Advances in the Anti-Tumor Activity of Biflavonoids in Selaginella
Abstract
:1. Introduction
2. Structural Characteristics of Selaginella Biflavonoid
3. Synthesis of Biflavonoids
4. Selaginella Biflavonoids and Therapeutic Effects on Cancer
4.1. Inhibition of Cancer Cell Growth and Proliferation
4.2. Inhibition of Tumor Metastasis and Angiogenesis
4.3. Induction of Cancer Cell Apoptosis
4.4. Induction of Cancer Cell Autophagy
4.5. Reversal of Drug Resistance and Synergistic Effects
4.6. Regulation of the Tumor-Associated Microenvironment
5. In Vivo Studies
6. Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Martincorena, I.; Raine, K.M.; Gerstung, M.; Dawson, K.J.; Haase, K.; Van Loo, P.; Davies, H.; Stratton, M.R.; Campbell, P.J. Universal Patterns of Selection in Cancer and Somatic Tissues. Cell 2017, 171, 1029–1041.e21. [Google Scholar] [CrossRef]
- Williams, M.J.; Sottoriva, A.; Graham, T.A. Measuring Clonal Evolution in Cancer with Genomics. Annu. Rev. Genom. Hum. Genet. 2019, 20, 309–329. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer Statistics, 2023. CA Cancer J. Clin. 2023, 73, 17–48. [Google Scholar] [CrossRef] [PubMed]
- Nie, Z.; Chen, M.; Gao, Y.; Huang, D.; Cao, H.; Peng, Y.; Guo, N.; Wang, F.; Zhang, S. Ferropto sis and Tumor Drug Resistance: Current Status and Major Challenges. Front. Pharmacol. 2022, 13, 879317. [Google Scholar] [CrossRef]
- Bray, F.; Laversanne, M.; Weiderpass, E.; Soerjomataram, I. The Ever-increasing Importance of Cancer as a Leading Cause of Premature Death Worldwide. Cancer 2021, 127, 3029–3030. [Google Scholar] [CrossRef] [PubMed]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Hanahan, D.; Weinberg, R.A. Hallmarks of Cancer: The Next Generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liu, Q.; Zhang, X.; Huang, H.; Tang, S.; Chai, Y.; Xu, Z.; Li, M.; Chen, X.; Liu, J.; et al. Recent Advances in Exosome-Mediated Nucleic Acid Delivery for Cancer Therapy. J. Nanobiotechnol. 2022, 20, 279. [Google Scholar] [CrossRef]
- Zaimy, M.A.; Saffarzadeh, N.; Mohammadi, A.; Pourghadamyari, H.; Izadi, P.; Sarli, A.; Moghaddam, L.K.; Paschepari, S.R.; Azizi, H.; Torkamandi, S.; et al. New Methods in the Diag nosis of Cancer and Gene Therapy of Cancer Based on Nanoparticles. Cancer Gene Ther. 2017, 24, 233–243. [Google Scholar] [CrossRef]
- Gu, Y.; Zheng, Q.; Fan, G.; Liu, R. Advances in Anti-Cancer Activities of Flavonoids in Scute llariae Radix: Perspectives on Mechanism. Int. J. Mol. Sci. 2022, 23, 11042. [Google Scholar] [CrossRef]
- Cheng, C.-S.; Chen, J.; Tan, H.-Y.; Wang, N.; Chen, Z.; Feng, Y. Scutellaria Baicalensis and Can cer Treatment: Recent Progress and Perspectives in Biomedical and Clinical Studies. Am. J. Chin. Med. 2018, 46, 25–54. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Li, S.; Li, C.; Li, T.; Huang, Y. Remodeling Tumor Microenvironment with Natural Products to Overcome Drug Resistance. Front. Immunol. 2022, 13, 1051998. [Google Scholar] [CrossRef]
- Guo, Q.; Cao, H.; Qi, X.; Li, H.; Ye, P.; Wang, Z.; Wang, D.; Sun, M. Research Progress in Reversal of Tumor Multi-Drug Resistance via Natural Products. Anticancer Agents Med. Chem. 2017, 17, 1466–1476. [Google Scholar] [CrossRef] [PubMed]
- Deng, L.-J.; Qi, M.; Li, N.; Lei, Y.-H.; Zhang, D.-M.; Chen, J.-X. Natural Products and Their Derivatives: Promising Modulators of Tumor Immunotherapy. J. Leukoc. Biol. 2020, 108, 493–508. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, G.; Carcache, P.J.B.; Addo, E.M.; Kinghorn, A.D. Current Status and Contemporary Approaches to the Discovery of Antitumor Agents from Higher Plants. Biotechnol. Adv. 2020, 38, 107337. [Google Scholar] [CrossRef] [PubMed]
- Newman, D.J.; Cragg, G.M. Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019. J. Nat. Prod. 2020, 83, 770–803. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, X.; Zeng, S.; Zhang, X.; Zhao, J.; Zhang, X.; Chen, X.; Yang, W.; Yang, Y.; Dong, Z.; et al. The Natural Polyphenol Curcumin Induces Apoptosis by Suppressing STAT3 Signaling in Esophageal Squamous Cell Carcinoma. J. Exp. Clin. Cancer Res. 2018, 37, 303. [Google Scholar] [CrossRef] [PubMed]
- Luo, H.; Vong, C.T.; Chen, H.; Gao, Y.; Lyu, P.; Qiu, L.; Zhao, M.; Liu, Q.; Cheng, Z.; Zou, J.; et al. Naturally Occurring Anti-Cancer Compounds: Shining from Chinese Herbal Medic ine. Chin. Med. 2019, 14, 48. [Google Scholar] [CrossRef] [PubMed]
- Abu Samaan, T.M.; Samec, M.; Liskova, A.; Kubatka, P.; Büsselberg, D. Paclitaxel’s Mechanistic and Clinical Effects on Breast Cancer. Biomolecules 2019, 9, 789. [Google Scholar] [CrossRef]
- Zhu, S.; Yu, Q.; Huo, C.; Li, Y.; He, L.; Ran, B.; Chen, J.; Li, Y.; Liu, W. Ferroptosis: A Novel Mechanism of Artemisinin and Its Derivatives in Cancer Therapy. Curr. Med. Chem. 2020, 28, 329–345. [Google Scholar] [CrossRef]
- Fruman, D.A.; Chiu, H.; Hopkins, B.D.; Bagrodia, S.; Cantley, L.C.; Abraham, R.T. The PI3K Pathway in Human Disease. Cell 2017, 170, 605–635. [Google Scholar] [CrossRef] [PubMed]
- Yan, W.; Ma, X.; Zhao, X.; Zhang, S. Baicalein Induces Apoptosis and Autophagy of Breast Cancer Cells via Inhibiting PI3K/AKT Pathway in Vivo and Vitro. Drug Des. Dev. Ther. 2018, 12, 3961–3972. [Google Scholar] [CrossRef] [PubMed]
- Tolomeo, M.; Cascio, A. The Multifaced Role of STAT3 in Cancer and Its Implication for Anticancer Therapy. Int. J. Mol. Sci. 2021, 22, 603. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Gao, X.; Zou, L.; Lei, M.; Feng, J.; Hu, Z. Bavachin Induces Ferroptosis through the STAT3/P53/SLC7A11 Axis in Osteosarcoma Cells. Oxid. Med. Cell. Longev. 2021, 2021, e1783485. [Google Scholar] [CrossRef] [PubMed]
- Hepworth, E.M.W.; Hinton, S.D. Pseudophosphatases as Regulators of MAPK Signaling. Int. J. Mol. Sci. 2021, 22, 12595. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.-M.; Liang, L.-Z.; Gan, T.-Q. Phytochemistry and Bioactivities of Biflavonoids: A Review. Assoc. Comput. Mach. 2017, 2017, 105–108. [Google Scholar] [CrossRef]
- Křížkovská, B.; Kumar, R.; Řehořová, K.; Sýkora, D.; Dobiasová, S.; Kučerová, D.; Tan, M.C.; Linis, V.; Oyong, G.; Ruml, T.; et al. Comparison of Chemical Composition and Biological Activities of Eight Selaginella Species. Pharmaceuticals 2020, 14, 16. [Google Scholar] [CrossRef]
- Gang, W.; Hua, L.S.; Lian, Z.H.; Mei, J.Y.; Mei, S.M.; Jiang, Y.L.; Mei, Z.X. Phytochemical Screening, Antioxidant, Antibacterial and Cytotoxic Activities of Different Extracts of Selaginella Doederleinii. Bangladesh J. Bot. 2017, 46, 1193–1201. [Google Scholar]
- Li, S.; Wang, X.; Wang, G.; Shi, P.; Lin, S.; Xu, D.; Chen, B.; Liu, A.; Huang, L.; Lin, X.; et al. Ethyl Acetate Extract of Selaginella Doederleinii Hieron Induces Cell Autophagic Death and Apoptosis in Colorectal Cancer via PI3K-Akt-MTOR and AMPKα-Signaling Pathways. Front. Pharmacol. 2020, 11, 565090. [Google Scholar] [CrossRef]
- Lei, J.; Wang, Y.; Li, W.; Fu, S.; Zhou, J.; Lu, D.; Wang, C.; Sheng, X.; Zhang, M.; Xiao, S.; et al. Natural Green Deep Eutectic Solvents-Based Eco-Friendly and Efficient Extraction of Flavonoids from Selaginella Moellendorffii: Process Optimization, Composition Identification and Biological Activity. Sep. Purif. Technol. 2022, 283, 120203. [Google Scholar] [CrossRef]
- Qin, G.; Lei, J.; Li, S.; Jiang, Y.; Qiao, L.; Ren, M.; Gao, Q.; Song, C.; Fu, S.; Zhou, J.; et al. Efficient, Green Extraction of Two Biflavonoids from Selaginella Uncinata with Deep Eutectic Solvents. Microchem. J. 2022, 183, 108085. [Google Scholar] [CrossRef]
- Zhang, G.; Jing, Y.; Zhang, H.; Ma, E.; Guan, J.; Xue, F.; Liu, H.; Sun, X. Isolation and Cytotoxic Activity of Selaginellin Derivatives and Biflavonoids from Selaginella Tamariscina. Planta Med. 2012, 78, 390–392. [Google Scholar] [CrossRef]
- Thamnarak, W.; Eurtivong, C.; Pollawatn, R.; Ruchirawat, S.; Thasana, N. Two New Nor-Lignans, Siamensinols A and B, from Selaginella Siamensis Hieron. and Their Biological Activities. Nat. Prod. Res. 2022, 36, 5591–5599. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Yang, F.; Huang, X. Proceedings of Chemistry, Pharmacology, Pharmacokinetics and Synthesis of Biflavonoids. Molecules 2021, 26, 6088. [Google Scholar] [CrossRef]
- Xu, J.; Yang, L.; Wang, R.; Zeng, K.; Fan, B.; Zhao, Z. The Biflavonoids as Protein Tyrosine Phosphatase 1B Inhibitors from Selaginella Uncinata and Their Antihyperglycemic Action. Fitoterapia 2019, 137, 104255. [Google Scholar] [CrossRef]
- Zou, Z.-X.; Zhang, S.; Tan, J.-B.; Chen, D.-K.; Xu, Y.-R.; Xu, K.-P.; Tan, G.-S. Two New Biflavonoids from Selaginella Doederleinii. Phytochem. Lett. 2020, 40, 126–129. [Google Scholar] [CrossRef]
- Liu, L.-F.; Sun, H.-H.; Tan, J.-B.; Huang, Q.; Cheng, F.; Xu, K.-P.; Zou, Z.-X.; Tan, G.-S. New Cytotoxic Biflavones from Selaginella Doederleinii. Nat. Prod. Res. 2021, 35, 930–936. [Google Scholar] [CrossRef]
- Kang, F.; Zhang, S.; Chen, D.; Tan, J.; Kuang, M.; Zhang, J.; Zeng, G.; Xu, K.; Zou, Z.; Tan, G. Biflavonoids from Selaginella Doederleinii as Potential Antitumor Agents for Intervention of Non-Small Cell Lung Cancer. Molecules 2021, 26, 5401. [Google Scholar] [CrossRef] [PubMed]
- Yang, P.; Tian, Y.-M.; Cheng, Y.-T.; Yang, Y. A New Biflavonoid from Selaginella Uncinata. Chem. Nat. Compd. 2021, 57, 23–25. [Google Scholar] [CrossRef]
- Xie, Y.; Xu, P.-S.; Xu, K.-P.; Zou, Z.-X.; Zhou, G.; Li, D.; Li, D.; Li, X.-M.; Li, J.; Tan, G.-S. Two New Biflavanoids from Selaginella Trichoclada Alsto. Nat. Prod. Res. 2021, 35, 3410–3416. [Google Scholar] [CrossRef]
- Xie, Y.; Zhou, X.; Li, J.; Yao, X.-C.; Liu, W.-L.; Kang, F.-H.; Zou, Z.-X.; Xu, K.-P.; Xu, P.-S.; Tan, G.-S. Identification of a New Natural Biflavonoids against Breast Cancer Cells Induced Ferroptosis via the Mitochondrial Pathway. Bioorgan. Chem. 2021, 109, 104744. [Google Scholar] [CrossRef]
- Xie, Y.; Yao, X.-C.; Tan, L.-H.; Long, H.-P.; Xu, P.-S.; Li, J.; Tan, G.-S. Trichocladabiflavone A, a Chalcone-Flavonone Type Biflavonoid from Selaginella Trichoclada Alsto. Nat. Prod. Res. 2022, 36, 1797–1802. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Zhou, X.; Li, J.; Yao, X.; Liu, W.; Xu, P.; Tan, G. Cytotoxic Effects of the Biflavonoids Isolated from Selaginella Trichoclada on MCF-7 Cells and Its Potential Mechanism. Bioorg. Med. Chem. Lett. 2022, 56, 128486. [Google Scholar] [CrossRef]
- Liu, X.-F.; Fu, T.-F.; Wu, J.-S.; Lu, B.-C.; Zhang, P.; Liu, H.-J. Cytotoxic Biflavonoids from Selaginella Braunii. Nat. Prod. Commun. 2022, 17, 1934578X2211250. [Google Scholar] [CrossRef]
- Demehin, A.A.; Thamnarak, W.; Lamtha, T.; Chatwichien, J.; Eurtivong, C.; Choowongkomon, K.; Chainok, K.; Ruchirawat, S.; Thasana, N. Siamenflavones A-C, Three Undescribed Biflavonoids from Selaginella Siamensis Hieron. and Biflavonoids from Spike Mosses as EGFR Inhibitor. Phytochemistry 2022, 203, 113374. [Google Scholar] [CrossRef] [PubMed]
- Long, H.-P.; Liu, J.; Xu, P.-S.; Xu, K.-P.; Li, J.; Tan, G.-S. Hypoglycemic Flavonoids from Selaginella Tamariscina (P.Beauv.) Spring. Phytochemistry 2022, 195, 113073. [Google Scholar] [CrossRef]
- Ogunwa, T.H.; Taii, K.; Sadakane, K.; Kawata, Y.; Maruta, S.; Miyanishi, T. Morelloflavone as a Novel Inhibitor of Mitotic Kinesin Eg5. J. Biochem. 2019, 166, 129–137. [Google Scholar] [CrossRef]
- Zhang, C.; Zhou, S.; Feng, L.; Zhang, D.; Lin, N.; Zhang, L.; Pan, J.; Wang, J.; Li, J. In Vitro Anti-Cancer Activity of Chamaejasmenin B and Neochamaejasmin C Isolated from the Root of Stellera Chamaejasme L. Acta Pharmacol. Sin. 2013, 34, 262–270. [Google Scholar] [CrossRef]
- Wan, H.; Ge, L.; Li, J.; Zhang, K.; Wu, W.; Peng, S.; Zou, X.; Zhou, H.; Zhou, B.; Zeng, X. Effects of a Novel Biflavonoid of Lonicera Japonica Flower Buds on Modulating Apoptosis under Different Oxidative Conditions in Hepatoma Cells. Phytomedicine 2019, 57, 282–291. [Google Scholar] [CrossRef]
- Woo, E.R.; Lee, J.Y.; Cho, I.J.; Kim, S.G.; Kang, K.W. Amentoflavone Inhibits the Induction of Nitric Oxide Synthase by Inhibiting NF-ΚB Activation in Macrophages. Pharmacol. Res. 2005, 51, 539–546. [Google Scholar] [CrossRef]
- Park, H.-I. Total Synthesis of Amentoflavone. Med. Chem. 2015, 5, 11. [Google Scholar] [CrossRef]
- Nanjan, P.; Nambiar, J.; Nair, B.G.; Banerji, A. Synthesis and Discovery of (I-3,II-3)-Biacacetin as a Novel Non-Zinc Binding Inhibitor of MMP-2 and MMP-9. Bioorg. Med. Chem. 2015, 23, 3781–3787. [Google Scholar] [CrossRef]
- Nakazawa, K.; Ito, M. Syntheses of Ring-Substituted Flavonoids and Allied Compounds. XI. Synthesis of Hinokiflavone. Chem. Pharm. Bull. 1963, 11, 283–288. [Google Scholar] [CrossRef]
- Ndoile, M.M.; van Heerden, F.R. Total Synthesis of Ochnaflavone. Beilstein J. Org. Chem. 2013, 9, 1346–1351. [Google Scholar] [CrossRef] [PubMed]
- Pennycook, B.R.; Barr, A.R. Restriction Point Regulation at the Crossroads between Quiescence and Cell Proliferation. FEBS Lett. 2020, 2020, 2046–2060. [Google Scholar] [CrossRef] [PubMed]
- Bie, B.; Sun, J.; Guo, Y.; Li, J.; Jiang, W.; Yang, J.; Huang, C.; Li, Z. Baicalein: A Review of Its Anti-Cancer Effects and Mechanisms in Hepatocellular Carcinoma. Biomed. Pharm Acother. Biomed. Pharmacother. 2017, 93, 1285–1291. [Google Scholar] [CrossRef]
- Gutierrez-Chamorro, L.; Felip, E.; Ezeonwumelu, I.J.; Margelí, M.; Ballana, E. Cyclin-Dependent Kinases as Emerging Targets for Developing Novel Antiviral Therapeutics. Trends Microbiol. 2021, 29, 836–848. [Google Scholar] [CrossRef]
- Lee, S.; Kim, H.; Kang, J.-W.; Kim, J.-H.; Lee, D.H.; Kim, M.-S.; Yang, Y.; Woo, E.-R.; Kim, Y.M.; Hong, J.; et al. The Biflavonoid Amentoflavone Induces Apoptosis via Suppressing E7 Expression, Cell Cycle Arrest at Sub-G1 Phase, and Mitochondria-Emanated Intrinsic Pathw ays in Human Cervical Cancer Cells. J. Med. Food 2011, 14, 808–816. [Google Scholar] [CrossRef]
- Chen, L.; Fang, B.; Qiao, L.; Zheng, Y. Discovery of Anticancer Activity of Amentoflavone on Esophageal Squamous Cell Carcinoma: Bioinformatics, Structure-Based Virtual Screening, and Biological Evaluation. J. Microbiol. Biotechnol. 2022, 32, 718–729. [Google Scholar] [CrossRef]
- Lin, C.-H.; Lin, K.-H.; Ku, H.-J.; Lee, K.-C.; Lin, S.-S.; Hsu, F.-T. Amentoflavone Induces Caspase-Dependent/-Independent Apoptosis and Dysregulates Cyclin-Dependent Kinase-Me diated Cell Cycle in Colorectal Cancer in Vitro and in Vivo. Environ. Toxicol. 2023, 2023, 1522–1532. [Google Scholar] [CrossRef]
- Yang, S.; Zhang, Y.; Luo, Y.; Xu, B.; Yao, Y.; Deng, Y.; Yang, F.; Ye, T.; Wang, G.; Cheng, Z.; et al. Hinokiflavone Induces Apoptosis in Melanoma Cells through the ROS-Mitochondrial Apoptotic Pathway and Impairs Cell Migration and Invasion. Biomed. Pharmacother. 2018, 103, 101–110. [Google Scholar] [CrossRef]
- Liu, H.; Yue, Q.; He, S. Amentoflavone Suppresses Tumor Growth in Ovarian Cancer by Modulating Skp2. Life Sci. 2017, 189, 96–105. [Google Scholar] [CrossRef]
- Wang, X.-C.; Wu, Y.-P.; Ye, B.; Lin, D.-C.; Feng, Y.-B.; Zhang, Z.-Q.; Xu, X.; Han, Y.-L.; Cai, Y.; Dong, J.-T.; et al. Suppression of Anoikis by SKP2 Amplification and Overe xpression Promotes Metastasis of Esophageal Squamous Cell Carcinoma. Mol. Cancer Res. MCR 2009, 7, 12–22. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.-J.; Kang, Y.-R.; Lee, S.Y.; Jin, Y.; Han, D.C.; Kwon, B.-M. Ginkgetin Induces G2-Phase Arrest in HCT116 Colon Cancer Cells through the Modulation of b-Myb and MiRNA34a Expression. Int. J. Oncol. 2017, 51, 1331–1342. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Li, A.; Sun, H.; Xiong, X.; Qin, S.; Wang, P.; Dai, L.; Zhang, Z.; Li, X.; Liu, Z. Amentoflavone Triggers Cell Cycle G2/M Arrest by Interfering with Microtubule Dynamics and Inducing DNA Damage in SKOV3 Cells. Oncol. Lett. 2020, 20, 168. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Wang, Y.; Sun, Y.; Zhao, G.; Wang, J.; Liu, L.; Liu, F.; Wang, P.; Yang, J.; Xu, X. Hinokiflavone, as a MDM2 Inhibitor, Activates P53 Signaling Pathway to Induce Apoptosis in Human Colon Cancer HCT116 Cells. Biochem. Biophys. Res. Commun. 2022, 594, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Lane, D.; Levine, A. P53 Research: The Past Thirty Years and the next Thirty Years. Cold Spring Harb. Perspect. Biol. 2010, 2, a000893. [Google Scholar] [CrossRef]
- Lahav, G.; Rosenfeld, N.; Sigal, A.; Geva-Zatorsky, N.; Levine, A.J.; Elowitz, M.B.; Alon, U. Dynamics of the P53-Mdm2 Feedback Loop in Individual Cells. Nat. Genet. 2004, 36, 147–150. [Google Scholar] [CrossRef]
- Burgess, A.; Chia, K.M.; Haupt, S.; Thomas, D.; Haupt, Y.; Lim, E. Clinical Overview of MDM2/X-Targeted Therapies. Front. Oncol. 2016, 6, 7. [Google Scholar] [CrossRef]
- Linke, K.; Mace, P.D.; Smith, C.A.; Vaux, D.L.; Silke, J.; Day, C.L. Structure of the MDM2/MDMX RING Domain Heterodimer Reveals Dimerization Is Required for Their Ubiquitylation in Trans. Cell Death Differ. 2008, 15, 841–848. [Google Scholar] [CrossRef]
- Shadfan, M.; Lopez-Pajares, V.; Yuan, Z.-M. MDM2 and MDMX: Alone and Together in Regulation of P53. Transl. Cancer Res. 2012, 1, 88–89. [Google Scholar]
- Ilic, V.K.; Egorova, O.; Tsang, E.; Gatto, M.; Wen, Y.; Zhao, Y.; Sheng, Y. Hinokiflavone Inhibits MDM2 Activity by Targeting the MDM2-MDMX RING Domain. Biomolecules 2022, 12, 643. [Google Scholar] [CrossRef]
- Tsai, J.H.; Yang, J. Epithelial–Mesenchymal Plasticity in Carcinoma Metastasis. Genes Dev. 2013, 27, 2192–2206. [Google Scholar] [CrossRef] [PubMed]
- Kaya, M.; Wada, T.; Akatsuka, T.; Kawaguchi, S.; Nagoya, S.; Shindoh, M.; Higashino, F.; Mezawa, F.; Okada, F.; Ishii, S. Vascular Endothelial Growth Factor Expression in Untreated Osteosarcoma Is Predictive of Pulmonary Metastasis and Poor Prognosis. Clin. Cancer Res. 2000, 6, 572–577. [Google Scholar]
- Pastushenko, I.; Blanpain, C. EMT Transition States during Tumor Progression and Metastasis. Trends Cell Biol. 2019, 29, 212–226. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Liu, C.; Liu, F.; Liu, Z.; Lai, G.; Yi, J. Hinokiflavone Induces Apoptosis and Inhibits Migration of Breast Cancer Cells via EMT Signalling Pathway. Cell Biochem. Funct. 2020, 38, 249–256. [Google Scholar] [CrossRef] [PubMed]
- Kim, G.L.; Jang, E.H.; Lee, D.-E.; Bang, C.; Kang, H.; Kim, S.; Yoon, S.Y.; Lee, D.H.; Na, J.H.; Lee, S.; et al. Amentoflavone, Active Compound of Selaginella Tamariscina, Inhibits in Vitro and in Vivo TGF-β-Induced Metastasis of Human Cancer Cells. Arch. Biochem. Biophys. 2020, 687, 108384. [Google Scholar] [CrossRef]
- Cai, K.; Yang, Y.; Guo, Z.-J.; Cai, R.-L.; Hashida, H.; Li, H.-X. Amentoflavone Inhibits Colorectal Cancer Epithelial-Mesenchymal Transition via the MiR-16-5p/HMGA2/β-Catenin Pathway. Ann. Transl. Med. 2022, 10, 1009. [Google Scholar] [CrossRef] [PubMed]
- Chava, S.; Reynolds, C.P.; Pathania, A.S.; Gorantla, S.; Poluektova, L.Y.; Coulter, D.W.; Gupta, S.C.; Pandey, M.K.; Challagundla, K.B. MiR-15a-5p, MiR-15b-5p, and MiR-16-5p Inhibit Tumor Progression by Directly Targeting MYCN in Neuroblastoma. Mol. Oncol. 2020, 14, 180–196. [Google Scholar] [CrossRef]
- Jia, X.; Li, X.; Shen, Y.; Miao, J.; Liu, H.; Li, G.; Wang, Z. MiR-16 Regulates Mouse Peritoneal Macrophage Polarization and Affects T-Cell Activation. J. Cell. Mol. Med. 2016, 20, 1898–1907. [Google Scholar] [CrossRef]
- Liu, G.-P.; Wang, W.-W.; Lu, W.-Y.; Shang, A.-Q. The Mechanism of MiR-16-5p Protection on LPS-Induced A549 Cell Injury by Targeting CXCR3. Artif. Cells Nanomed. Biotechnol. 2019, 47, 1200–1206. [Google Scholar] [CrossRef]
- Yu, T.; You, X.; Zhou, H.; He, W.; Li, Z.; Li, B.; Xia, J.; Zhu, H.; Zhao, Y.; Yu, G.; et al. MiR-16-5p Regulates Postmenopausal Osteoporosis by Directly Targeting VEGFA. Aging 2020, 12, 9500–9514. [Google Scholar] [CrossRef]
- Zhang, H.; Yang, K.; Ren, T.; Huang, Y.; Tang, X.; Guo, W. MiR-16-5p Inhibits Chordoma Cell Proliferation, Invasion and Metastasis by Targeting Smad3. Cell Death Dis. 2018, 9, 680. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Yan, Y.; Cheng, Z.; Hu, Y.; Liu, T. Sotetsuflavone Suppresses Invasion and Metastasis in Non-Small-Cell Lung Cancer A549 Cells by Reversing EMT via the TNF-α/NF-ΚB and PI3K/AKT Signaling Pathway. Cell Death Discov. 2018, 4, 26. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Avila, G.; Sommer, B.; García-Hernández, A.A.; Ramos, C. Matrix Metalloproteinases’ Role in Tumor Microenvironment. Tumor Microenviron. 2020, 1245, 97–131. [Google Scholar] [CrossRef]
- Adnan, M.; Siddiqui, A.J.; Hamadou, W.S.; Snoussi, M.; Badraoui, R.; Ashraf, S.A.; Jamal, A.; Awadelkareem, A.M.; Sachidanandan, M.; Hadi, S.; et al. Deciphering the Molecular Mechanism Responsible for Efficiently Inhibiting Metastasis of Human Non-Small Cell Lung and Colorectal Cancer Cells Targeting the Matrix Metalloproteinases by Selaginella Repanda. Plants 2021, 10, 979. [Google Scholar] [CrossRef] [PubMed]
- Kalva, S.; Azhagiya Singam, E.R.; Rajapandian, V.; Saleena, L.M.; Subramanian, V. Discovery of Potent Inhibitor for Matrix Metalloproteinase-9 by Pharmacophore Based Modeling and Dynamics Simulation Studies. J. Mol. Graph. Model. 2014, 49, 25–37. [Google Scholar] [CrossRef]
- Guo, J.; Zhang, S.; Wang, J.; Zhang, P.; Lu, T.; Zhang, L. Hinokiflavone Inhibits Growth of Esophageal Squamous Cancer By Inducing Apoptosis via Regulation of the PI3K/AKT/MTOR Signaling Pathway. Front. Oncol. 2022, 12, 833719. [Google Scholar] [CrossRef]
- Chiang, C.-H.; Yeh, C.-Y.; Chung, J.G.; Chiang, I.-T.; Hsu, F.-T. Amentoflavone Induces Apoptosis and Reduces Expression of Anti-Apoptotic and Metastasis-Associated Proteins in Bladder Cancer. Anticancer Res. 2019, 39, 3641–3649. [Google Scholar] [CrossRef]
- Liu, Y.-C.; Chiang, I.-T.; Hsu, F.-T.; Hwang, J.-J. Using NF-ΚB as a Molecular Target for Theranostics in Radiation Oncology Research. Expert Rev. Mol. Diagn. 2012, 12, 139–146. [Google Scholar] [CrossRef]
- Liu, Y.-C.; Wu, R.-H.; Wang, W.-S. Regorafenib Diminishes the Expression and Secretion of Angiogenesis and Metastasis Associated Proteins and Inhibits Cell Invasion via NF-ΚB Inactivation in SK-Hep1 Cells. Oncol. Lett. 2017, 14, 461–467. [Google Scholar] [CrossRef]
- Tsai, J.-J.; Pan, P.-J.; Hsu, F.-T. Regorafenib Induces Extrinsic and Intrinsic Apoptosis through Inhibition of ERK/NF-ΚB Activation in Hepatocellular Carcinoma Cells. Oncol. Rep. 2017, 37, 1036–1044. [Google Scholar] [CrossRef]
- Lee, K.-C.; Tsai, J.-J.; Tseng, C.-W.; Kuo, Y.-C.; Chuang, Y.-C.; Lin, S.-S.; Hsu, F.-T. Amentoflavone Inhibits ERK-Modulated Tumor Progression in Hepatocellular Carcinoma In Vitro. In Vivo 2018, 32, 549–554. [Google Scholar] [CrossRef] [PubMed]
- Hsu, F.-T.; Chiang, I.-T.; Kuo, Y.-C.; Hsia, T.-C.; Lin, C.-C.; Liu, Y.-C.; Chung, J.-G. Amentoflavone Effectively Blocked the Tumor Progression of Glioblastoma via Suppression of ERK/NF- κ B Signaling Pathway. Am. J. Chin. Med. 2019, 47, 913–931. [Google Scholar] [CrossRef] [PubMed]
- Pan, X.; Tan, N.; Zeng, G.; Zhang, Y.; Jia, R. Amentoflavone and Its Derivatives as Novel Natural Inhibitors of Human Cathepsin B. Bioorg. Med. Chem. 2005, 13, 5819–5825. [Google Scholar] [CrossRef] [PubMed]
- Bian, B.; Mongrain, S.; Cagnol, S.; Langlois, M.-J.; Boulanger, J.; Bernatchez, G.; Carrier, J.C.; Boudreau, F.; Rivard, N. Cathepsin B Promotes Colorectal Tumorigenesis, Cell Invasion, and Metastasis. Mol. Carcinog. 2016, 55, 671–687. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.-M.; Deng, X.-T.; Zhou, J.; Li, Q.-P.; Ge, X.-X.; Miao, L. Pharmacological Basis and New Insights of Quercetin Action in Respect to Its Anti-Cancer Effects. Biomed. Pharmacother. Biomed. Pharmacother. 2020, 121, 109604. [Google Scholar] [CrossRef]
- Folkman, J. Angiogenesis: An Organizing Principle for Drug Discovery? Nat. Rev. Drug Discov. 2007, 6, 273–286. [Google Scholar] [CrossRef] [PubMed]
- Wong, M.L.; Prawira, A.; Kaye, A.H.; Hovens, C.M. Tumour Angiogenesis: Its Mechanism and Therapeutic Implications in Malignant Gliomas. J. Clin. Neurosci. 2009, 16, 1119–1130. [Google Scholar] [CrossRef]
- Chen, J.-H.; Chen, W.-L.; Liu, Y.-C. Amentoflavone Induces Anti-Angiogenic and Anti-Metastatic Effects Through Suppression of NF-ΚB Activation in MCF-7 Cells. Anticancer Res. 2015, 35, 6685–6693. [Google Scholar]
- Gao, X.; Li, B.; Ye, A.; Wang, H.; Xie, Y.; Yu, D.; Xu, Z.; Shi, B.; Zhang, H.; Feng, Q.; et al. A Novel Phosphoramide Compound, DCZ0805, Shows Potent Anti-Myeloma Activity via the NF-ΚB Pathway. Cancer Cell Int. 2021, 21, 285. [Google Scholar] [CrossRef]
- Amentoflavone Inhibits Metastatic Potential Τhrough Suppression of ERK/NF-ĸB Activation in Osteosarcoma U2OS Cells. Anticancer Res. 2017, 37, 4911–4918. [CrossRef]
- Chiang, I.-T.; Chen, W.-T.; Tseng, C.-W.; Chen, Y.-C.; Kuo, Y.-C.; Chen, B.-J.; Weng, M.-C.; Lin, H.-J.; Wang, W.-S. Hyperforin Inhibits Cell Growth by Inducing Intrinsic and Extrinsic Apoptotic Pathways in Hepatocellular Carcinoma Cells. Anticancer Res. 2017, 37, 161–167. [Google Scholar] [CrossRef]
- Pistritto, G.; Trisciuoglio, D.; Ceci, C.; Garufi, A.; D’Orazi, G. Apoptosis as Anticancer Mechanism: Function and Dysfunction of Its Modulators and Targeted Therapeutic Strategies. Aging 2016, 8, 603. [Google Scholar] [CrossRef]
- Li-Weber, M. New Therapeutic Aspects of Flavones: The Anticancer Properties of Scutellaria and Its Main Active Constituents Wogonin, Baicalein and Baicalin. Cancer Treat. Rev. 2009, 35, 57–68. [Google Scholar] [CrossRef] [PubMed]
- Pan, L.-L.; Wu, W.-J.; Zheng, G.-F.; Han, X.-Y.; He, J.-S.; Cai, Z. Ginkgetin Inhibits Proliferation of Human Leukemia Cells via the TNF-α Signaling Pathway. Z. Für Nat. C 2017, 72, 441–447. [Google Scholar] [CrossRef]
- Park, Y.; Woo, S.H.; Seo, S.-K.; Kim, H.; Noh, W.C.; Lee, J.K.; Kwon, B.-M.; Min, K.N.; Choe, T.-B.; Park, I.-C. Ginkgetin Induces Cell Death in Breast Cancer Cells via Downregulation of the Estrogen Receptor. Oncol. Lett. 2017, 14, 5027–5033. [Google Scholar] [CrossRef] [PubMed]
- Yen, T.-H.; Hsieh, C.-L.; Liu, T.-T.; Huang, C.-S.; Chen, Y.-C.; Chuang, Y.-C.; Lin, S.-S.; Hsu, F.-T. Amentoflavone Induces Apoptosis and Inhibits NF-ĸB-Modulated Anti-Apoptotic Signaling in Glioblastoma Cells. In Vivo 2018, 32, 279–285. [Google Scholar] [CrossRef]
- Simon, H.U.; Haj-Yehia, A.; Levi-Schaffer, F. Role of Reactive Oxygen Species (ROS) in Apoptosis Induction. Apoptosis Int. J. Program. Cell Death 2000, 5, 415–418. [Google Scholar] [CrossRef] [PubMed]
- Yao, W.; Lin, Z.; Shi, P.; Chen, B.; Wang, G.; Huang, J.; Sui, Y.; Liu, Q.; Li, S.; Lin, X.; et al. Delicaflavone Induces ROS-Mediated Apoptosis and Inhibits PI3K/AKT/MTOR and Ras/MEK/Erk Signaling Pathways in Colorectal Cancer Cells. Biochem. Pharmacol. 2020, 171, 113680. [Google Scholar] [CrossRef]
- Zhou, J.; Zhao, R.; Ye, T.; Yang, S.; Li, Y.; Yang, F.; Wang, G.; Xie, Y.; Li, Q. Antitumor Activity in Colorectal Cancer Induced by Hinokiflavone. J. Gastroenterol. Hepatol. 2019, 34, 1571–1580. [Google Scholar] [CrossRef]
- Mu, W.; Cheng, X.; Zhang, X.; Liu, Y.; Lv, Q.; Liu, G.; Zhang, J.; Li, X. Hinokiflavone Induces Apoptosis via Activating Mitochondrial ROS/JNK/Caspase Pathway and Inhibiting NF-κB Activity in Hepatocellular Carcinoma. J. Cell. Mol. Med. 2020, 24, 8151–8165. [Google Scholar] [CrossRef]
- Chen, Y.; Feng, X.; Li, L.; Song, K.; Zhang, L. Preparation and Antitumor Evaluation of H inokiflavone Hybrid Micelles with Mitochondria Targeted for Lung Adenocarcinoma Trea tme nt. Drug Deliv. 2020, 27, 565–574. [Google Scholar] [CrossRef]
- Yao, W.; Lin, Z.; Wang, G.; Li, S.; Chen, B.; Sui, Y.; Huang, J.; Liu, Q.; Shi, P.; Lin, X.; et al. Delicaflavone Induces Apoptosis via Mitochondrial Pathway Accompanying G2/M Cycle Arrest and Inhibition of MAPK Signaling Cascades in Cervical Cancer HeLa Cells. Phytomedicine 2019, 62, 152973. [Google Scholar] [CrossRef] [PubMed]
- Boss, W.F.; Im, Y.J. Phosphoinositide Signaling. Annu. Rev. Plant Biol. 2012, 63, 409–429. [Google Scholar] [CrossRef] [PubMed]
- Wymann, M.P.; Schneiter, R. Lipid Signalling in Disease. Nat. Rev. Mol. Cell Biol. 2008, 9, 162–176. [Google Scholar] [CrossRef] [PubMed]
- Engelman, J.A.; Luo, J.; Cantley, L.C. The Evolution of Phosphatidylinositol 3-Kinases as Re gulators of Growth and Metabolism. Nat. Rev. Genet. 2006, 7, 606–619. [Google Scholar] [CrossRef] [PubMed]
- Vanhaesebroeck, B.; Stephens, L.; Hawkins, P. PI3K Signalling: The Path to Discovery and Understanding. Nat. Rev. Mol. Cell Biol. 2012, 13, 195–203. [Google Scholar] [CrossRef]
- Vicinanza, M.; D’Angelo, G.; Di Campli, A.; De Matteis, M.A. Phosphoinositides as Regulators of Membrane Trafficking in Health and Disease. Cell. Mol. Life Sci. CMLS 2008, 65, 2833–2841. [Google Scholar] [CrossRef]
- Zhaohui, W.; Yingli, N.; Hongli, L.; Haijing, W.; Xiaohua, Z.; Chao, F.; Liugeng, W.; Hui, Z.; Feng, T.; Linfeng, Y.; et al. Amentoflavone Induces Apoptosis and Suppresses Glycolysis in Glioma Cells by Targeting MiR-124-3p. Neurosci. Lett. 2018, 686, 1–9. [Google Scholar] [CrossRef]
- Lee, J.S.; Lee, M.S.; Oh, W.K.; Sul, J.Y. Fatty Acid Synthase Inhibition by Amentoflavone Induces Apoptosis and Antiproliferation in Human Breast Cancer Cells. Biol. Pharm. Bull. 2009, 32, 1427–1432. [Google Scholar] [CrossRef]
- Lee, J.S.; Sul, J.Y.; Park, J.B.; Lee, M.S.; Cha, E.Y.; Song, I.S.; Kim, J.R.; Chang, E.S. Fatty Acid Synthase Inhibition by Amentoflavone Suppresses HER2/Neu (ErbB2) Oncogene in SKBR3 Human Breast Cancer Cells: HER2/NEU DOWN-REGULATION BY AMENTOFLAVONE. Phytother. Res. 2013, 27, 713–720. [Google Scholar] [CrossRef] [PubMed]
- Gozuacik, D.; Kimchi, A. Autophagy as a Cell Death and Tumor Suppressor Mechanism. Oncogene 2004, 23, 2891–2906. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Hu, Y.; Yan, Y.; Cheng, Z.; Liu, T. Sotetsuflavone Inhibits Proliferation and Induces Apoptosis of A549 Cells through ROS-Mediated Mitochondrial-Dependent Pathway. BMC Complement. Altern. Med. 2018, 18, 235. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Xu, X.; Hu, Y.; Lei, T.; Liu, T. Sotetsuflavone Induces Autophagy in Non-Small Cell Lung Cancer Through Blocking PI3K/Akt/MTOR Signaling Pathway in Vivo and in Vitro. Front. Pharmacol. 2019, 10, 1460. [Google Scholar] [CrossRef]
- Lou, J.-S.; Bi, W.-C.; Chan, G.K.L.; Jin, Y.; Wong, C.-W.; Zhou, Z.-Y.; Wang, H.-Y.; Yao, P.; Dong, T.T.X.; Tsim, K.W.K. Ginkgetin Induces Autophagic Cell Death through P62/SQSTM1-Mediated Autolysosome Formation and Redox Setting in Non-Small Cell Lung Cancer. Oncotarget 2017, 8, 93131–93148. [Google Scholar] [CrossRef]
- Qin, X.; Chen, X.; Guo, L.; Liu, J.; Yang, Y.; Zeng, Y.; Li, C.; Liu, W.; Ma, W. Hinokiflavone Induces Apoptosis, Cell Cycle Arrest and Autophagy in Chronic Myeloid Leukemia Cells through MAPK/NF-ΚB Signaling Pathway. BMC Complement. Med. Ther. 2022, 22, 100. [Google Scholar] [CrossRef]
- Wei, L.; Jian, P.; Erjiong, H.; Qihan, Z. Ginkgetin Alleviates High Glucose-evoked Mesangial Cell Oxidative Stress Injury, Inflammation, and Extracellular Matrix (ECM) Deposition in an AMPK/MTOR-mediated Autophagy Axis. Chem. Biol. Drug Des. 2021, 98, 620–630. [Google Scholar] [CrossRef] [PubMed]
- Sui, Y.; Yao, H.; Li, S.; Jin, L.; Shi, P.; Li, Z.; Wang, G.; Lin, S.; Wu, Y.; Li, Y.; et al. Delicaflavone Induces Autophagic Cell Death in Lung Cancer via Akt/MTOR/P70S6K Signaling Pathway. J. Mol. Med. 2017, 95, 311–322. [Google Scholar] [CrossRef]
- Chen, Y.; Li, N.; Wang, H.; Wang, N.; Peng, H.; Wang, J.; Li, Y.; Liu, M.; Li, H.; Zhang, Y.; et al. Amentoflavone Suppresses Cell Proliferation and Induces Cell Death through Triggering Autophagy-Dependent Ferroptosis in Human Glioma. Life Sci. 2020, 247, 117425. [Google Scholar] [CrossRef]
- Park, H.-J.; Kim, M.-M. Amentoflavone Induces Autophagy and Modulates P53. Cell J. 2019, 21, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Sauter, E.R. Cancer Prevention and Treatment Using Combination Therapy with Natural Compounds. Expert Rev. Clin. Pharmacol. 2020, 13, 265–285. [Google Scholar] [CrossRef] [PubMed]
- Zhong, L.; Shen, H.; Huang, C.; Jing, H.; Cao, D. AKR1B10 Induces Cell Resistance to Daunorubicin and Idarubicin by Reducing C13 Ketonic Group. Toxicol. Appl. Pharmacol. 2011, 255, 40–47. [Google Scholar] [CrossRef]
- Fan, K.-H.; Chen, Y.-C.; Lin, C.-Y.; Kang, C.-J.; Lee, L.-Y.; Huang, S.-F.; Liao, C.-T.; Ng, S.-H.; Wang, H.-M.; Chang, J.T.-C. Postoperative Radiotherapy with or without Concurrent Chemotherapy for Oral Squamous Cell Carcinoma in Patients with Three or More Minor Risk Factors: A Propensity Score Matching Analysis. Radiat. Oncol. 2017, 12, 184. [Google Scholar] [CrossRef]
- Chen, C.-H.; Huang, Y.-C.; Lee, Y.-H.; Tan, Z.-L.; Tsai, C.-J.; Chuang, Y.-C.; Tu, H.-F.; Liu, T.-C.; Hsu, F.-T. Anticancer Efficacy and Mechanism of Amentoflavone for Sensitizing Oral Squamous Cell Carcinoma to Cisplatin. Anticancer Res. 2020, 40, 6723–6732. [Google Scholar] [CrossRef] [PubMed]
- Tsai, J.-J.; Hsu, F.-T.; Pan, P.-J.; Chen, C.-W.; Kuo, Y.-C. Amentoflavone Enhances the Therapeutic Efficacy of Sorafenib by Inhibiting Anti-Apoptotic Potential and Potentiating Apoptosis in Hepatocellular Carcinoma In Vivo. Anticancer Res. 2018, 38, 2119–2125. [Google Scholar] [CrossRef]
- Chen, W.-L.; Hsieh, C.-L.; Chen, J.-H.; Huang, C.-S.; Chen, W.-T.; Kuo, Y.-C.; Chen, C.-Y.; Hsu, F.-T. Amentoflavone Enhances Sorafenib-Induced Apoptosis through Extrinsic and Intrinsic Pathways in Sorafenib-Resistant Hepatocellular Carcinoma SK-Hep1 Cells in Vitro. Oncol. Lett. 2017, 14, 3229–3234. [Google Scholar] [CrossRef]
- Su, C.-M.; Li, C.-H.; Huang, M.-C.; Yueh, P.-F.; Hsu, F.-T.; Lin, R.-F.; Hsu, L.-C. Reinforcement of Sorafenib Anti-Osteosarcoma Effect by Amentoflavone Is Associated With the Induction of Apoptosis and Inactivation of ERK/NF-ΚB. Vivo 2022, 36, 1136–1143. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Chen, B.; Xu, D.; Li, Z.; Sui, Y.; Lin, X. Delicaflavone Reverses Cisplatin Resistance via Endoplasmic Reticulum Stress Signaling Pathway in Non-Small Cell Lung Cancer Cells. OncoTargets Ther. 2020, 13, 10315–10322. [Google Scholar] [CrossRef]
- Long, H.; Hu, X.; Wang, B.; Wang, Q.; Wang, R.; Liu, S.; Xiong, F.; Jiang, Z.; Zhang, X.-Q.; Ye, W.-C.; et al. Discovery of Novel Apigenin–Piperazine Hybrids as Potent and Selective Poly (ADP-Ribose) Polymerase-1 (PARP-1) Inhibitors for the Treatment of Cancer. J. Med. Chem. 2021, 64, 12089–12108. [Google Scholar] [CrossRef]
- Noman, M.Z.; Hasmim, M.; Lequeux, A.; Xiao, M.; Duhem, C.; Chouaib, S.; Berchem, G.; Janji, B. Improving Cancer Immunotherapy by Targeting the Hypoxic Tumor Microen vironment: New Opportunities and Challenges. Cells 2019, 8, 1083. [Google Scholar] [CrossRef] [PubMed]
- Bejarano, L.; Jordāo, M.J.C.; Joyce, J.A. Therapeutic Targeting of the Tumor Microenvironment. Cancer Discov. 2021, 11, 933–959. [Google Scholar] [CrossRef] [PubMed]
- Kalbasi, A.; Komar, C.; Tooker, G.M.; Liu, M.; Lee, J.W.; Gladney, W.L.; Ben-Josef, E.; Beatty, G.L. Tumor-Derived CCL2 Mediates Resistance to Radiotherapy in Pancreatic Ductal Adenocarcinoma. Clin. Cancer Res. 2017, 23, 137–148. [Google Scholar] [CrossRef] [PubMed]
- An, J.; Li, Z.; Dong, Y.; Ren, J.; Huo, J. Amentoflavone Protects against Psoriasis-like Skin Lesion through Suppression of NF-ΚB-Mediated Inflammation and Keratinocyte Proliferation. Mol. Cell. Biochem. 2016, 413, 87–95. [Google Scholar] [CrossRef]
- Cheng, J.; Li, Y.; Kong, J. Ginkgetin Inhibits Proliferation of HeLa Cells via Activation of P38/NF-κB Pathway. Cell. Mol. Biol. 2019, 65, 79–82. [Google Scholar] [CrossRef]
- Goswami, B.; Rajappa, M.; Sharma, M.; Sharma, A. Inflammation: Its Role and Interplay in the Development of Cancer, with Special Focus on Gynecological Malignancies. Int. J. Gynecol. Cancer 2008, 18, 591–599. [Google Scholar] [CrossRef]
- Cabal-Hierro, L.; Lazo, P.S. Signal Transduction by Tumor Necrosis Factor Receptors. Cell. Signal. 2012, 24, 1297–1305. [Google Scholar] [CrossRef]
- Li, W.; Li, D.; Qin, Y.; Sun, C.; Wang, Y.; Gao, L.; Ling-Hu, L.; Zhang, F.; Cai, W.; Zhu, L.; et al. Cardioprotective Effects of Amentoflavone by Suppression of Apoptosis and Inflammation on an in Vitro and Vivo Model of Myocardial Ischemia-Reperfusion Injury. Int. Immunopharmacol. 2021, 101, 108296. [Google Scholar] [CrossRef]
- Rong, S.; Yang, C.; Wang, F.; Wu, Y.; Sun, K.; Sun, T.; Wu, Z. Amentoflavone Exerts Anti-Neuroinflammatory Effects by Inhibiting TLR4/MyD88/NF-ΚB and Activating Nrf2/HO-1 Pathway in Lipopolysaccharide-Induced BV2 Microglia. Mediat. Inflamm. 2022, 2022, 5184721. [Google Scholar] [CrossRef]
- Li, L.; You, W.; Wang, X.; Zou, Y.; Yao, H.; Lan, H.; Lin, X.; Zhang, Q.; Chen, B. Delicaflavone Reactivates Anti-Tumor Immune Responses by Abrogating Monocytic Myeloid Cell-Mediated Immunosuppression. Phytomedicine Int. J. Phytother. Phytopharm. 2023, 108, 154508. [Google Scholar] [CrossRef]
- Wang, X.; Xu, D.; Chen, B.; Huang, D.; Li, Z.; Sui, Y.; Lin, F.; Yao, H.; Li, H.Y.; Lin, X. Delicaflavone Represses Lung Cancer Growth by Activating Antitumor Immune Response through N6-Methyladenosine Transferases and Oxidative Stress. Oxid. Med. Cell. Longev. 2022, 2022, 8619275. [Google Scholar] [CrossRef]
- Sim, W.K.; Park, J.-H.; Kim, K.-Y.; Chung, I.S. Robustaflavone Induces G0/G1 Cell Cycle Arrest and Apoptosis in Human Umbilical Vein Endothelial Cells and Exhibits Anti-Angiogenic Effects in Vivo. Sci. Rep. 2020, 10, 11070. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.-J.; Chung, J.-G.; Chien, Y.-T.; Lin, S.-S.; Hsu, F.-T. Suppression of ERK/NF-ΚB Activation Is Associated With Amentoflavone-Inhibited Osteosarcoma Progression In Vivo. Anticancer Res. 2019, 39, 3669–3675. [Google Scholar] [CrossRef] [PubMed]
- Yao, H.; Chen, B.; Zhang, Y.; Ou, H.; Li, Y.; Li, S.; Shi, P.; Lin, X. Analysis of the Total Biflavonoids Extract from Selaginella Doederleinii by HPLC-QTOF-MS and Its In Vitro and In Vivo Anticancer Effects. Molecules 2017, 22, 325. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Luo, H.; Chen, W.; Huang, Q.; Zheng, K.; Xu, D.; Li, S.; Liu, A.; Huang, L.; Zheng, Y.; et al. Pharmacokinetics, Tissue Distribution, and Human Serum Albumin Binding Properties of Delicaflavone, a Novel Anti-Tumor Candidate. Front. Pharmacol. 2021, 12, 761884. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Li, Z.; Li, H.; Zhong, C.; Huang, K.; Chen, B.; Huang, L.; Lin, X.; Liu, Q.; Yao, H. Synthesis, Biological Evaluation, Pharmacokinetic Studies and Molecular Docking of 4′′′-Acetyl-Delicaflavone as Antitumor Agents. Bioorg. Chem. 2022, 120, 105638. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Wang, X.; Lin, D.; Xu, D.; Li, S.; Huang, J.; Weng, S.; Lin, Z.; Zheng, Y.; Yao, H.; et al. Proliposomes for Oral Delivery of Total Biflavonoids Extract from Selaginella Doederleinii: Formulation Development, Optimization, and in Vitro–in Vivo Characterization. Int. J. Nanomed. 2019, 14, 6691–6706. [Google Scholar] [CrossRef]
- Chen, B.; Wang, X.; Zhang, Y.; Huang, K.; Liu, H.; Xu, D.; Li, S.; Liu, Q.; Huang, J.; Yao, H.; et al. Improved Solubility, Dissolution Rate, and Oral Bioavailability of Main Biflavonoids from Selaginella Doederleinii Extract by Amorphous Solid Dispersion. Drug Deliv. 2020, 27, 309–322. [Google Scholar] [CrossRef]
- Feng, X.; Chen, Y.; Li, L.; Zhang, Y.; Zhang, L.; Zhang, Z. Preparation, Evaluation and Metabolites Study in Rats of Novel Amentoflavone-Loaded TPGS/Soluplus Mixed Nanomicelles. Drug Deliv. 2020, 27, 137–150. [Google Scholar] [CrossRef]
- Yang, X.-Z. Pharmaceutical Composition Useful for e.g., Treating Laryngeal Cancer, Inducing Apoptosis of Laryngeal Cancer Cells and Inhibiting Migration Ability of Laryngeal Cancer Cells, Contains Amentoflavone, Hinokiflavone and Podocarpusflavone A. China Patent CN111297849-A[P], 3 August 2020. [Google Scholar]
- Yang, X. Pharmaceutical Composition Useful for Preventing and Treating Breast Cancer, Comprises Kigelia Pinnata Fruit, Pleurospermum Hookeri, Doryopteris Concolor, Nepetin-7-Glucoside, Bilobetin and Capaurine. China Patent CN105998161-A[P], 8 January 2016. [Google Scholar]
- He, B.; Peng, Q.; Gao, Q.; Wu, Y. Research progress of pharmacological effects of Garcinia dulcishas in Chinese medicine. J. Hebei Med. Ed. 2009, 26, 71–73. [Google Scholar]
- Liao, S.; Ren, Q.; Yang, C.; Zhang, T.; Li, J.; Wang, X.; Qu, X.; Zhang, X.; Zhou, Z.; Zhang, Z.; et al. Liquid Chromatogr aphy-Tandem Mass Spectrometry Dete rmination and Pharmacokinetic Analysis of Amentoflavone and Its Conjugated Metabolites in Rats. J. Agric. Food Chem. 2015, 63, 1957–1966. [Google Scholar] [CrossRef] [PubMed]
- Shan, C.; Guo, S.; Yu, S.; Shan, M.; Li, S.F.Y.; Chai, C.; Cui, X.; Zhang, L.; Ding, A.; Wu, Q. Simultaneous Determination of Querc itrin, Afzelin, Amentoflavone, Hinokiflavone in Rat Plasma by UFLC–MS-MS and Its Application to the Pharmacokinetics of Platycladus Orientalis Leaves Extract. J. Chromatogr. Sci. 2018, 56, 895–902. [Google Scholar] [CrossRef] [PubMed]
Biflavonoid Type | Cancer Type | Cell Lines | Cell Cycle | Mechanism | References |
---|---|---|---|---|---|
Amentoflavone | Cervical Cancer | SiHa, CaSki | G(1) | ↓ Cyclins and p-pRb | [58] |
↑ CDKI and p53 | |||||
Amentoflavone | Esophageal squamous carcinoma | - | G(1) | ↓ CyclinB1 | [59] |
Amentoflavone | Colorectal cancer | HT-29 | G(1) | ↓ CyclinD1, CDK4andCDK6 | [60] |
Hinokiflavone | Melanoma | A375, B16 | S | – | [61] |
Amentoflavone | Ovarian Cancer | SKOV-3, OVCAR-3 | S | (-) Skp2 ↓ p21, p57, p130, c-Myc and E2F1 | [62] |
Ginkgetin | Colorectal Cancer | HCT-116 | G2/M | ↓ CyclinB1, Cdc25c and Cdc2 | [64] |
Amentoflavone | Ovarian Cancer | SKOV3 | G2 | ↓ CDK 1/2 | [65] |
↑ P21 | |||||
Hinokiflavone | Colon cancer | HCT-116 | (-)MDM2 | (−) P53 | [66,72] |
Biflavonoid Type | Cancer Type | Cell Lines | Mechanism | Sign Pathway | Reference |
---|---|---|---|---|---|
Hinokiflavone | Breast cancer | MDA-MB-231 | (−) EMT | – | [76] |
↓ MMP-2/-9 | |||||
Amentoflavone | Non-small cell lung cancer | A549 | (−) EMT | EMT | [77] |
↓ TGF-β and E-cadherin | |||||
Amentoflavone | Colorectal cancer | HCT-116 and SW480 | (−) EMT | Wnt/β-catenin | [78] |
↑ miR-16-5 p | |||||
Sotetsuflavon | Non-small cell lung cancer | A549 | (−) EMT | TNF-α/NF-κB and PI3K/Akt | [84] |
↑ E-cadherin | |||||
↓ N-cadherin, vimentin, and Snail, MMP-9andMMP-13 | |||||
SFB | Non-small cell lung cancer, Colorectal cancer | A549, HCT-116 | ↓ MMP-2/-9 | – | [86] |
Hinokiflavone | Breast cancer | MCF-7 | (−) MMP-9 | [87] | |
Hinokiflavone | Melanoma | A375, CHL-1 and B16 | ↓ MMP-2/-9 | – | [61] |
Hinokiflavone | Esophageal squamous carcinoma | KYSE 150 | ↓ MMP-2/-9 | – | [88] |
Amentoflavone | Bladder Cancer | TSGH8301 | (−) NF-κ B | – | [89] |
↓ MMP-2, MMP-9, and uPA, VEGF | |||||
Amentoflavone | Hepatocellular carcinoma | SK-Hep1 | ↓ MMP-9, XIAP, VEGF, Cyclin-D1, and pERK | Erk/NF-κB | [93] |
Amentoflavone | Glioblastoma | GBM8401 | ↓ MMP-2, MMP-9, XIAP, cyclinD1 and VEGF | Erk/NF-κB | [94] |
Amentoflavone | Colorectal cance | Caco-2/15, CCL-247 and HT29, CCL 229, CCL 228, CCL-227, HEK293T, CCL-21, CCL-222 | (−) Cathepsin B | – | [95] |
Amentoflavone | Breast cancer | MCF | (−) NF-κ B | – | [100] |
(−) VEGF | |||||
Amentoflavone | Osteosarcoma | U2OS | (−) NF-κ B | – | [102] |
(−) VEGF |
Biflavonoid Type | Cancer Type | Cell Lines | Mechanism | Sign Pathway | Reference |
---|---|---|---|---|---|
Ginkgetin | Chronic lymphoblastic leukemia | K562 cells | ↓ TNF-α | TNF-α | [106] |
↑ Caspase-8, Caspase-9 and Caspase-3 | |||||
Amentoflavone | Cervical cancer | SiHa and CaSki | ↓ Bcl-2 | - | [58] |
↑ Bax, Caspase-3/-9 | |||||
(+) PPARγ/PTEN | |||||
Ginkgetin | Breast cancer | MCF-7 | ↓ Bcl-2, survivin | MAPKs | [107] |
↑ Bax, Caspase-8, Caspase-9, and Caspase-3 | |||||
Amentoflavone | Glioblastoma | U-87 MG | ↑ LI-1β, C-FLIP, MCL1, caspase-3 and -8 | NF-ĸB | [108] |
Amentoflavone | Bladder cancer | TSGH8301 | ↓ MCL-1, FLICE | - | [89] |
↑ FAS, FAS-ligand, Bax | |||||
Delicaflavone | Colorectal cancer | HT29 and HCT116 | ↑ Caspase-9 Caspase-3, ROS | PI3K/Akt/mTOR and Ras/MEK/Erk | [110] |
Robustaflavone A | Breast cancer | MCF-7 | ↑ ROS | VDAC 2, Nedd 4 | [41] |
Hinokiflavone | Colorectal Cancer | - | ↑ ROS | - | [111] |
Hinokiflavone | Hepatocellular carcinoma | SMMC-7721, LO2, HepG2 | ↓ Bcl-2 | mtROS/JNK, NF-κB | [112] |
↑ Caspase-9, Caspase-3, Bax | |||||
Delicaflavone | Cervical cancer | HeLa, SiHa, H8 | ↓ Bcl-2 | MAPK | [114] |
↑ Caspase-9, Caspase-3, Bax | |||||
Hinokiflavone | Esophageal squamous cancer | KYSE150 and TE14 | ↓ Bcl-2 | PI3K/Akt/mTOR | [88] |
↑ Bax, Caspase-3, | |||||
Amentoflavone | Malignant glioma | U87, LV229, U251, LN18 and U373 | ↓ Bcl-2 | ROS/AMPK | [120] |
↑ MiR-124-3p, Bax, Caspase-3, | |||||
Amentoflavone | Breast cancer | SKBR 3 | (−) FASN | Akt/mTOR/JNK | [121,122] |
Biflavonoid Type | Cancer Type | Cell Lines | Mechanism | Sign Pathway | References |
---|---|---|---|---|---|
Sotetsuflavone | Non-Small Cell Lung Cancer | A549 | - | PI3K/Akt/mTOR | [84,124,125] |
Ginkgetin | Non-small cell lung cancer | A549 | (−) p62 | - | [126] |
Hinokiflavone | Chronic myeloid leukemia | K562, LTD | (−) p62 | - | [127] |
↑ LC3-II | |||||
Ginkgetin | End-stage kidney disease | Rat glomerular mesangial cells (HBZY-1) | (−) TNF-α, IL-1β, IL-6 | AMPK/mTOR | [128] |
↓ Collagen IV, fibronectin, and laminin, EMC | |||||
Delicaflavone | Lung cancer | A549 and PC-9 | ↑ LC3-II/LC3-I | Akt/mTOR/p70S6K | [129] |
Glioma | U251 and U373 | ↑ ATG 5, ATG 7, Beclin 1, LC 3BII | AMPK/mTOR/p70 S6 K | [130] | |
Amentoflavone | Non-small cell lung cancer | A549 | ↑ Atg7, Beclin1, Atg3 and LC3, p53, p-p21 | - | [131] |
Biflavonoid Type | Model Type | Dose | Administration | Mechanism | References |
---|---|---|---|---|---|
Robustaflavone | CT-26 tumor xenograft model | 1 or 5 mg/kg/day | (−) Angiogenesis (−) Metastasis | [152] | |
↓ MMP-2, MMP-9, prolyl hydroxylase, lysyl oxidase, VEGF, Erk-1, Erk-2, TNF-α, IL-1β, IL-6, | |||||
Amentoflavone | U-2 OS tumor xenograft model | 100 mg/kg/day | i.g | (−) Metastasis, | [93,153] |
(−) Erk/NF-κB signaling | |||||
Amentoflavone | HCC SK-Hep1 tumor xenograft model | 10 or 50 mg/kg/day | i.g | (+) Apoptosis, (−) Proliferation | [136] |
(−) Raf/MEK/Erk and PI3K/Akt signaling transduction | |||||
SFB | LLC tumor xenograft model | 50 or 150 mg/kg/day | p.o. | (+) Antitumor immune response | [154] |
Delicaflavone | 3LL in C57BL/6 mice | 0.5mg/kg/day | i.h. | (+) Antitumor immune response | [151] |
(−) Mettl 3/Mettl 14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, M.; Li, S.; Gao, Q.; Qiao, L.; Cao, Q.; Yang, Z.; Chen, C.; Jiang, Y.; Wang, G.; Fu, S. Advances in the Anti-Tumor Activity of Biflavonoids in Selaginella. Int. J. Mol. Sci. 2023, 24, 7731. https://doi.org/10.3390/ijms24097731
Ren M, Li S, Gao Q, Qiao L, Cao Q, Yang Z, Chen C, Jiang Y, Wang G, Fu S. Advances in the Anti-Tumor Activity of Biflavonoids in Selaginella. International Journal of Molecular Sciences. 2023; 24(9):7731. https://doi.org/10.3390/ijms24097731
Chicago/Turabian StyleRen, Mengdie, Sihui Li, Qiong Gao, Lei Qiao, Qianping Cao, Ze Yang, Chaoqiang Chen, Yongmei Jiang, Gang Wang, and Shaobin Fu. 2023. "Advances in the Anti-Tumor Activity of Biflavonoids in Selaginella" International Journal of Molecular Sciences 24, no. 9: 7731. https://doi.org/10.3390/ijms24097731
APA StyleRen, M., Li, S., Gao, Q., Qiao, L., Cao, Q., Yang, Z., Chen, C., Jiang, Y., Wang, G., & Fu, S. (2023). Advances in the Anti-Tumor Activity of Biflavonoids in Selaginella. International Journal of Molecular Sciences, 24(9), 7731. https://doi.org/10.3390/ijms24097731