Momose, M.; Ito, T.; Umezawa, Y.; Fukuchi, O.; Asahina, A.; Nakagawa, H.; Tamari, M.; Saeki, H. Lack of Association of TNFA, TNFRSF1B and TNFAIP3 Gene Polymorphisms with Response to Anti-tumor Necrosis Factor Therapy in Japanese Patients with Psoriasis. J. Dermatol. 2020, 47, e110–e111. [Google Scholar] [CrossRef] [PubMed]
- Antonatos, C.; Stavrou, E.F.; Evangelou, E.; Vasilopoulos, Y. Exploring Pharmacogenetic Variants for Predicting Response to Anti-TNF Therapy in Autoimmune Diseases: A Meta-Analysis. Pharmacogenomics 2021, 22, 435–445. [Google Scholar] [CrossRef] [PubMed]
- Higgins, J.P.T. Measuring Inconsistency in Meta-Analyses. BMJ 2003, 327, 557–560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coto-Segura, P.; González-Lara, L.; Batalla, A.; Eiris, N.; Queiro, R.; Coto, E. NFKBIZ and CW6 in Adalimumab Response Among Psoriasis Patients: Genetic Association and Alternative Transcript Analysis. Mol. Diagn. Ther. 2019, 23, 627–633. [Google Scholar] [CrossRef]
- Ovejero-Benito, M.C.; Prieto-Pérez, R.; Llamas-Velasco, M.; Muñoz-Aceituno, E.; Reolid, A.; Saiz-Rodríguez, M.; Belmonte, C.; Román, M.; Ochoa, D.; Talegón, M.; et al. Polymorphisms Associated with Adalimumab and Infliximab Response in Moderate-to-Severe Plaque Psoriasis. Pharmacogenomics 2018, 19, 7–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Talamonti, M.; Galluzzo, M.; Zangrilli, A.; Papoutsaki, M.; Egan, C.G.; Bavetta, M.; Tambone, S.; Fargnoli, M.C.; Bianchi, L. HLA-C*06:02 Does Not Predispose to Clinical Response Following Long-Term Adalimumab Treatment in Psoriatic Patients: A Retrospective Cohort Study. Mol. Diagn. Ther. 2017, 21, 295–301. [Google Scholar] [CrossRef] [PubMed]
- Murdaca, G.; Negrini, S.; Magnani, O.; Penza, E.; Pellecchio, M.; Puppo, F. Impact of Pharmacogenomics upon the Therapeutic Response to Etanercept in Psoriasis and Psoriatic Arthritis. Expert Opin. Drug Saf. 2017, 16, 1173–1179. [Google Scholar] [CrossRef] [PubMed]
- Prieto-Pérez, R.; Solano-López, G.; Cabaleiro, T.; Román, M.; Ochoa, D.; Talegón, M.; Baniandrés, O.; López-Estebaranz, J.L.; de la Cueva, P.; Daudén, E.; et al. New Polymorphisms Associated with Response to Anti-TNF Drugs in Patients with Moderate-to-Severe Plaque Psoriasis. Pharm. J. 2018, 18, 70–75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ovejero-Benito, M.C.; Muñoz-Aceituno, E.; Reolid, A.; Fisas, L.H.; Llamas-Velasco, M.; Prieto-Pérez, R.; Abad-Santos, F.; Daudén, E. Polymorphisms Associated with Anti-TNF Drugs Response in Patients with Psoriasis and Psoriatic Arthritis. J. Eur. Acad. Dermatol. Venereol. 2019, 33, e175–e177. [Google Scholar] [CrossRef] [PubMed]
- Tejasvi, T.; Stuart, P.E.; Chandran, V.; Voorhees, J.J.; Gladman, D.D.; Rahman, P.; Elder, J.T.; Nair, R.P. TNFAIP3 Gene Polymorphisms Are Associated with Response to TNF Blockade in Psoriasis. J. Investig. Dermatol. 2012, 132, 593–600. [Google Scholar] [CrossRef] [Green Version]
- Torii, K.; Morita, A. Specific Single Nucleotide Polymorphism Genotypes and Association of an IL-12B Polymorphism with Secondary Failure of Infliximab Therapy in Japanese Psoriasis Patients. J. Dermatol. Sci. 2020, 99, 135–136. [Google Scholar] [CrossRef] [PubMed]
- Nani, P.; Ladopoulou, M.; Papaioannou, E.H.; Papagianni, E.D.; Antonatos, C.; Xiropotamos, P.; Kapsoritakis, A.; Potamianos, P.S.; Karmiris, K.; Tzathas, C.; et al. Pharmacogenetic Analysis of the MIR146A Rs2910164 and MIR155 Rs767649 Polymorphisms and Response to Anti-TNF Treatment in Patients with Crohn’s Disease and Psoriasis. Genes 2023, 14, 445. [Google Scholar] [CrossRef] [PubMed]
- Loft, N.D.; Skov, L.; Iversen, L.; Gniadecki, R.; Dam, T.N.; Brandslund, I.; Hoffmann, H.J.; Andersen, M.R.; Dessau, R.B.; Bergmann, A.C.; et al. Associations between Functional Polymorphisms and Response to Biological Treatment in Danish Patients with Psoriasis. Pharm. J. 2018, 18, 494–500. [Google Scholar] [CrossRef] [Green Version]
- Nishikawa, R.; Nagai, H.; Bito, T.; Ikeda, T.; Horikawa, T.; Adachi, A.; Matsubara, T.; Nishigori, C. Genetic Prediction of the Effectiveness of Biologics for Psoriasis Treatment. J. Dermatol. 2016, 43, 1273–1277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ovejero-Benito, M.C.; Muñoz-Aceituno, E.; Sabador, D.; Almoguera, B.; Prieto-Pérez, R.; Hakonarson, H.; Coto-Segura, P.; Carretero, G.; Reolid, A.; Llamas-Velasco, M.; et al. Genome-wide Association Analysis of Psoriasis Patients Treated with Anti-TNF Drugs. Exp. Dermatol. 2020, 29, 1225–1232. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Wang, L.; Dai, H.; Qiu, G.; Liu, J.; Yu, D.; Liu, J.; Lyu, C.-Z.; Liu, L.; Zheng, M. Genome-Wide Association Analysis of Anti-TNF-α Treatment Response in Chinese Patients with Psoriasis. Front. Pharmacol. 2022, 13, 968935. [Google Scholar] [CrossRef]
- Antonatos, C.; Panoutsopoulou, M.; Georgakilas, G.K.; Evangelou, E.; Vasilopoulos, Y. Gene Expression Meta-Analysis of Potential Shared and Unique Pathways between Autoimmune Diseases under Anti-TNFα Therapy. Genes 2022, 13, 776. [Google Scholar] [CrossRef] [PubMed]
- Shen, H.; Wang, D.; Zhan, M.; Ding, H.; Zhao, H. MicroRNA-146a and MicroRNA-146b Deficiency Correlates with Exacerbated Disease Activity, and Their Longitude Increment Relates to Etanercept Response in Psoriasis Patients. Clin. Lab. Anal. 2022, 36, e24198. [Google Scholar] [CrossRef] [PubMed]
- Pei, D.; Cao, J.; Qin, G.; Wang, X. Measurement of Circulating MiRNA-125a Exhibits Good Value in the Management of Etanercept-treated Psoriatic Patients. J. Dermatol. 2020, 47, 140–146. [Google Scholar] [CrossRef]
- Skarmoutsou, E.; Trovato, C.; Granata, M.; Rossi, G.A.; Mosca, A.; Longo, V.; Gangemi, P.; Pettinato, M.; D’Amico, F.; Mazzarino, M.C. Biological Therapy Induces Expression Changes in Notch Pathway in Psoriasis. Arch. Dermatol. Res. 2015, 307, 863–873. [Google Scholar] [CrossRef] [PubMed]
- Raaby, L.; Langkilde, A.; Kjellerup, R.B.; Vinter, H.; Khatib, S.H.; Hjuler, K.F.; Johansen, C.; Iversen, L. Changes in mRNA Expression Precede Changes in Micro RNA Expression in Lesional Psoriatic Skin during Treatment with Adalimumab. Br. J. Dermatol. 2015, 173, 436–447. [Google Scholar] [CrossRef] [PubMed]
- Balato, A.; Schiattarella, M.; Di Caprio, R.; Lembo, S.; Mattii, M.; Balato, N.; Ayala, F. Effects of Adalimumab Therapy in Adult Subjects with Moderate-to-Severe Psoriasis on Th17 Pathway. J. Eur. Acad. Dermatol. Venereol. 2014, 28, 1016–1024. [Google Scholar] [CrossRef]
- Luan, L.; Han, S.; Wang, H.; Liu, X. Down-Regulation of the Th1, Th17, and Th22 Pathways Due to Anti-TNF-α Treatment in Psoriasis. Int. Immunopharmacol. 2015, 29, 278–284. [Google Scholar] [CrossRef]
- Sato, Y.; Kajihara, I.; Yamada-Kanazawa, S.; Jinnin, M.; Ihn, H. S100A7 Expression Levels in Coordination with Interleukin-8 Indicate the Clinical Response to Infliximab for Psoriasis Patients. J. Dermatol. 2017, 44, 838–839. [Google Scholar] [CrossRef] [PubMed]
- Vageli, D.P.; Exarchou, A.; Zafiriou, E.; Doukas, P.G.; Doukas, S.; Roussaki-Schulze, A. Effect of TNF-α Inhibitors on Transcriptional Levels of pro-Inflammatory Interleukin-33 and Toll-like Receptors-2 and -9 in Psoriatic Plaques. Exp. Ther. Med. 2015, 10, 1573–1577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kusumoto, S.; Kajihara, I.; Nagamoto, E.; Makino, K.; Ichihara, A.; Aoi, J.; Johno, T.; Makino, T.; Fukushima, S.; Jinnin, M.; et al. Increased CCL 22 Expression in Psoriatic Skin Predicts a Good Response to Infliximab Therapy. Br. J. Dermatol. 2014, 171, 1259–1261. [Google Scholar] [CrossRef]
- Suárez-Fariñas, M.; Fuentes-Duculan, J.; Lowes, M.A.; Krueger, J.G. Resolved Psoriasis Lesions Retain Expression of a Subset of Disease-Related Genes. J. Investig. Dermatol. 2011, 131, 391–400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahn, R.; Gupta, R.; Lai, K.; Chopra, N.; Arron, S.T.; Liao, W. Network Analysis of Psoriasis Reveals Biological Pathways and Roles for Coding and Long Non-Coding RNAs. BMC Genom. 2016, 17, 841. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foulkes, A.C.; Watson, D.S.; Carr, D.F.; Kenny, J.G.; Slidel, T.; Parslew, R.; Pirmohamed, M.; Anders, S.; Reynolds, N.J.; Griffiths, C.E.M.; et al. A Framework for Multi-Omic Prediction of Treatment Response to Biologic Therapy for Psoriasis. J. Investig. Dermatol. 2019, 139, 100–107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsoi, L.C.; Patrick, M.T.; Shuai, S.; Sarkar, M.K.; Chi, S.; Ruffino, B.; Billi, A.C.; Xing, X.; Uppala, R.; Zang, C.; et al. Cytokine Responses in Nonlesional Psoriatic Skin as Clinical Predictor to Anti-TNF Agents. J. Allergy Clin. Immunol. 2022, 149, 640–649.e5. [Google Scholar] [CrossRef]
- Tomalin, L.E.; Kim, J.; Correa da Rosa, J.; Lee, J.; Fitz, L.J.; Berstein, G.; Valdez, H.; Wolk, R.; Krueger, J.G.; Suárez-Fariñas, M. Early Quantification of Systemic Inflammatory Proteins Predicts Long-Term Treatment Response to Tofacitinib and Etanercept. J. Investig. Dermatol. 2020, 140, 1026–1034. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Zhang, X.; Zhu, L.; Geng, S.; Guo, K. Effectiveness and Safety of Adalimumab in Psoriasis and Its Influence on Gut Microbiome. Microb. Pathog. 2022, 162, 105308. [Google Scholar] [CrossRef]
- Nwanaji-Enwerem, J.C.; Nwanaji-Enwerem, U.; Baccarelli, A.A.; Williams, R.F.; Colicino, E. Anti-tumor Necrosis Factor Drug Responses and Skin-blood DNA Methylation Age: Relationships in Moderate-to-severe Psoriasis. Exp. Dermatol. 2021, 30, 1197–1203. [Google Scholar] [CrossRef] [PubMed]
- Ovejero-Benito, M.C.; Cabaleiro, T.; Sanz-García, A.; Llamas-Velasco, M.; Saiz-Rodríguez, M.; Prieto-Pérez, R.; Talegón, M.; Román, M.; Ochoa, D.; Reolid, A.; et al. Epigenetic Biomarkers Associated with Antitumour Necrosis Factor Drug Response in Moderate-to-Severe Psoriasis. Br. J. Dermatol. 2018, 178, 798–800. [Google Scholar] [CrossRef] [PubMed]
- Roberson, E.D.O.; Liu, Y.; Ryan, C.; Joyce, C.E.; Duan, S.; Cao, L.; Martin, A.; Liao, W.; Menter, A.; Bowcock, A.M. A Subset of Methylated CpG Sites Differentiate Psoriatic from Normal Skin. J. Investig. Dermatol. 2012, 132, 583–592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ciric, B.; El-behi, M.; Cabrera, R.; Zhang, G.-X.; Rostami, A. IL-23 Drives Pathogenic IL-17-Producing CD8+ T Cells. J. Immunol. 2009, 182, 5296–5305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Vugt, L.J.; van den Reek, J.M.P.A.; Hannink, G.; Coenen, M.J.H.; de Jong, E.M.G.J. Association of HLA-C*06:02 Status With Differential Response to Ustekinumab in Patients With Psoriasis: A Systematic Review and Meta-Analysis. JAMA Dermatol. 2019, 155, 708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morelli, M.; Galluzzo, M.; Scarponi, C.; Madonna, S.; Scaglione, G.L.; Girolomoni, G.; Talamonti, M.; Bianchi, L.; Albanesi, C. Allelic Variants of HLA-C Upstream Region, PSORS1C3, MICA, TNFA and Genes Involved in Epidermal Homeostasis and Barrier Function Influence the Clinical Response to Anti-IL-12/IL-23 Treatment of Patients with Psoriasis. Vaccines 2022, 10, 1977. [Google Scholar] [CrossRef] [PubMed]
- Galluzzo, M.; Boca, A.N.; Botti, E.; Potenza, C.; Malara, G.; Malagoli, P.; Vesa, S.; Chimenti, S.; Buzoianu, A.D.; Talamonti, M.; et al. IL12B (P40) Gene Polymorphisms Contribute to Ustekinumab Response Prediction in Psoriasis. Dermatology 2016, 232, 230–236. [Google Scholar] [CrossRef]
- van den Reek, J.M.P.A.; Coenen, M.J.H.; van de L’Isle Arias, M.; Zweegers, J.; Rodijk-Olthuis, D.; Schalkwijk, J.; Vermeulen, S.H.; Joosten, I.; van de Kerkhof, P.C.M.; Seyger, M.M.B.; et al. Polymorphisms in CD84, IL12B and TNFAIP3 Are Associated with Response to Biologics in Patients with Psoriasis. Br. J. Dermatol. 2017, 176, 1288–1296. [Google Scholar] [CrossRef] [PubMed]
- Masouri, S.; Stefanaki, I.; Ntritsos, G.; Kypreou, K.P.; Drakaki, E.; Evangelou, E.; Nicolaidou, E.; Stratigos, A.J.; Antoniou, C. A Pharmacogenetic Study of Psoriasis Risk Variants in a Greek Population and Prediction of Responses to Anti-TNF-α and Anti-IL-12/23 Agents. Mol. Diagn. Ther. 2016, 20, 221–225. [Google Scholar] [CrossRef]
- Connell, W.T.; Hong, J.; Liao, W. Genome-Wide Association Study of Ustekinumab Response in Psoriasis. Front. Immunol. 2022, 12, 815121. [Google Scholar] [CrossRef]
- Gedebjerg, A.; Johansen, C.; Kragballe, K.; Iversen, L. IL-20, IL-21 and P40: Potential Biomarkers of Treatment Response for Ustekinumab. Acta Derm. Venerol. 2013, 93, 150–155. [Google Scholar] [CrossRef]
- Zhou, J.; Shen, J.-Y.; Liu, L.-F.; Chen, J.-S.; Dou, T.-T.; Zheng, M.; Cai, S.-Q. Indirect Regulation and Equilibrium of P35 and P40 Subunits of Interleukin (IL)-12/23 by Ustekinumab in Psoriasis Treatment. Med. Sci. Monit. 2020, 26, e920371-1–e920371-8. [Google Scholar] [CrossRef] [PubMed]
- Baerveldt, E.M.; Onderdijk, A.J.; Kurek, D.; Kant, M.; Florencia, E.F.; Ijpma, A.S.; van der Spek, P.J.; Bastiaans, J.; Jansen, P.A.; van Kilsdonk, J.W.J.; et al. Ustekinumab Improves Psoriasis-Related Gene Expression in Noninvolved Psoriatic Skin without Inhibition of the Antimicrobial Response: Ustekinumab Improves Noninvolved Psoriatic Skin with Normal Antimicrobial Response. Br. J. Dermatol. 2013, 168, 990–998. [Google Scholar] [CrossRef]
- Brodmerkel, C.; Li, K.; Garcet, S.; Hayden, K.; Chiricozzi, A.; Novitskaya, I.; Fuentes-Duculan, J.; Suarez-Farinas, M.; Campbell, K.; Krueger, J.G. Modulation of Inflammatory Gene Transcripts in Psoriasis Vulgaris: Differences between Ustekinumab and Etanercept. J. Allergy Clin. Immunol. 2019, 143, 1965–1969. [Google Scholar] [CrossRef] [Green Version]
- Visvanathan, S.; Baum, P.; Vinisko, R.; Schmid, R.; Flack, M.; Lalovic, B.; Kleiner, O.; Fuentes-Duculan, J.; Garcet, S.; Davis, J.W.; et al. Psoriatic Skin Molecular and Histopathologic Profiles after Treatment with Risankizumab versus Ustekinumab. J. Allergy Clin. Immunol. 2019, 143, 2158–2169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sofen, H.; Smith, S.; Matheson, R.T.; Leonardi, C.L.; Calderon, C.; Brodmerkel, C.; Li, K.; Campbell, K.; Marciniak, S.J.; Wasfi, Y.; et al. Guselkumab (an IL-23–Specific MAb) Demonstrates Clinical and Molecular Response in Patients with Moderate-to-Severe Psoriasis. J. Allergy Clin. Immunol. 2014, 133, 1032–1040. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, J.; Wang, Y.; Li, Y.; Zhong, X.; Gong, Y.; Ding, Y.; Yu, N.; Shi, Y. Based on Gene Expression Analysis: Low-Density Neutrophil Expression Is a Characteristic of the Fast Responders Treated With Guselkumab for Psoriasis. Front. Immunol. 2022, 13, 865875. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Xu, Y.; Zhuang, Y.; Piantone, A.; Shu, C.; Chen, D.; Zhou, H.; Xu, Z.; Sharma, A. Evaluating Potential Disease-Mediated Protein-Drug Interactions in Patients With Moderate-to-Severe Plaque Psoriasis Receiving Subcutaneous Guselkumab. Clin. Transl. Sci. 2020, 13, 1217–1226. [Google Scholar] [CrossRef]
- Loesche, M.A.; Farahi, K.; Capone, K.; Fakharzadeh, S.; Blauvelt, A.; Duffin, K.C.; DePrimo, S.E.; Muñoz-Elías, E.J.; Brodmerkel, C.; Dasgupta, B.; et al. Longitudinal Study of the Psoriasis-Associated Skin Microbiome during Therapy with Ustekinumab in a Randomized Phase 3b Clinical Trial. J. Investig. Dermatol. 2018, 138, 1973–1981. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paolino, G.; Buratta, S.; Mercuri, S.R.; Pellegrino, R.M.; Urbanelli, L.; Emiliani, C.; Bertuccini, L.; Iosi, F.; Huber, V.; Brianti, P.; et al. Lipidic Profile Changes in Exosomes and Microvesicles Derived From Plasma of Monoclonal Antibody-Treated Psoriatic Patients. Front. Cell Dev. Biol. 2022, 10, 923769. [Google Scholar] [CrossRef]
- Anzengruber, F.; Drach, M.; Maul, J.-T.; Kolios, A.G.; Meier, B.; Navarini, A.A. Therapy Response Was Not Altered by HLA-Cw6 Status in Psoriasis Patients Treated with Secukinumab: A Retrospective Case Series. J. Eur. Acad. Dermatol. Venereol. 2018, 32, e274–e276. [Google Scholar] [CrossRef] [Green Version]
- Costanzo, A.; Bianchi, L.; Flori, M.L.; Malara, G.; Stingeni, L.; Bartezaghi, M.; Carraro, L.; Castellino, G.; the SUPREME Study Group. Secukinumab Shows High Efficacy Irrespective of HLA-Cw6 Status in Patients with Moderate-to-Severe Plaque-Type Psoriasis: SUPREME Study. Br. J. Dermatol. 2018, 179, 1072–1080. [Google Scholar] [CrossRef] [Green Version]
- Papini, M.; Cusano, F.; Romanelli, M.; Burlando, M.; Stinco, G.; Girolomoni, G.; Peris, K.; Potenza, C.; Offidani, A.; Bartezaghi, M.; et al. Secukinumab Shows High Efficacy Irrespective of HLA-Cw6 Status in Patients with Moderate-to-severe Plaque-type Psoriasis: Results from Extension Phase of the SUPREME Study. Br. J. Dermatol. 2019, 181, 413–414. [Google Scholar] [CrossRef] [PubMed]
- Vugt, L.J.; Reek, J.M.P.A.; Meulewaeter, E.; Hakobjan, M.; Heddes, N.; Traks, T.; Kingo, K.; Galluzzo, M.; Talamonti, M.; Lambert, J.; et al. Response to IL-17A Inhibitors Secukinumab and Ixekizumab Cannot Be Explained by Genetic Variation in the Protein-coding and Untranslated Regions of the IL-17A Gene: Results from a Multicentre Study of Four European Psoriasis Cohorts. J. Eur. Acad. Dermatol. Venereol. 2020, 34, 112–118. [Google Scholar] [CrossRef] [PubMed]
- Morelli, M.; Galluzzo, M.; Madonna, S.; Scarponi, C.; Scaglione, G.L.; Galluccio, T.; Andreani, M.; Pallotta, S.; Girolomoni, G.; Bianchi, L.; et al. HLA-Cw6 and Other HLA-C Alleles, as Well as MICB-DT, DDX58, and TYK2 Genetic Variants Associate with Optimal Response to Anti-IL-17A Treatment in Patients with Psoriasis. Expert Opin. Biol. Ther. 2021, 21, 259–270. [Google Scholar] [CrossRef]
- Krueger, J.G.; Fretzin, S.; Suárez-Fariñas, M.; Haslett, P.A.; Phipps, K.M.; Cameron, G.S.; McColm, J.; Katcherian, A.; Cueto, I.; White, T.; et al. IL-17A Is Essential for Cell Activation and Inflammatory Gene Circuits in Subjects with Psoriasis. J. Allergy Clin. Immunol. 2012, 130, 145–154.e9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, C.Q.F.; Suárez-Fariñas, M.; Nograles, K.E.; Mimoso, C.A.; Shrom, D.; Dow, E.R.; Heffernan, M.P.; Hoffman, R.W.; Krueger, J.G. IL-17 Induces Inflammation-Associated Gene Products in Blood Monocytes, and Treatment with Ixekizumab Reduces Their Expression in Psoriasis Patient Blood. J. Investig. Dermatol. 2014, 134, 2990–2993. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bertelsen, T.; Ljungberg, C.; Litman, T.; Huppertz, C.; Hennze, R.; Rønholt, K.; Iversen, L.; Johansen, C. IκBζ Is a Key Player in the Antipsoriatic Effects of Secukinumab. J. Allergy Clin. Immunol. 2020, 145, 379–390. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Chang, H.-W.; Grewal, R.; Cummins, D.D.; Bui, A.; Beck, K.M.; Sekhon, S.; Yan, D.; Huang, Z.-M.; Schmidt, T.H.; et al. Transcriptomic Profiling of Plaque Psoriasis and Cutaneous T-Cell Subsets during Treatment with Secukinumab. JID Innov. 2022, 2, 100094. [Google Scholar] [CrossRef]
- Seeler, S.; Moldovan, L.-I.; Bertelsen, T.; Hager, H.; Iversen, L.; Johansen, C.; Kjems, J.; Sommer Kristensen, L. Global CircRNA Expression Changes Predate Clinical and Histological Improvements of Psoriasis Patients upon Secukinumab Treatment. PLoS ONE 2022, 17, e0275219. [Google Scholar] [CrossRef]
- Russell, C.B.; Rand, H.; Bigler, J.; Kerkof, K.; Timour, M.; Bautista, E.; Krueger, J.G.; Salinger, D.H.; Welcher, A.A.; Martin, D.A. Gene Expression Profiles Normalized in Psoriatic Skin by Treatment with Brodalumab, a Human Anti–IL-17 Receptor Monoclonal Antibody. J. Immunol. 2014, 192, 3828–3836. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tomalin, L.E.; Russell, C.B.; Garcet, S.; Ewald, D.A.; Klekotka, P.; Nirula, A.; Norsgaard, H.; Suàrez-Fariñas, M.; Krueger, J.G. Short-Term Transcriptional Response to IL-17 Receptor-A Antagonism in the Treatment of Psoriasis. J. Allergy Clin. Immunol. 2020, 145, 922–932. [Google Scholar] [CrossRef] [Green Version]
- Piros, É.A.; Szabó, Á.; Rencz, F.; Brodszky, V.; Wikonkál, N.; Miheller, P.; Horváth, M.; Holló, P. Anti-Interleukin-17 Therapy of Severe Psoriatic Patients Results in an Improvement of Serum Lipid and Inflammatory Parameters’ Levels, but Has No Effect on Body Composition Parameters. Life 2021, 11, 535. [Google Scholar] [CrossRef]
- Cao, H.; Su, S.; Yang, Q.; Le, Y.; Chen, L.; Hu, M.; Guo, X.; Zheng, J.; Li, X.; Yu, Y. Metabolic Profiling Reveals Interleukin-17A Monoclonal Antibody Treatment Ameliorate Lipids Metabolism with the Potentiality to Reduce Cardiovascular Risk in Psoriasis Patients. Lipids Health Dis. 2021, 20, 16. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Cai, L.; Zhang, S.; Zhang, H.; Liu, X.; Li, C.; Zhao, Y.; Zhang, J. Effects of Secukinumab and Adalimumab on Serum Uric Acid Level in Patients with Plaque Psoriasis. Chin. Med. J. 2022, 135, 1438–1443. [Google Scholar] [CrossRef] [PubMed]
- Yeh, N.-L.; Hsu, C.-Y.; Tsai, T.-F.; Chiu, H.-Y. Gut Microbiome in Psoriasis Is Perturbed Differently During Secukinumab and Ustekinumab Therapy and Associated with Response to Treatment. Clin. Drug Investig. 2019, 39, 1195–1203. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Li, Y.; Wu, L.; Xiao, S.; Ji, Y.; Tan, Y.; Jiang, C.; Zhang, G. Dysregulation of the Gut-Brain-Skin Axis and Key Overlapping Inflammatory and Immune Mechanisms of Psoriasis and Depression. Biomed. Pharmacother. 2021, 137, 111065. [Google Scholar] [CrossRef]
- Marek-Jozefowicz, L.; Czajkowski, R.; Borkowska, A.; Nedoszytko, B.; Żmijewski, M.A.; Cubała, W.J.; Slominski, A.T. The Brain–Skin Axis in Psoriasis—Psychological, Psychiatric, Hormonal, and Dermatological Aspects. Int. J. Mol. Sci. 2022, 23, 669. [Google Scholar] [CrossRef]
Study, Year | Drug | Method | Sample | Time Sample | Clinical Outcome | Time Point | Sample Size | Main Results |
---|---|---|---|---|---|---|---|---|
Pharmacogenetics | ||||||||
Young et al., 2006 [46] | Acitretin | Genotyping | gDNA | n.p. | PASI75 | 3 months | 106 | Association of VEGF rs833061 SNP. |
Chen et al., 2018 [47] | Acitretin | Genotyping | gDNA | n.p. | PASI75 | 2 months | 131 | No evidence for associatiation for VEGF and EGF SNPs. |
Campalani et al., 2006 [48] | Acitretin | Genotyping | gDNA | n.p. | PASI75 | 3 months | 190 | No evidence for association for APOE SNPs. |
Zhu et al., 2018 [49] | Acitretin | Genotyping | gDNA | n.p. | PASI75 | 24 months | 109 | No evidence for association of IL36RN SNPs. |
Zhou et al., 2022 [50] | Acitretin | Genotyping | gDNA | n.p. | PASI75 | 2 months | 100 | Association of HLA-DQA1 and DQB1 alleles |
Chen et al., 2018 [51] | Acitretin | Genotyping | gDNA | n.p. | PASI75 | 2 months | 151 | Association of SLCO1B1 rs4149056 and SLC22A1 rs2282143 SNPs. |
Zhou et al., 2018 [52] | Acitretin | Genotyping | gDNA | n.p. | PASI75 | 2 months | 84 | Association of SFRP4 rs1802073 with elevated serum lipid levels. |
Antonatos et al., 2022 [54] | CsA | Genotyping | gDNA | n.p. | PASI75 | 3 months | 176 | Association between CALM1 rs12885713 and MALT1 rs2874116 SNPs. |
Vasilopoulos et al., 2014 [55] | CsA | Genotyping | gDNA | n.p. | PASI75 | 3 months | 84 | Association of ABCB1 rs1045642 SNP. |
Chernov et al., 2022 [56] | CsA | Genotyping | gDNA | n.p. | PASI75 | 3 months | 168 | Association between ABCB1 rs1045642, rs2032582 and rs1128503 SNPs. |
Fan et al., 2021 [63] | MTX | Genotyping | gDNA | n.p. | PASI75 | 12 months | 310 | Association of ANxA6 rs11960458 SNP. |
West et al., 2017 [64] | MTX | Genotyping | gDNA | n.p. | PASI75 | 12 months | 70 | Association of the HLA-Cw6 allele. |
Mao et al., 2022 [65] | MTX | Genotyping | gDNA | n.p. | PASI75 | 2 months | 204 | Association of the HLA-Cw6 allele. |
Yan et al., 2019 [66] | MTX | Genotyping | gDNA | n.p. | PASI75 | 3 months | 221 | Association of TNIP1 rs10036748 SNP. |
Warren et al., 2008 [67] | MTX | Genotyping | gDNA | n.p. | PASI75 | 3 months | 374 | Association of ABCC1 and ABCG2 SNPs. |
Grželj et al., 2021 [68] | MTX | Genotyping | gDNA | n.p. | PASI75 | 6 months | 117 | Association of ABCC2 rs717620 SNP. |
Voron’ko et al., 2022 [69] | MTX | Genotyping | gDNA | n.p. | PASI75 | 1 month | 139 | Association of MTHFR and TYMS SNPs. |
Grželj et al., 2021 [70] | MTX | Genotyping | gDNA | n.p. | PASI75 | 6 months | 199 | Association of GNMT rs10948059 SNP. |
Campalani et al., 2007 [71] | MTX | Genotyping | gDNA | n.p. | PASI75 | 3 months | 203 | Association of folate, pyrimidine and pourine gene SNPs. |
Hairutdinov et al., 2005 [81] | UVB | Genotyping | gDNA | n.p. | PASI75 | 1 month | 110 | Association of the apoptosis-deficient P53 allele. |
Ryan et al., 2010 [82] | UVB | Genotyping | gDNA | n.p. | PASI75 | 4 months | 119 | Association of VDR rs731236 SNP. |
Pharmacogenomics | ||||||||
Zhang et al., 2021 [72] | MTX | GWAS | gDNA | n.p. | PASI75 | 3 months | 441 | Association of rs4713429 SNP. |
Pharmacotranscriptomics | ||||||||
Haider et al., 2008 [58] | CsA | Microarray | Lesional Skin | Baseline, 14 days, 1 month, 2 months | PASI75 | 1 month | 11 | Down-regulation of pro-inflammatory cytokines during CsA treatment. |
Grabarek et al., 2019 [59] | CsA | RT-qPCR | Plasma | 3 months | n.s. | 3 months | 32 | IL12/23 signaling pathway is reversed during CsA treatment. |
Michalska-Bańkowska et al., 2018 [60] | CsA | RT-qPCR | Plasma | Baseline, 1 month, 3 months | n.s. | 3 months | 32 | Reversion of TGF-β isoforms. |
Goldminz et al., 2015 [73] | MTX | Microarray | Lesional Skin | Baseline, 1, 2, 4, 16 weeks | PASI75 | 4 months | 30 | MTX administration shows similar reversion profile to ADA. |
El-Esawy et al., 2022 [74] | MTX | RT-qPCR | Plasma | Baseline and 3 months | PASI75 | 3 months | 148 | Elevated circulating TNFSF12 mRNA and protein after MTX administration. |
Correa da Rosa et al., 2016 [75] | MTX | Microarray | Lesional Skin | Baseline, 1 week, 2 weeks, 1 month | PASI75 | 1 month | 141 | Expression profile after 2–4 weeks of treatment accurately predicts the clinical outcome at 3 months. |
Rácz et al., 2011 [83] | UVB | Microarrays | Lesional Skin | Baseline, after therapy | PASI75 | 3 months | 11 | UVB suppresses inflammatory and skin-related pathways. |
Hochberg et al., 2007 [84] | UVB | Microarrays | Lesional Skin | Baseline, 1 month | PASI75 | 1 month | 12 | UVB induces the IGFBP7 expression. |
Ele-Refaei et al., 2015 [85] | UVB | RT-qPCR | Plasma | 3 months | PASI75 | 3 months | 40 | UVB reduced miR-146a levels. |
Additional approaches | ||||||||
Baran et al., 2019 [53] | Acitretin | ELISA | Plasma | Baseline and 12 weeks | n.s. | 3 months | 33 | Circulating FABP4 levels were not altered after acitretin treatment. |
Esrefoglu et al., 2006 [61] | CsA | Immunochemistry | Lesional Skin | Baseline, 6 months | n.s. | 6 months | 10 | TNF and ICAM-1 are reduced after CsA treatment. |
Indhumathi et al., 2017 [76] | MTX | ELISA | Plasma | Baseline, 3 months | PASI75 | 3 months | 189 | Reduced circulating IFN-γ, IL-2, IL-12, IL-23 and increased IL-4 post MTX treatment. |
Abdelaal et al., 2019 [77] | MTX | Immunochemistry | Skin | Baseline, 1 month | PASI75 | 1 month | 20 | MTX administration supressess lesional CXCL12 expression. |
Yan et al., 2022 [78] | MTX | iTRAQ | Plasma | 2 months | PASI75 | 2 months | 12 | MTX administration normalizes inflammatory expression levels. |
Qiu et al., 2022 [79] | MTX | Metagenomics sequencing | Plasma, Stool | Baseline and 4 months | PASI75 | 4 months | 15 | Metabolic and metagenomic profiling can predict MTX response. |
Lo et al., 2010 [86] | UVB | ELISA | Plasma | Baseline and after therapy | PASI75 | n.s. | 32 | Reduced serum IL-17 and IL-22 levels post UVB treatment. |
Study, Year | Drug | Method | Sample | Time Sample | Clinical Outcome | Time Point | Sample Size | Main Results |
---|---|---|---|---|---|---|---|---|
Pharmacogenetics | ||||||||
Vasilopoulos et al., 2012 [108] | anti-TNF | Genotyping | gDNA | n.p. | PASI75 | 6 months | 80 | Association of TNF rs1799724 and TNFRSF1B rs1061622 SNPs. |
Ito et al., 2019 [110] | anti-TNF | Genotyping | gDNA | n.p. | PASI75 | 12 months | 49 | No evidence for association between TNF, TNFSRF1B and TNFAIP3 SNPs. |
Antonatos et al., 2021 [111] | anti-TNF | Meta-analysis | n.p. | n.p. | PASI75 | n.p. | n.p. | Association of TNF rs361525, rs1800629, rs1799724 and TNFRSF1B rs1061622 SNPs. |
Coto-Segura et al., 2019 [113] | ADA | Genotyping | gDNA | n.p. | PASI75 | 23 months | 169 | Association of NFKBIZ rs3217713 and HLA-Cw6 alleles. |
Ovejero-Benito et al., 2018 [114] | anti-TNF | Genotyping | gDNA | n.p. | PASI75 | 3 months | 95 | Association of IVL rs6661932, IL-12B rs2546890, NFKBIA rs2146523, ZNF816A rs9304742 and SLC9A8 rs645544 variants. |
Talamonti et al., 2017 [115] | ADA | Genotyping | gDNA | n.p. | PASI75 | 36 months | 122 | No evidence for association for the HLA-Cw6 allele. |
Prieto-Pérez et al., 2016 [117] | anti-TNF | Genotyping | gDNA | n.p. | PASI75 | 3 months | 144 | Association of PGLYRP4-24 rs2916205, ZNF816A rs9304742, CTNNA2 rs11126740, IL-12B rs2546890, MAP3K1 rs96844 and HLA-C rs12191877 SNPs. |
Ovejero-Benito et al., 2019 [118] | anti-TNF | Genotyping | gDNA | n.p. | PASI75 | 3 months | 20 | Association of TNFAIP3 rs610604 and rs6920220 SNPs. |
Tejasvi et al., 2012 [119] | anti-TNF | Genotyping | gDNA | n.p. | PASI50 | 6 months | 433 | Association of TNFAIP3 rs610604 SNP. |
Torii et al., 2020 [120] | IFX | Genotyping | gDNA | n.p. | PASI75 | 12 months | 64 | Association of IL-12B rs2546890 SNP. |
Nani et al., 2023 [121] | anti-TNF | Genotyping | gDNA | n.p. | PASI75 | 6 months | 100 | Association of MIR146A rs2910164 SNP. |
Loft et al., 2017 [122] | anti-TNF | Genotyping | gDNA | n.p. | PASI75 | 6 months | 478 | Association of IL-1B rs1143623 and rs1143627, LY96 rs11465996, TLR2 rs11938228 and rs4696480 and TLR9 rs352139 SNPs. |
Pharmacogenomics | ||||||||
Nishikawa et al., 2016 [123] | anti-TNF | GWAS | gDNA | n.p. | PASI75 | 6 months | 65 | No evidence for association for 731.442 SNPs (P < 5 × 10−8). |
Ovejero-Benito et al., 2020 [124] | anti-TNF | GWAS | gDNA | n.p. | PASI75 | 3 months | 243 | No evidence for association for 584.141 SNPs (P < 5 × 10−8). |
Ren et al., 2022 [125] | ETA | GWAS | gDNA | n.p. | PASI75 | 6 months | 209 | No evidence for association for >350.000 SNPs (P < 5 × 10−8). |
Pharmacotranscriptomics | ||||||||
Antonatos et al., 2022 [126] | anti-TNF | Meta-analysis | Lesional Skin | n.p. | PASI75 | n.p. | n.p. | Keratinocyte proliferation is repressed after TNF inhibition. |
Shen et al., 3033 [127] | ETA | RT-qPCR | Plasma | Baseline, 1 month, 3 months, 6 months | PASI75 | 6 months | 80 | Mirs 146a and 146b were gradually over-expressed during ETA treatment. |
Pei et al., 2019 [128] | ETA | RT-qPCR | Plasma | Baseline, 1 month, 3 months, 6 months | PASI75 | 6 months | 126 | Baseline under-expression of mir-125a in responders. |
Skarmoutsou et al., 2015 [129] | ETA | RT-qPCR | Lesional Skin | 3 months | PASI50 | 3 months | 16 | Notch signaling is repressed after TNF inhibition. |
Raaby et al., 2015 [130] | ADA | Microarray | Lesional Skin | 3 months | PASI75 | 3 months | 10 | Mirs 125a, 203, 21 and 31 displayed a transcriptomic reversion after 3 months of ETA treatment. |
Balato et al., 2013 [131] | ADA | RT-qPCR | Plasma, Lesional Skin | Baseline, 4 months | PASI75 | 4 months | 20 | ADA administration represses TH17-related cytokines. |
Luan et al., 2015 [132] | ADA | RT-qPCR | Plasma | Baseline, 3 months | PASI75 | 3 months | 21 | ADA administration decreased pathogenic CD4+ cells and associated transcripts. |
Sato et al., 2017 [133] | IFX | RT-qPCR | Lesional Skin | 3 months | PASI75 | 3 months | 24 | S1007A and IL-8 transcripts were negativelly correlated with response to IFX. |
Vageli et al., 2015 [134] | anti-TNF | RT-qPCR | Lesional Skin | Baseline, 3 months | PASI75 | 3 months | 17 | TLRs 2 and 9 were significantly reduced post treatment. |
Kusumoto et al., 2014 [135] | IFX | RT-qPCR | Lesional Skin | 3 months | PASI75 | 3 months | 17 | CCL22 and related chemokines are overexpressed in IFX responders. |
Suárez-Fariñas et al., 2011 [136] | ETA | Microarray | Lesional Skin | 3 months | PASI75 | 3 months | 20 | Biologic treatment displays an inadequate molecular reversion. |
Ahn et al., 2016 [137] | ADA | RNA-seq | Lesional Skin | 1 month | PASI75 | 1 month | 18 | Keratinocyte proliferation is repressed after TNF inhibition. |
Foulkes et al., 2019 [138] | ETA | RNA-seq, Proteomics | Lesional Skin | 3 months | PASI75 | 3 months | 10 | TNF-induced mRNA changes are the most predictive of the TNF inhibitor response. |
Tsoi et al., 2021 [139] | ETA | RNA-seq | Lesional Skin | 3 months | PASI75 | 3 months | 42 | Non-lesional USP18 and KRT2 mRNA levels were correlated with PASI improvement. |
Additional approaches | ||||||||
Tomalin LE, Kim J et al., 2019 [140] | ETA | Proximity Extension Arrays | Plasma | Baseline, 1 month | PASI75 | 3 months | 128 | Plasma proteome displays a significant, nevertheless inferior to skin proteome predictive accuracy. |
Zhao et al., 2022 [141] | ADA | 16S rRNA-seq | Stool | Baseline, 3 month | PASI75 | 3 months | 13 | Intestinal microbiome was not significantly affected by treatment response. |
Nwanaji-Enwerem et al., 2021 [142] | anti-TNF | Methylation | Plasma | Baseline | PASI75 | 3 months | 70 | Partial responders displayed a higher Skin-Blood DNA methylation age. |
Ovejero-Benito et al., 2017 [143] | anti-TNF | Methylation | Plasma | Baseline | PASI75 | 3 months | 70 | No significant methylation changes were observed. |
Roberson et al., 2012 [144] | anti-TNF | Pyrosequencing | Lesional Skin | 1 month | PASI75 | 1 month | 5 | TNF inhibition partially restores perturbed CpG methylation status. |
Study, Year | Drug | Method | Sample | Time Sample | Clinical Outcome | Time Point | Sample Size | Main Results |
---|---|---|---|---|---|---|---|---|
Pharmacogenetics | ||||||||
van Vugt et al., 2019 [146] | UST | Meta-analysis | n.p. | n.p. | PASI75 | n.p. | n.p. | HLA-Cw6 positive patients showed a favored response to UST therapy. |
Morelli et al., 2022 [147] | UST | Genotyping | gDNA | n.p. | PASI75 | 4 months | 152 | Association of HLA-C variants, PSORS1C3 rs1265181, MICA rs2523497, TNF rs1800610, CDSN rs1042127 and rs4713436 and LCE3A-B rs12030223 and rs6701730 SNPs. |
Loft et al., 2017 [122] | UST | Genotyping | gDNA | n.p. | PASI75 | 3 months | 134 | Association of IL1B rs1143623 and rs1143627, TIRAP rs8177374 and TLR5 rs5744174 SNPs. |
Galluzo et al., 2016 [148] | UST | Genotyping | gDNA | n.p. | PASI75 | 12 months | 64 | Association of the HLA-Cw6 allele, and IL12B rs6887695 and rs3212227 SNPs. |
van den Reek et al., 2016 [149] | UST | Genotyping | gDNA | n.p. | PASI75 | 3 months | 66 | Association of IL12B rs3213094 SNP. |
Masouri et al., 2016 [150] | UST | Genotyping | gDNA | n.p. | PASI75 | 6 months | 22 | Association of ERAP1 rs121823 and rs26653 SNPs. |
Pharmacogenomics | ||||||||
Connet et al., 2021 [151] | UST | Genotyping | gDNA | n.p. | PASI75 | 12 months | 439 | Association of WDR1 rs35569429 SNP. |
Pharmacotranscriptomics | ||||||||
Gedebjerg et al., 2013 [152] | UST | RT-qPCR | Lesional skin | Baseline | PASI75 | 4 months | 15 | Baseline over-expression of the p40 subunit in responders. |
Zhou et al., 2020 [153] | UST | RT-qPCR | Plasma | Baseline, 3 months, 6 months | PASI75 | 3 months | 24 | Increased p40 mRNA throughout the administration of UST. |
Baerveldt et al., 2013 [154] | UST | RT-qPCR | Lesional skin | Baseline, 3 months | PASI75 | 3 months | 11 | Repression of inflammatory signals without alteration of the antimicrobial response. |
Brodmerkel et al., 2019 [155] | UST | Microarray | Lesional skin | Baseline, 3 months | PASI75 | 3 months | 19 | UST ameliorates the perturbed TNF signaling stronger than ETA. |
Visvanathan et al., 2019 [156] | RIS, UST | RNA-seq | Lesional skin | 3 months | PASI75 | 3 months | 81 | RIS induces increased molecular reversion in contrast to UST. |
Sofen et al., 2014 [157] | GUS | Microarray | Lesional skin | 3 months | PASI75 | 3 months | 24 | Repression of T-cell related gene expression. |
Lu et al., 2022 [158] | GUS | RNA-seq | Lesional skin | 1 month | PASI75 | 11 months | 37 | Fast GUS responce is associated to chemotaxis. |
Additional approaches | ||||||||
Zhu et al., 2020 [159] | GUS | Pharmacokinetics | Plasma | 1 month | PASI75 | 1 month | 16 | GUS does not interact with CYP450 probe substrates. |
Loesche et al., 2018 [160] | UST | 16s rRNA-seq | Lesional skin | Baseline, 3 months | PASI75 | 3 months | 114 | UST displays a body-site-specific microbiome alteration. |
Paolino et al., 2022 [161] | UST | EVs | Plasma | n.s. | n.s. | n.s. | 10 | UST reverses lipid profiles of circulating exosomes. |
Study, Year | Drug | Method | Sample | Time Sample | Clinical Outcome | Time Point | Sample Size | Main Results |
---|---|---|---|---|---|---|---|---|
Pharmacogenetics | ||||||||
Anzengruber et al., 2018 [162] | SEC | Genotypic | n.p. | n.p. | PASI75 | 3 months | 18 | No evidence for association with the HLA-Cw6 allele. |
Costanzo et al., 2018 [163] | SEC | Genotypic | n.p. | n.p. | PASI75 | 6 months | 431 | No evidence for association with the HLA-Cw6 allele. |
Papini et al., 2019 [164] | SEC | Genotypic | n.p. | n.p. | PASI75 | 18 months | 431 | No evidence for association with the HLA-Cw6 allele. |
van Vugt et al., 2020 [165] | SEC, IXE | Genotypic | n.p. | n.p. | PASI75 | 3 months | 134 | No evidence for association with IL-17A SNPs. |
Morelli et al., 2020 [166] | SEC | Genotypic | n.p. | n.p. | PASI75 | 14 months | 62 | Association of 8 HLA-C, 3 MICB-DT, DDX58 rs34085293 and TYK2 rs2304255 SNPs. |
Pharmacotranscriptomics | ||||||||
Krueger et al., 2012 [167] | IXE | Microarray | Lesional skin | 1 month | PASI75 | 1 month | 46 | IXE displays a dosage-dependent efficacious profile. |
Wang et al., 2014 [168] | IXE | Microarray | Plasma | 2 weeks | PASI75 | 2 weeks | n.s. | Repression of genes associatied with artherosclerosis after IXE treatment. |
Bertelsen et al., 2020 [169] | SEC | Microarray | Lesional skin | Baseline, 2 weeks, 1 month | PASI75 | 1 month | 14 | SEC rapidly reverses the NF-κB expression. |
Liu et al., 2022 [170] | SEC | RNA-seq | Lesional skin | 3 months | PASI75 | 3 months | 15 | Incomplete molecular reversion despite the high efficacy levels of SEC. |
Seeler et al., 2022 [171] | SEC | ncRNA analysis | Lesional skin | Baseline, 4, 14, 42, 84 days | PASI75 | 2 months | 14 | Insights to the regulome of SEC therapy. |
Russel et al., 2014 [172] | BRO | Microarray | Lesional skin | Baseline, 2 weeks, 1 month | PASI75 | 1 month | 25 | BRO displays a complete molecular reversion. |
Tomalin et al., 2019 [173] | BRO | Microarray | Lesional skin | Baseline, 3 months | PASI75 | 3 months | 116 | BRO treatment reports a rapid molecular reversion of keratinocyte proliferative marker and higher efficacy versus UST. |
Additional approaches | ||||||||
Piros et al., 2021 [174] | SEC, IXE | Metabolomic profiling | Plasma | Baseline, 6 months | PASI75 | 6 months | 35 | Amelioration of circulating inflammatory biomarkers, including C-reactive protein and cholesterol levels after anti-IL17 therapy. |
Cao et al., 2021 [175] | IXE | Metabolomic profiling | Plasma | Baseline, 3 months | PASI75 | 3 months | 117 | IXE treatment restores the perturbed metabolomic profile, significantly reducing the risk for cardiovascular events. |
Zheng et al., 2022 [176] | SEC, ADA | Blood biochemistry | Plasma | Baseline, 4 months, 12 months | PASI75 | 12 months | 196 | SEC reduces serum uric acid levels in contrast to ADA. |
Yeh et al., 2019 [177] | SEC, UST | 16S rRNA-seq | Stool | Baseline, 3 months, 6 months | PASI75 | 6 months | 34 | SEC leads to improvement of the microbial profile. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Antonatos, C.; Asmenoudi, P.; Panoutsopoulou, M.; Vasilopoulos, Y. Pharmaco-Omics in Psoriasis: Paving the Way towards Personalized Medicine. Int. J. Mol. Sci. 2023, 24, 7090. https://doi.org/10.3390/ijms24087090
Antonatos C, Asmenoudi P, Panoutsopoulou M, Vasilopoulos Y. Pharmaco-Omics in Psoriasis: Paving the Way towards Personalized Medicine. International Journal of Molecular Sciences. 2023; 24(8):7090. https://doi.org/10.3390/ijms24087090
Chicago/Turabian StyleAntonatos, Charalabos, Paschalia Asmenoudi, Mariza Panoutsopoulou, and Yiannis Vasilopoulos. 2023. "Pharmaco-Omics in Psoriasis: Paving the Way towards Personalized Medicine" International Journal of Molecular Sciences 24, no. 8: 7090. https://doi.org/10.3390/ijms24087090
APA StyleAntonatos, C., Asmenoudi, P., Panoutsopoulou, M., & Vasilopoulos, Y. (2023). Pharmaco-Omics in Psoriasis: Paving the Way towards Personalized Medicine. International Journal of Molecular Sciences, 24(8), 7090. https://doi.org/10.3390/ijms24087090