N-Acetyl-L-cysteine Affects Ototoxicity Evoked by Amikacin and Furosemide Either Alone or in Combination in a Mouse Model of Hearing Threshold Decrease
Abstract
:1. Introduction
2. Results
2.1. Influence of FUR, NAC and Their Combination on AMI-Induced Hearing Threshold Decrease in Mice
2.2. Influence of AMI, NAC and Their Combination on FUR-Induced Hearing Threshold Decrease in Mice
2.3. Isobolographic Transformation of Interaction between AMI, FUR and NAC in the Drug-Induced Hearing Threshold Decrease Model in Mice
3. Discussion
4. Materials and Methods
4.1. Animals and Experimental Conditions
4.2. Drugs
4.3. Auditory Brainstem Responses (ABRs)
4.4. Calculations of Hearing Threshold
4.5. Isobolographic Transformation
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Campbell, K.C.; Meech, R.P.; Klemens, J.J.; Gerberi, M.T.; Dyrstad, S.S.; Larsen, D.L.; Mitchell, D.L.; El-Azizi, M.; Verhulst, S.J.; Hughes, L.F. Prevention of Noise- and Drug-induced Hearing Loss with D-methionine. Hear. Res. 2007, 226, 92–103. [Google Scholar] [CrossRef] [PubMed]
- Rybak, L.P.; Whitworth, C.A. Ototoxicity: Therapeutic Opportunities. Drug. Discov. Today 2005, 10, 1313–1321. [Google Scholar] [CrossRef] [PubMed]
- Whitworth, C.; Morris, C.; Scott, V.; Rybak, L.P. Dose-response Relationships for Furosemide Ototoxicity in Rat. Hear. Res. 1993, 71, 202–207. [Google Scholar] [CrossRef] [PubMed]
- Richardson, G.P.; Russell, I.J. Cochlear Cultures as a Model System for Studying Aminoglycoside induced Ototoxicity. Hear. Res. 1991, 53, 293–311. [Google Scholar] [CrossRef]
- Shang, J.; Cafaro, J.; Nehmer, R.; Stone, J. Supporting Cell Division is not Required for Regeneration of Auditory Hair Cells after Ototoxic Injury in Vitro. J. Assoc. Res. Otolaryngol. 2010, 11, 203–222. [Google Scholar] [CrossRef]
- Anfuso, C.D.; Cosentino, A.; Agafonova, A.; Zappalà, A.; Giurdanella, G.; Trovato Salinaro, A.; Calabrese, V.; Lupo, G. Pericytes of Stria Vascularis Are Targets of Cisplatin-Induced Ototoxicity: New Insights into the Molecular Mechanisms Involved in Blood-Labyrinth Barrier Breakdown. Int. J. Mol. Sci. 2022, 23, 15790. [Google Scholar] [CrossRef]
- Wang, X.; Zhou, Y.; Wang, D.; Wang, Y.; Zhou, Z.; Ma, X.; Liu, X.; Dong, Y. Cisplatin-induced Ototoxicity: From Signaling Network to Therapeutic Targets. Biomed. Pharmacother. 2023, 157, 114045. [Google Scholar] [CrossRef]
- Zong, Y.; Chen, F.; Li, S.; Zhang, H. (-)-Epigallocatechin-3-gallate (EGCG) Prevents Aminoglycosides-induced Ototoxicity via Anti-oxidative and Anti-apoptotic Pathways. Int. J. Pediatr. Otorhinolaryngol. 2021, 150, 110920. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, X.; Sun, M.; Xu, T.; Wang, A. FoxO3a Plays a Key Role in the Protective Effects of Pomegranate Peel Extract against Amikacin-induced Ototoxicity. Int. J. Mol. Med. 2017, 40, 175–181. [Google Scholar] [CrossRef]
- Tokgoz, B.; Ucar, C.; Kocyigit, I.; Somdas, M.; Unal, A.; Vural, A.; Sipahioglu, M.; Oymak, O.; Utas, C. Protective Effect of N-acetylcysteine from Drug-induced Ototoxicity in Uraemic Patients with CAPD Peritonitis. Nephrol. Dial. Transplant. 2011, 26, 4073–4078. [Google Scholar] [CrossRef]
- Tokgoz, B.; Somdas, M.A.; Ucar, C.; Kocyigit, I.; Unal, A.; Sipahioglu, M.H.; Oymak, O.; Utas, C. Correlation between hearing loss and peritonitis frequency and administration of ototoxic intraperitoneal antibiotics in patients with CAPD. Ren. Fail. 2010, 32, 179–184. [Google Scholar] [CrossRef]
- Dedeoğlu, S.; Ayral, M. Protective effect of ethyl pyruvate on amikacin-induced ototoxicity in rats. Eur. Rev. Med. Pharmacol. Sci. 2022, 26, 2460–2466. [Google Scholar] [CrossRef]
- Kocyigit, I.; Vural, A.; Unal, A.; Sipahioglu, M.H.; Yucel, H.E.; Aydemir, S.; Yazici, C.; İlhan Sahin, M.; Oymak, O.; Tokgoz, B. Preventing amikacin related ototoxicity with N-acetylcysteine in patients undergoing peritoneal dialysis. Eur. Arch. Otorhinolaryngol. 2015, 272, 2611–2620. [Google Scholar] [CrossRef]
- Kim, Y.R.; Kim, M.A.; Cho, H.J.; Oh, S.K.; Lee, I.K.; Kim, U.K.; Lee, K.Y. Galangin prevents aminoglycoside-induced ototoxicity by decreasing mitochondrial production of reactive oxygen species in mouse cochlear cultures. Toxicol. Lett. 2016, 245, 78–85. [Google Scholar] [CrossRef]
- Maru, D.; Malky, G.A. Current practice of ototoxicity management across the United Kingdom (UK). Int. J. Audiol. 2018, 57 (Suppl. S4), S76–S88. [Google Scholar] [CrossRef]
- Ralli, M.; Rolesi, R.; Anzivino, R.; Turchetta, R.; Fetoni, A.R. Acquired sensorineural hearing loss in children: Current research and therapeutic perspectives. Acta Otorhinolaryngol. Ital. 2017, 37, 500–508. [Google Scholar] [CrossRef]
- García-Alcántara, F.; Murillo-Cuesta, S.; Pulido, S.; Bermúdez-Muñoz, J.M.; Martínez-Vega, R.; Milo, M.; Varela-Nieto, I.; Rivera, T. The expression of oxidative stress response genes is modulated by a combination of resveratrol and N-acetylcysteine to ameliorate ototoxicity in the rat cochlea. Hear. Res. 2018, 358, 10–21. [Google Scholar] [CrossRef]
- Aladag, I.; Guven, M.; Songu, M. Prevention of gentamicin ototoxicity with N-acetylcysteine and vitamin A. J. Laryngol. Otol. 2016, 130, 440–446. [Google Scholar] [CrossRef]
- Somdaş, M.A.; Korkmaz, F.; Gürgen, S.G.; Sagit, M.; Akçadağ, A. N-acetylcysteine Prevents Gentamicin Ototoxicity in a Rat Model. J. Int. Adv. Otol. 2015, 11, 12–18. [Google Scholar] [CrossRef]
- Maniu, A.; Perde-Schrepler, M.; Cosgarea, M. Protective effect of L-N-acetylcysteine against gentamycin ototoxicity in the organ cultures of the rat cochlea. Rom. J. Morphol. Embryol. 2011, 52, 159–164. [Google Scholar]
- Gill, G.; Blakley, B.W. Does N-acetylcysteine Improve Established Hearing Loss in Guinea Pigs? OTO Open. 2022, 6, 2473974x221100545. [Google Scholar] [CrossRef]
- Somdaş, M.A.; Güntürk, İ.; Balcıoğlu, E.; Avcı, D.; Yazıcı, C.; Özdamar, S. Protective effect of N-acetylcysteine against cisplatin ototoxicity in rats: A study with hearing tests and scanning electron microscopy. Braz. J. Otorhinolaryngol. 2020, 86, 30–37. [Google Scholar] [CrossRef]
- Wang, W.; Chen, E.; Ding, X.; Lu, P.; Chen, J.; Ma, P.; Lu, L. N-acetylcysteine protect inner hair cells from cisplatin by alleviated celluar oxidative stress and apoptosis. Toxicol. In Vitro 2022, 81, 105354. [Google Scholar] [CrossRef]
- Saliba, I.; El Fata, F.; Ouelette, V.; Robitaille, Y. Are intratympanic injections of N-acetylcysteine and methylprednisolone protective against Cisplatin-induced ototoxicity? J. Otolaryngol. Head. Neck Surg. 2010, 39, 236–243. [Google Scholar]
- Sarafraz, Z.; Ahmadi, A.; Daneshi, A. Transtympanic Injections of N-acetylcysteine and Dexamethasone for Prevention of Cisplatin-Induced Ototoxicity: Double Blind Randomized Clinical Trial. Int. Tinnitus J. 2018, 22, 40–45. [Google Scholar] [CrossRef]
- Thomas Dickey, D.; Muldoon, L.L.; Kraemer, D.F.; Neuwelt, E.A. Protection against cisplatin-induced ototoxicity by N-acetylcysteine in a rat model. Hear. Res. 2004, 193, 25–30. [Google Scholar] [CrossRef]
- Feldman, L.; Sherman, R.A.; Weissgarten, J. N-acetylcysteine use for amelioration of aminoglycoside-induced ototoxicity in dialysis patients. Semin. Dial. 2012, 25, 491–494. [Google Scholar] [CrossRef]
- Tenório, M.; Graciliano, N.G.; Moura, F.A.; Oliveira, A.C.M.; Goulart, M.O.F. N-Acetylcysteine (NAC): Impacts on Human Health. Antioxidants 2021, 10, 967. [Google Scholar] [CrossRef]
- Bavarsad Shahripour, R.; Harrigan, M.R.; Alexandrov, A.V. N-acetylcysteine (NAC) in neurological disorders: Mechanisms of action and therapeutic opportunities. Brain Behav. 2014, 4, 108–122. [Google Scholar] [CrossRef]
- Kalyanaraman, B. NAC, NAC, Knockin’ on Heaven’s door: Interpreting the mechanism of action of N-acetylcysteine in tumor and immune cells. Redox Biol. 2022, 57, 102497. [Google Scholar] [CrossRef]
- Pedre, B.; Barayeu, U.; Ezeriņa, D.; Dick, T.P. The mechanism of action of N-acetylcysteine (NAC): The emerging role of H(2)S and sulfane sulfur species. Pharmacol. Ther. 2021, 228, 107916. [Google Scholar] [CrossRef]
- Murillo-Cuesta, S.; García-Alcántara, F.; Vacas, E.; Sistiaga, J.A.; Camarero, G.; Varela-Nieto, I.; Rivera, T. Direct drug application to the round window: A comparative study of ototoxicity in rats. Otolaryngol. Head. Neck Surg. 2009, 141, 584–590. [Google Scholar] [CrossRef]
- Le Prell, C.G. Investigational Medicinal Products for the Inner Ear: Review of Clinical Trial Characteristics in ClinicalTrials.gov. J. Am. Acad. Audiol. 2021, 32, 670–694. [Google Scholar] [CrossRef]
- Le Prell, C.G.; Ojano-Dirain, C.; Rudnick, E.W.; Nelson, M.A.; DeRemer, S.J.; Prieskorn, D.M.; Miller, J.M. Assessment of nutrient supplement to reduce gentamicin-induced ototoxicity. J. Assoc. Res. Otolaryngol. 2014, 15, 375–393. [Google Scholar] [CrossRef]
- Fang, J.; Wu, H.; Zhang, J.; Mao, S.; Shi, H.; Yu, D.; Chen, Z.; Su, K.; Xing, Y.; Dong, H.; et al. A reduced form of nicotinamide riboside protects the cochlea against aminoglycoside-induced ototoxicity by SIRT1 activation. Biomed. Pharmacother. 2022, 150, 113071. [Google Scholar] [CrossRef]
- Lin, J.N.; Wang, J.S.; Lin, C.C.; Lin, H.Y.; Yu, S.H.; Wen, Y.H.; Tseng, G.F.; Hsu, C.J.; Wu, H.P. Ameliorative effect of taxifolin on gentamicin-induced ototoxicity via down-regulation of apoptotic pathways in mouse cochlear UB/OC-2 cells. J. Chin. Med. Assoc. 2022, 85, 617–626. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, H.; Zhang, F.; Yang, J.; He, J. Resveratrol upregulates miR-455-5p to antagonize cisplatin ototoxicity via modulating the PTEN-PI3K-AKT axis. Biochem. Cell. Biol. 2021, 99, 385–395. [Google Scholar] [CrossRef]
- Zheng, Z.; Wang, Y.; Yu, H.; Li, W.; Wu, J.; Cai, C.; He, Y. Salvianolic acid B inhibits ototoxic drug-induced ototoxicity by suppression of the mitochondrial apoptosis pathway. J. Cell. Mol. Med. 2020, 24, 6883–6897. [Google Scholar] [CrossRef]
- Zadrozniak, M.; Szymanski, M.; Luszczki, J.J. Vitamin C alleviates ototoxic effect caused by coadministration of amikacin and furosemide. Pharmacol. Rep. 2019, 71, 351–356. [Google Scholar] [CrossRef]
- Wu, C.Y.; Lee, H.J.; Liu, C.F.; Korivi, M.; Chen, H.H.; Chan, M.H. Protective role of L-ascorbic acid, N-acetylcysteine and apocynin on neomycin-induced hair cell loss in zebrafish. J. Appl. Toxicol. 2015, 35, 273–279. [Google Scholar] [CrossRef]
- ClinicalTrial.gov. Available online: https://clinicaltrials.gov/ct2/show/NCT05730283?term=NCT05730283&draw=2&rank=1. (accessed on 20 March 2023).
- Loewe, S. The problem of synergism and antagonism of combined drugs. Arzneimittelforschung 1953, 3, 285–290. [Google Scholar]
- Ohtani, I.; Ohtsuki, K.; Aikawa, T.; Omata, T.; Ouchi, J.; Saito, T. Individual variation and mechanism of kanamycin ototoxicity in rabbits. Acta Otolaryngol. 1982, 94, 413–419. [Google Scholar] [CrossRef]
- Lindeborg, M.M.; Jung, D.H.; Chan, D.K.; Mitnick, C.D. Prevention and management of hearing loss in patients receiving ototoxic medications. Bull. World Health Organ. 2022, 100, 789–796a. [Google Scholar] [CrossRef]
- Kilkenny, C.; Browne, W.; Cuthill, I.C.; Emerson, M.; Altman, D.G. Animal research: Reporting in vivo experiments: The ARRIVE guidelines. Br. J. Pharmacol. 2010, 160, 1577–1579. [Google Scholar] [CrossRef]
- Demidenko, E.; Glaholt, S.P.; Kyker-Snowman, E.; Shaw, J.R.; Chen, C.Y. Single toxin dose-response models revisited. Toxicol. Appl. Pharmacol. 2017, 314, 12–23. [Google Scholar] [CrossRef]
- Gadagkar, S.R.; Call, G.B. Computational tools for fitting the Hill equation to dose-response curves. J. Pharmacol. Toxicol. Methods 2015, 71, 68–76. [Google Scholar] [CrossRef]
- Luszczki, J.J.; Czuczwar, P.; Cioczek-Czuczwar, A.; Czuczwar, S.J. Arachidonyl-2′-chloroethylamide, a highly selective cannabinoid CB1 receptor agonist, enhances the anticonvulsant action of valproate in the mouse maximal electroshock-induced seizure model. Eur. J. Pharmacol. 2006, 547, 65–74. [Google Scholar] [CrossRef]
- Luszczki, J.J.; Danysz, W.; Czuczwar, S.J. Interactions of MRZ 2/576 with felbamate, lamotrigine, oxcarbazepine and topiramate in the mouse maximal electroshock-induced seizure model. Pharmacology 2008, 81, 259–265. [Google Scholar] [CrossRef] [PubMed]
- Luszczki, J.J.; Marzeda, P.; Gut-Lepiech, A.; Kondrat-Wrobel, M.W.; Wroblewska-Luczka, P.; Karwan, S.; Plech, T. New derivative of 1,2,4-triazole-3-thione (TP427) potentiates the anticonvulsant action of valproate, but not that of carbamazepine, phenytoin or phenobarbital in the mouse tonic-clonic seizure model. Pharmacol. Rep. 2019, 71, 299–305. [Google Scholar] [CrossRef] [PubMed]
- Tallarida, R.J. Drug combinations: Tests and analysis with isoboles. Curr. Protoc. Pharmacol. 2016, 72, 9.19.1–9.19.19. [Google Scholar] [CrossRef]
Treatment | HTDD20 | HTDD50 |
---|---|---|
AMI+VEH | 797 ± 64 | 1006 ± 95 |
AMI+NAC(500) | 993 ± 73 * | 1352 ± 94 ** |
AMI+FUR(30) | 377 ± 58 ***, #### | 428 ± 56 ***, #### |
AMI+FUR(30)+NAC(500) | 614 ± 62 ##, @ | 513 ± 52 ***, #### |
F(3;20) = 16.47; p < 0.0001 | F(3;20) = 31.65; p < 0.0001 |
Treatment | HTDD20 | HTDD50 |
---|---|---|
FUR+VEH | 56.25 ± 4.89 | 63.24 ± 4.68 |
FUR+NAC(500) | 65.31 ± 4.29 | 73.72 ± 4.28 |
FUR+AMI(500) | 37.35 ± 4.10 *, ## | 46.73 ± 4.39 ## |
FUR+AMI(500)+NAC(500) | 38.52 ± 4.26 *, ## | 53.64 ± 4.13 # |
F(3;20) = 9.729; p = 0.0004 | F(3;20) = 7.206; p = 0.0018 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zadrożniak, M.; Szymański, M.; Łuszczki, J.J. N-Acetyl-L-cysteine Affects Ototoxicity Evoked by Amikacin and Furosemide Either Alone or in Combination in a Mouse Model of Hearing Threshold Decrease. Int. J. Mol. Sci. 2023, 24, 7596. https://doi.org/10.3390/ijms24087596
Zadrożniak M, Szymański M, Łuszczki JJ. N-Acetyl-L-cysteine Affects Ototoxicity Evoked by Amikacin and Furosemide Either Alone or in Combination in a Mouse Model of Hearing Threshold Decrease. International Journal of Molecular Sciences. 2023; 24(8):7596. https://doi.org/10.3390/ijms24087596
Chicago/Turabian StyleZadrożniak, Marek, Marcin Szymański, and Jarogniew J. Łuszczki. 2023. "N-Acetyl-L-cysteine Affects Ototoxicity Evoked by Amikacin and Furosemide Either Alone or in Combination in a Mouse Model of Hearing Threshold Decrease" International Journal of Molecular Sciences 24, no. 8: 7596. https://doi.org/10.3390/ijms24087596
APA StyleZadrożniak, M., Szymański, M., & Łuszczki, J. J. (2023). N-Acetyl-L-cysteine Affects Ototoxicity Evoked by Amikacin and Furosemide Either Alone or in Combination in a Mouse Model of Hearing Threshold Decrease. International Journal of Molecular Sciences, 24(8), 7596. https://doi.org/10.3390/ijms24087596