Identification of Novel Candidate Genes for Familial Thyroid Cancer by Whole Exome Sequencing
Abstract
:1. Introduction
2. Results
2.1. Identification of Candidate Variants by Whole Exome Sequencing
2.2. Prioritization of Variants in Genes Previously Associated with TC
2.3. Interpretation of Variants, Pathogenicity and Structural Effect Prediction
2.4. Functional Enrichment Analysis Identified the Most Relevant Genes and Gene–Gene Modules
2.5. Immunohistochemistry Analysis of Available PTC Samples
3. Discussion
4. Materials and Methods
4.1. Study Participants
4.2. Whole Exome Sequencing (WES)
4.3. Bioinformatics Analysis
4.4. Validation of Genetic Variants
4.5. Functional Enrichment Analysis, Network, and PPI Module Reconstruction
4.6. Immunohistochemistry
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chrisoulidou, A.; Boudina, M.; Tzemailas, A.; Doumala, E.; Iliadou, P.K.; Patakiouta, F.; Pazaitou-Panayiotou, K. Histological subtype is the most important determinant of survival in metastatic papillary thyroid cancer. Thyroid Res. 2011, 4, 12. [Google Scholar] [CrossRef] [PubMed]
- Wiltshire, J.J.; Drake, T.M.; Uttley, L.; Balasubramanian, S.P. Systematic Review of Trends in the Incidence Rates of Thyroid Cancer. Thyroid 2016, 26, 1541–1552. [Google Scholar] [CrossRef] [PubMed]
- Wells, S.A., Jr.; Asa, S.L.; Dralle, H.; Elisei, R.; Evans, D.B.; Gagel, R.F.; Lee, N.; Machens, A.; Moley, J.F.; Pacini, F.; et al. Revised American Thyroid Association guidelines for the management of medullary thyroid carcinoma. Thyroid 2015, 25, 567–610. [Google Scholar] [CrossRef] [PubMed]
- Donis-Keller, H.; Dou, S.; Chi, D.; Carlson, K.M.; Toshima, K.; Lairmore, T.C.; Howe, J.R.; Moley, J.F.; Goodfellow, P.; Wells, S.A., Jr. Mutations in the RET proto-oncogene are associated with MEN 2A and FMTC. Hum. Mol. Genet. 1993, 2, 851–856. [Google Scholar] [CrossRef]
- Eng, C.; Smith, D.P.; Mulligan, L.M.; Nagai, M.A.; Healey, C.S.; Ponder, M.A.; Gardner, E.; Scheumann, G.F.; Jackson, C.E.; Tunnacliffe, A.; et al. Point mutation within the tyrosine kinase domain of the RET proto-oncogene in multiple endocrine neoplasia type 2B and related sporadic tumours. Hum. Mol. Genet. 1994, 3, 237–241. [Google Scholar] [CrossRef]
- Mulligan, L.M.; Eng, C.; Healey, C.S.; Clayton, D.; Kwok, J.B.; Gardner, E.; Ponder, M.A.; Frilling, A.; Jackson, C.E.; Lehnert, H.; et al. Specific mutations of the RET proto-oncogene are related to disease phenotype in MEN 2A and FMTC. Nat. Genet. 1994, 6, 70–74. [Google Scholar] [CrossRef]
- Malchoff, C.D.; Malchoff, D.M. Familial nonmedullary thyroid carcinoma. Cancer Control 2006, 13, 106–110. [Google Scholar] [CrossRef]
- Xu, B.; Ghossein, R. Evolution of the histologic classification of thyroid neoplasms and its impact on clinical management. Eur. J. Surg. Oncol. 2018, 44, 338–347. [Google Scholar] [CrossRef]
- Luzon-Toro, B.; Fernandez, R.M.; Villalba-Benito, L.; Torroglosa, A.; Antinolo, G.; Borrego, S. Influencers on Thyroid Cancer Onset: Molecular Genetic Basis. Genes 2019, 10, 913. [Google Scholar] [CrossRef]
- Capezzone, M.; Robenshtok, E.; Cantara, S.; Castagna, M.G. Familial non-medullary thyroid cancer: A critical review. J. Endocrinol. Investig. 2021, 44, 943–950. [Google Scholar] [CrossRef]
- Moses, W.; Weng, J.; Kebebew, E. Prevalence, clinicopathologic features, and somatic genetic mutation profile in familial versus sporadic nonmedullary thyroid cancer. Thyroid 2011, 21, 367–371. [Google Scholar] [CrossRef]
- Bignell, G.R.; Canzian, F.; Shayeghi, M.; Stark, M.; Shugart, Y.Y.; Biggs, P.; Mangion, J.; Hamoudi, R.; Rosenblatt, J.; Buu, P.; et al. Familial nontoxic multinodular thyroid goiter locus maps to chromosome 14q but does not account for familial nonmedullary thyroid cancer. Am. J. Hum. Genet. 1997, 61, 1123–1130. [Google Scholar] [CrossRef]
- Canzian, F.; Amati, P.; Harach, H.R.; Kraimps, J.L.; Lesueur, F.; Barbier, J.; Levillain, P.; Romeo, G.; Bonneau, D. A gene predisposing to familial thyroid tumors with cell oxyphilia maps to chromosome 19p13.2. Am. J. Hum. Genet. 1998, 63, 1743–1748. [Google Scholar] [CrossRef]
- Cavaco, B.M.; Batista, P.F.; Sobrinho, L.G.; Leite, V. Mapping a new familial thyroid epithelial neoplasia susceptibility locus to chromosome 8p23.1-p22 by high-density single-nucleotide polymorphism genome-wide linkage analysis. J. Clin. Endocrinol. Metab. 2008, 93, 4426–4430. [Google Scholar] [CrossRef]
- Diquigiovanni, C.; Bergamini, C.; Evangelisti, C.; Isidori, F.; Vettori, A.; Tiso, N.; Argenton, F.; Costanzini, A.; Iommarini, L.; Anbunathan, H.; et al. Mutant MYO1F alters the mitochondrial network and induces tumor proliferation in thyroid cancer. Int. J. Cancer 2018, 143, 1706–1719. [Google Scholar] [CrossRef]
- Malchoff, C.D.; Sarfarazi, M.; Tendler, B.; Forouhar, F.; Whalen, G.; Joshi, V.; Arnold, A.; Malchoff, D.M. Papillary thyroid carcinoma associated with papillary renal neoplasia: Genetic linkage analysis of a distinct heritable tumor syndrome. J. Clin. Endocrinol. Metab. 2000, 85, 1758–1764. [Google Scholar] [CrossRef]
- McKay, J.D.; Lesueur, F.; Jonard, L.; Pastore, A.; Williamson, J.; Hoffman, L.; Burgess, J.; Duffield, A.; Papotti, M.; Stark, M.; et al. Localization of a susceptibility gene for familial nonmedullary thyroid carcinoma to chromosome 2q21. Am. J. Hum. Genet. 2001, 69, 440–446. [Google Scholar] [CrossRef]
- Rio Frio, T.; Bahubeshi, A.; Kanellopoulou, C.; Hamel, N.; Niedziela, M.; Sabbaghian, N.; Pouchet, C.; Gilbert, L.; O’Brien, P.K.; Serfas, K.; et al. DICER1 mutations in familial multinodular goiter with and without ovarian Sertoli-Leydig cell tumors. JAMA 2011, 305, 68–77. [Google Scholar] [CrossRef]
- He, H.; Bronisz, A.; Liyanarachchi, S.; Nagy, R.; Li, W.; Huang, Y.; Akagi, K.; Saji, M.; Kula, D.; Wojcicka, A.; et al. SRGAP1 is a candidate gene for papillary thyroid carcinoma susceptibility. J. Clin. Endocrinol. Metab. 2013, 98, E973–E980. [Google Scholar] [CrossRef]
- Xiong, Y.; Zhang, L.; Holloway, A.K.; Wu, X.; Su, L.; Kebebew, E. MiR-886-3p regulates cell proliferation and migration, and is dysregulated in familial non-medullary thyroid cancer. PLoS ONE 2011, 6, e24717. [Google Scholar] [CrossRef]
- Tomsic, J.; He, H.; Akagi, K.; Liyanarachchi, S.; Pan, Q.; Bertani, B.; Nagy, R.; Symer, D.E.; Blencowe, B.J.; de la Chapelle, A. A germline mutation in SRRM2, a splicing factor gene, is implicated in papillary thyroid carcinoma predisposition. Sci. Rep. 2015, 5, 10566. [Google Scholar] [CrossRef] [PubMed]
- He, H.; Nagy, R.; Liyanarachchi, S.; Jiao, H.; Li, W.; Suster, S.; Kere, J.; de la Chapelle, A. A susceptibility locus for papillary thyroid carcinoma on chromosome 8q24. Cancer Res. 2009, 69, 625–631. [Google Scholar] [CrossRef] [PubMed]
- Ye, F.; Gao, H.; Xiao, L.; Zuo, Z.; Liu, Y.; Zhao, Q.; Chen, H.; Feng, W.; Fu, B.; Sun, L.; et al. Whole exome and target sequencing identifies MAP2K5 as novel susceptibility gene for familial non-medullary thyroid carcinoma. Int. J. Cancer 2019, 144, 1321–1330. [Google Scholar] [CrossRef] [PubMed]
- Orois, A.; Gara, S.K.; Mora, M.; Halperin, I.; Martinez, S.; Alfayate, R.; Kebebew, E.; Oriola, J. NOP53 as A Candidate Modifier Locus for Familial Non-Medullary Thyroid Cancer. Genes 2019, 10, 899. [Google Scholar] [CrossRef] [PubMed]
- Gudmundsson, J.; Sulem, P.; Gudbjartsson, D.F.; Jonasson, J.G.; Sigurdsson, A.; Bergthorsson, J.T.; He, H.; Blondal, T.; Geller, F.; Jakobsdottir, M.; et al. Common variants on 9q22.33 and 14q13.3 predispose to thyroid cancer in European populations. Nat. Genet. 2009, 41, 460–464. [Google Scholar] [CrossRef]
- He, H.; Li, W.; Liyanarachchi, S.; Jendrzejewski, J.; Srinivas, M.; Davuluri, R.V.; Nagy, R.; de la Chapelle, A. Genetic predisposition to papillary thyroid carcinoma: Involvement of FOXE1, TSHR, and a novel lincRNA gene, PTCSC2. J. Clin. Endocrinol. Metab. 2015, 100, E164–E172. [Google Scholar] [CrossRef]
- Wang, Y.; He, H.; Li, W.; Phay, J.; Shen, R.; Yu, L.; Hancioglu, B.; de la Chapelle, A. MYH9 binds to lncRNA gene PTCSC2 and regulates FOXE1 in the 9q22 thyroid cancer risk locus. Proc. Natl. Acad. Sci. USA 2017, 114, 474–479. [Google Scholar] [CrossRef]
- Ngan, E.S.; Lang, B.H.; Liu, T.; Shum, C.K.; So, M.T.; Lau, D.K.; Leon, T.Y.; Cherny, S.S.; Tsai, S.Y.; Lo, C.Y.; et al. A germline mutation (A339V) in thyroid transcription factor-1 (TITF-1/NKX2.1) in patients with multinodular goiter and papillary thyroid carcinoma. J. Natl. Cancer Inst. 2009, 101, 162–175. [Google Scholar] [CrossRef]
- Son, H.Y.; Hwangbo, Y.; Yoo, S.K.; Im, S.W.; Yang, S.D.; Kwak, S.J.; Park, M.S.; Kwak, S.H.; Cho, S.W.; Ryu, J.S.; et al. Genome-wide association and expression quantitative trait loci studies identify multiple susceptibility loci for thyroid cancer. Nat. Commun. 2017, 8, 15966. [Google Scholar] [CrossRef]
- Srivastava, A.; Giangiobbe, S.; Skopelitou, D.; Miao, B.; Paramasivam, N.; Diquigiovanni, C.; Bonora, E.; Hemminki, K.; Forsti, A.; Bandapalli, O.R. Whole Genome Sequencing Prioritizes CHEK2, EWSR1, and TIAM1 as Possible Predisposition Genes for Familial Non-Medullary Thyroid Cancer. Front. Endocrinol. 2021, 12, 600682. [Google Scholar] [CrossRef]
- He, H.; Li, W.; Comiskey, D.F.; Liyanarachchi, S.; Nieminen, T.T.; Wang, Y.; DeLap, K.E.; Brock, P.; de la Chapelle, A. A Truncating Germline Mutation of TINF2 in Individuals with Thyroid Cancer or Melanoma Results in Longer Telomeres. Thyroid 2020, 30, 204–213. [Google Scholar] [CrossRef]
- Srivastava, A.; Miao, B.; Skopelitou, D.; Kumar, V.; Kumar, A.; Paramasivam, N.; Bonora, E.; Hemminki, K.; Forsti, A.; Bandapalli, O.R. A Germline Mutation in the POT1 Gene Is a Candidate for Familial Non-Medullary Thyroid Cancer. Cancers 2020, 12, 1441. [Google Scholar] [CrossRef]
- Risch, N. The genetic epidemiology of cancer: Interpreting family and twin studies and their implications for molecular genetic approaches. Cancer Epidemiol. Biomark. Prev. 2001, 10, 733–741. [Google Scholar]
- Karczewski, K.J.; Francioli, L.C.; Tiao, G.; Cummings, B.B.; Alföldi, J.; Wang, Q.; Collins, R.L.; Laricchia, K.M.; Ganna, A.; Birnbaum, D.P.; et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 2020, 581, 434–443. [Google Scholar] [CrossRef]
- Pinero, J.; Sauch, J.; Sanz, F.; Furlong, L.I. The DisGeNET cytoscape app: Exploring and visualizing disease genomics data. Comput. Struct. Biotechnol. J. 2021, 19, 2960–2967. [Google Scholar] [CrossRef]
- McPherson, M.T.; Holub, A.S.; Husbands, A.Y.; Petreaca, R.C. Mutation Spectra of the MRN (MRE11, RAD50, NBS1/NBN) Break Sensor in Cancer Cells. Cancers 2020, 12, 3794. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhou, B.; Pache, L.; Chang, M.; Khodabakhshi, A.H.; Tanaseichuk, O.; Benner, C.; Chanda, S.K. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun. 2019, 10, 1523. [Google Scholar] [CrossRef] [PubMed]
- Dihlmann, S.; von Knebel Doeberitz, M. Wnt/beta-catenin-pathway as a molecular target for future anti-cancer therapeutics. Int. J. Cancer 2005, 113, 515–524. [Google Scholar] [CrossRef]
- Shen, H.M.; Tergaonkar, V. NFkappaB signaling in carcinogenesis and as a potential molecular target for cancer therapy. Apoptosis 2009, 14, 348–363. [Google Scholar] [CrossRef]
- Davis, T.B.; Yang, M.; Schell, M.J.; Wang, H.; Ma, L.; Pledger, W.J.; Yeatman, T.J. PTPRS Regulates Colorectal Cancer RAS Pathway Activity by Inactivating Erk and Preventing Its Nuclear Translocation. Sci. Rep. 2018, 8, 9296. [Google Scholar] [CrossRef]
- Morris, L.G.; Taylor, B.S.; Bivona, T.G.; Gong, Y.; Eng, S.; Brennan, C.W.; Kaufman, A.; Kastenhuber, E.R.; Banuchi, V.E.; Singh, B.; et al. Genomic dissection of the epidermal growth factor receptor (EGFR)/PI3K pathway reveals frequent deletion of the EGFR phosphatase PTPRS in head and neck cancers. Proc. Natl. Acad. Sci. USA 2011, 108, 19024–19029. [Google Scholar] [CrossRef] [PubMed]
- Wood, L.D.; Parsons, D.W.; Jones, S.; Lin, J.; Sjoblom, T.; Leary, R.J.; Shen, D.; Boca, S.M.; Barber, T.; Ptak, J.; et al. The genomic landscapes of human breast and colorectal cancers. Science 2007, 318, 1108–1113. [Google Scholar] [CrossRef] [PubMed]
- Solomon, D.A.; Kim, J.S.; Cronin, J.C.; Sibenaller, Z.; Ryken, T.; Rosenberg, S.A.; Ressom, H.; Jean, W.; Bigner, D.; Yan, H.; et al. Mutational inactivation of PTPRD in glioblastoma multiforme and malignant melanoma. Cancer Res. 2008, 68, 10300–10306. [Google Scholar] [CrossRef]
- Gao, Q.; Zhao, Y.J.; Wang, X.Y.; Guo, W.J.; Gao, S.; Wei, L.; Shi, J.Y.; Shi, G.M.; Wang, Z.C.; Zhang, Y.N.; et al. Activating mutations in PTPN3 promote cholangiocarcinoma cell proliferation and migration and are associated with tumor recurrence in patients. Gastroenterology 2014, 146, 1397–1407. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, Y.; Ge, L.; Lin, Y.; Kwok, H.F. The Roles of Protein Tyrosine Phosphatases in Hepatocellular Carcinoma. Cancers 2018, 10, 82. [Google Scholar] [CrossRef]
- Bosch Grau, M.; Gonzalez Curto, G.; Rocha, C.; Magiera, M.M.; Marques Sousa, P.; Giordano, T.; Spassky, N.; Janke, C. Tubulin glycylases and glutamylases have distinct functions in stabilization and motility of ependymal cilia. J. Cell Biol. 2013, 202, 441–451. [Google Scholar] [CrossRef]
- Soucek, K.; Kamaid, A.; Phung, A.D.; Kubala, L.; Bulinski, J.C.; Harper, R.W.; Eiserich, J.P. Normal and prostate cancer cells display distinct molecular profiles of alpha-tubulin posttranslational modifications. Prostate 2006, 66, 954–965. [Google Scholar] [CrossRef]
- Rocha, C.; Papon, L.; Cacheux, W.; Marques Sousa, P.; Lascano, V.; Tort, O.; Giordano, T.; Vacher, S.; Lemmers, B.; Mariani, P.; et al. Tubulin glycylases are required for primary cilia, control of cell proliferation and tumor development in colon. EMBO J. 2014, 33, 2247–2260. [Google Scholar] [CrossRef]
- Rogowski, K.; van Dijk, J.; Magiera, M.M.; Bosc, C.; Deloulme, J.C.; Bosson, A.; Peris, L.; Gold, N.D.; Lacroix, B.; Bosch Grau, M.; et al. A family of protein-deglutamylating enzymes associated with neurodegeneration. Cell 2010, 143, 564–578. [Google Scholar] [CrossRef]
- Cheung, P.Y.; Zhang, Y.; Long, J.; Lin, S.; Zhang, M.; Jiang, Y.; Wu, Z. p150(Glued), Dynein, and microtubules are specifically required for activation of MKK3/6 and p38 MAPKs. J. Biol. Chem. 2004, 279, 45308–45311. [Google Scholar] [CrossRef]
- Zhang, Y.; Center, D.M.; Wu, D.M.; Cruikshank, W.W.; Yuan, J.; Andrews, D.W.; Kornfeld, H. Processing and activation of pro-interleukin-16 by caspase-3. J. Biol. Chem. 1998, 273, 1144–1149. [Google Scholar] [CrossRef] [PubMed]
- Zhong, J.; Zhao, M.; Luo, Q.; Ma, Y.; Liu, J.; Wang, J.; Yang, M.; Yuan, X.; Sang, J.; Huang, C. CCDC134 is down-regulated in gastric cancer and its silencing promotes cell migration and invasion of GES-1 and AGS cells via the MAPK pathway. Mol. Cell Biochem. 2013, 372, 1–8. [Google Scholar] [CrossRef]
- Sun, W.; Cang, S.; Lv, X.; Wang, P.; Lin, Q.; Zhang, Q.; Yan, Z.; Liu, Z.; Song, Y. DDX51 gene promotes proliferation by activating Wnt/beta-catenin signaling in breast cancer. Int. J. Clin. Exp. Pathol. 2017, 10, 10892–10900. [Google Scholar]
- Wang, J.; Song, Z.; Ren, L.; Zhang, B.; Zhang, Y.; Yang, X.; Liu, T.; Gu, Y.; Feng, C. Pan-cancer analysis supports MAPK12 as a potential prognostic and immunotherapeutic target in multiple tumor types, including in THCA. Oncol. Lett. 2022, 24, 445. [Google Scholar] [CrossRef]
- Fan, J.B.; Miyauchi, S.; Xu, H.Z.; Liu, D.; Kim, L.J.Y.; Burkart, C.; Cheng, H.; Arimoto, K.I.; Yan, M.; Zhou, Y.; et al. Type I Interferon Regulates a Coordinated Gene Network to Enhance Cytotoxic T Cell-Mediated Tumor Killing. Cancer Discov. 2020, 10, 382–393. [Google Scholar] [CrossRef]
- Santos, L.S.; Silva, S.N.; Gil, O.M.; Ferreira, T.C.; Limbert, E.; Rueff, J. Mismatch repair single nucleotide polymorphisms and thyroid cancer susceptibility. Oncol. Lett. 2018, 15, 6715–6726. [Google Scholar] [CrossRef]
- Damaso, E.; Gonzalez-Acosta, M.; Vargas-Parra, G.; Navarro, M.; Balmana, J.; Ramon, Y.C.T.; Tuset, N.; Thompson, B.A.; Marin, F.; Fernandez, A.; et al. Comprehensive Constitutional Genetic and Epigenetic Characterization of Lynch-Like Individuals. Cancers 2020, 12, 1799. [Google Scholar] [CrossRef]
- Tian, P.; Cheng, X.; Zhao, Z.; Zhang, Y.; Bao, C.; Wang, Y.; Cai, S.; Ma, G.; Huang, Y. Spectrum of Pathogenic Germline Mutations in Chinese Lung Cancer Patients through Next-Generation Sequencing. Pathol. Oncol. Res. 2020, 26, 109–114. [Google Scholar] [CrossRef]
- Mizukami, K.; Iwasaki, Y.; Kawakami, E.; Hirata, M.; Kamatani, Y.; Matsuda, K.; Endo, M.; Sugano, K.; Yoshida, T.; Murakami, Y.; et al. Genetic characterization of pancreatic cancer patients and prediction of carrier status of germline pathogenic variants in cancer-predisposing genes. EBioMedicine 2020, 60, 103033. [Google Scholar] [CrossRef]
- Akcay, I.M.; Celik, E.; Agaoglu, N.B.; Alkurt, G.; Kizilboga Akgun, T.; Yildiz, J.; Enc, F.; Kir, G.; Canbek, S.; Kilic, A.; et al. Germline pathogenic variant spectrum in 25 cancer susceptibility genes in Turkish breast and colorectal cancer patients and elderly controls. Int. J. Cancer 2021, 148, 285–295. [Google Scholar] [CrossRef]
- Chen, L.; Chen, D.T.; Kurtyka, C.; Rawal, B.; Fulp, W.J.; Haura, E.B.; Cress, W.D. Tripartite motif containing 28 (Trim28) can regulate cell proliferation by bridging HDAC1/E2F interactions. J. Biol. Chem. 2012, 287, 40106–40118. [Google Scholar] [CrossRef] [PubMed]
- An, W.; Yao, S.; Sun, X.; Hou, Z.; Lin, Y.; Su, L.; Liu, X. Glucocorticoid modulatory element-binding protein 1 (GMEB1) interacts with the de-ubiquitinase USP40 to stabilize CFLAR(L) and inhibit apoptosis in human non-small cell lung cancer cells. J. Exp. Clin. Cancer Res. 2019, 38, 181. [Google Scholar] [CrossRef] [PubMed]
- Sebastian, S.; Settleman, J.; Reshkin, S.J.; Azzariti, A.; Bellizzi, A.; Paradiso, A. The complexity of targeting EGFR signalling in cancer: From expression to turnover. Biochim. Biophys. Acta 2006, 1766, 120–139. [Google Scholar] [CrossRef]
- Zeng, X.; Wang, H.Y.; Wang, Y.P.; Bai, S.Y.; Pu, K.; Zheng, Y.; Guo, Q.H.; Guan, Q.L.; Ji, R.; Zhou, Y.N. COL4A family: Potential prognostic biomarkers and therapeutic targets for gastric cancer. Transl. Cancer Res. 2020, 9, 5218–5232. [Google Scholar] [CrossRef]
- Raun, S.H.; Knudsen, J.R.; Han, X.; Jensen, T.E.; Sylow, L. Cancer causes dysfunctional insulin signaling and glucose transport in a muscle-type-specific manner. FASEB J. 2022, 36, e22211. [Google Scholar] [CrossRef]
- Masin, M.; Vazquez, J.; Rossi, S.; Groeneveld, S.; Samson, N.; Schwalie, P.C.; Deplancke, B.; Frawley, L.E.; Gouttenoire, J.; Moradpour, D.; et al. GLUT3 is induced during epithelial-mesenchymal transition and promotes tumor cell proliferation in non-small cell lung cancer. Cancer Metab. 2014, 2, 11. [Google Scholar] [CrossRef]
- Li, S.J.; Yang, X.N.; Qian, H.Y. Antitumor effects of WNT2B silencing in GLUT1 overexpressing cisplatin resistant head and neck squamous cell carcinoma. Am. J. Cancer Res. 2015, 5, 300–308. [Google Scholar]
- McBrayer, S.K.; Cheng, J.C.; Singhal, S.; Krett, N.L.; Rosen, S.T.; Shanmugam, M. Multiple myeloma exhibits novel dependence on GLUT4, GLUT8, and GLUT11: Implications for glucose transporter-directed therapy. Blood 2012, 119, 4686–4697. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, Y.; Cui, M.; Chen, J.; Cao, W.; Yang, G.; Liu, Q.; Zhang, G. Silencing of FoxM1 blocks growth, migration and invasion of papillary thyroid carcinoma cells. Oncol. Lett. 2020, 19, 77–82. [Google Scholar] [CrossRef]
- Schnell, U.; Cirulli, V.; Giepmans, B.N. EpCAM: Structure and function in health and disease. Biochim. Biophys. Acta 2013, 1828, 1989–2001. [Google Scholar] [CrossRef]
- Gimm, O.; Greco, A.; Hoang-Vu, C.; Dralle, H.; Pierotti, M.A.; Eng, C. Mutation analysis reveals novel sequence variants in NTRK1 in sporadic human medullary thyroid carcinoma. J. Clin. Endocrinol. Metab. 1999, 84, 2784–2787. [Google Scholar] [CrossRef] [PubMed]
- Gold, H.L.; Wengrod, J.; de Miera, E.V.; Wang, D.; Fleming, N.; Sikkema, L.; Kirchhoff, T.; Hochman, T.; Goldberg, J.D.; Osman, I.; et al. PP6C hotspot mutations in melanoma display sensitivity to Aurora kinase inhibition. Mol. Cancer Res. 2014, 12, 433–439. [Google Scholar] [CrossRef] [PubMed]
- Bugter, J.M.; Fenderico, N.; Maurice, M.M. Mutations and mechanisms of WNT pathway tumour suppressors in cancer. Nat. Rev. Cancer 2021, 21, 5–21. [Google Scholar] [CrossRef] [PubMed]
- Ely, K.A.; Bischoff, L.A.; Weiss, V.L. Wnt Signaling in Thyroid Homeostasis and Carcinogenesis. Genes 2018, 9, 204. [Google Scholar] [CrossRef]
- Lee, J.; Wang, X.; Di Jeso, B.; Arvan, P. The cholinesterase-like domain, essential in thyroglobulin trafficking for thyroid hormone synthesis, is required for protein dimerization. J. Biol. Chem. 2009, 284, 12752–12761. [Google Scholar] [CrossRef]
- Ma, F.; Xie, Y.; Lei, Y.; Kuang, Z.; Liu, X. The microRNA-130a-5p/RUNX2/STK32A network modulates tumor invasive and metastatic potential in non-small cell lung cancer. BMC Cancer 2020, 20, 580. [Google Scholar] [CrossRef]
- Jin, Q.; Cheng, M.; Xia, X.; Han, Y.; Zhang, J.; Cao, P.; Zhou, G. Down-regulation of MYH10 driven by chromosome 17p13.1 deletion promotes hepatocellular carcinoma metastasis through activation of the EGFR pathway. J. Cell Mol. Med. 2021, 25, 11142–11156. [Google Scholar] [CrossRef]
- Zhang, H.; Huang, T.; Ren, X.; Fang, X.; Chen, X.; Wei, H.; Sun, W.; Wang, Y. Integrated pan-cancer analysis of CSMD2 as a potential prognostic, diagnostic, and immune biomarker. Front. Genet. 2022, 13, 918486. [Google Scholar] [CrossRef]
- Gonda, Y.; Namba, T.; Hanashima, C. Beyond Axon Guidance: Roles of Slit-Robo Signaling in Neocortical Formation. Front. Cell Dev. Biol. 2020, 8, 607415. [Google Scholar] [CrossRef]
- Liang, Q.; Xia, W.; Li, W.; Jiao, J. RNF20 controls astrocytic differentiation through epigenetic regulation of STAT3 in the developing brain. Cell Death Differ. 2018, 25, 294–306. [Google Scholar] [CrossRef]
- Ge, X.; Frank, C.L.; Calderon de Anda, F.; Tsai, L.H. Hook3 interacts with PCM1 to regulate pericentriolar material assembly and the timing of neurogenesis. Neuron 2010, 65, 191–203. [Google Scholar] [CrossRef]
- Melling, N.; Harutyunyan, L.; Hube-Magg, C.; Kluth, M.; Simon, R.; Lebok, P.; Minner, S.; Tsourlakis, M.C.; Koop, C.; Graefen, M.; et al. High-Level HOOK3 Expression Is an Independent Predictor of Poor Prognosis Associated with Genomic Instability in Prostate Cancer. PLoS ONE 2015, 10, e0134614. [Google Scholar] [CrossRef]
- Ioannou, M.S.; Kulasekaran, G.; Fotouhi, M.; Morein, J.J.; Han, C.; Tse, S.; Nossova, N.; Han, T.; Mannard, E.; McPherson, P.S. Intersectin-s interaction with DENND2B facilitates recycling of epidermal growth factor receptor. EMBO Rep. 2017, 18, 2119–2130. [Google Scholar] [CrossRef]
- Wang, C.H.; Su, P.T.; Du, X.Y.; Kuo, M.W.; Lin, C.Y.; Yang, C.C.; Chan, H.S.; Chang, S.J.; Kuo, C.; Seo, K.; et al. Thrombospondin type I domain containing 7A (THSD7A) mediates endothelial cell migration and tube formation. J. Cell Physiol. 2010, 222, 685–694. [Google Scholar] [CrossRef]
- Wilson, T.J.; Zamler, D.B.; Doherty, R.; Castro, M.G.; Lowenstein, P.R. Reversibility of glioma stem cells’ phenotypes explains their complex in vitro and in vivo behavior: Discovery of a novel neurosphere-specific enzyme, cGMP-dependent protein kinase 1, using the genomic landscape of human glioma stem cells as a discovery tool. Oncotarget 2016, 7, 63020–63041. [Google Scholar] [CrossRef]
- Inoue, H.; Shiozaki, A.; Kosuga, T.; Shimizu, H.; Kudou, M.; Ohashi, T.; Arita, T.; Konishi, H.; Komatsu, S.; Kubota, T.; et al. Functions and Clinical Significance of CACNA2D1 in Gastric Cancer. Ann. Surg. Oncol. 2022, 29, 4522–4535. [Google Scholar] [CrossRef]
- Sui, X.; Geng, J.H.; Li, Y.H.; Zhu, G.Y.; Wang, W.H. Calcium channel alpha2delta1 subunit (CACNA2D1) enhances radioresistance in cancer stem-like cells in non-small cell lung cancer cell lines. Cancer Manag. Res. 2018, 10, 5009–5018. [Google Scholar] [CrossRef]
- Yu, D.; Holm, R.; Goscinski, M.A.; Trope, C.G.; Nesland, J.M.; Suo, Z. Prognostic and clinicopathological significance of Cacna2d1 expression in epithelial ovarian cancers: A retrospective study. Am. J. Cancer Res. 2016, 6, 2088–2097. [Google Scholar]
- Zhang, Y.; Zhao, W.; Li, S.; Lv, M.; Yang, X.; Li, M.; Zhang, Z. CXCL11 promotes self-renewal and tumorigenicity of alpha2delta1(+) liver tumor-initiating cells through CXCR3/ERK1/2 signaling. Cancer Lett. 2019, 449, 163–171. [Google Scholar] [CrossRef]
- Ma, S.; Rubin, B.P. Apoptosis-associated tyrosine kinase 1 inhibits growth and migration and promotes apoptosis in melanoma. Lab. Investig. 2014, 94, 430–438. [Google Scholar] [CrossRef]
- Woods, M.L.; Weiss, A.; Sokol, A.M.; Graumann, J.; Boettger, T.; Richter, A.M.; Schermuly, R.T.; Dammann, R.H. Epigenetically silenced apoptosis-associated tyrosine kinase (AATK) facilitates a decreased expression of Cyclin D1 and WEE1, phosphorylates TP53 and reduces cell proliferation in a kinase-dependent manner. Cancer Gene Ther. 2022, 29, 1975–1987. [Google Scholar] [CrossRef] [PubMed]
- Wolf, S.S.; Patchev, V.K.; Obendorf, M. A novel variant of the putative demethylase gene, s-JMJD1C, is a coactivator of the AR. Arch Biochem. Biophys. 2007, 460, 56–66. [Google Scholar] [CrossRef] [PubMed]
- Morup, N.; Busch, A.S.; Bang, A.K.; Nordkap, L.; Nielsen, J.E.; Rajpert-De Meyts, E.; Juul, A.; Jorgensen, N.; Almstrup, K. Polymorphisms in JMJD1C are associated with pubertal onset in boys and reproductive function in men. Sci. Rep. 2017, 7, 17242. [Google Scholar] [CrossRef] [PubMed]
- Kopanos, C.; Tsiolkas, V.; Kouris, A.; Chapple, C.E.; Albarca Aguilera, M.; Meyer, R.; Massouras, A. VarSome: The human genomic variant search engine. Bioinformatics 2019, 35, 1978–1980. [Google Scholar] [CrossRef]
- Kendig, K.I.; Baheti, S.; Bockol, M.A.; Drucker, T.M.; Hart, S.N.; Heldenbrand, J.R.; Hernaez, M.; Hudson, M.E.; Kalmbach, M.T.; Klee, E.W.; et al. Sentieon DNASeq Variant Calling Workflow Demonstrates Strong Computational Performance and Accuracy. Front. Genet. 2019, 10, 736. [Google Scholar] [CrossRef]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–424. [Google Scholar] [CrossRef]
- Ellard, S.; Baple, E.L.; Callaway, A.; Berry, I.; Forrester, N.; Turnbull, C.; Owens, M.; Eccles, D.M.; Abbs, S.; Scott, R.; et al. ACGS Best Practice Guidelines for Variant Classification in Rare Disease 2020. Available online: https://www.acgs.uk.com/media/11631/uk-practice-guidelines-for-variant-classification-v4-01-2020.pdf (accessed on 20 December 2022).
- McLaren, W.; Gil, L.; Hunt, S.E.; Riat, H.S.; Ritchie, G.R.; Thormann, A.; Flicek, P.; Cunningham, F. The Ensembl Variant Effect Predictor. Genome Biol. 2016, 17, 122. [Google Scholar] [CrossRef]
- Afgan, E.; Baker, D.; Batut, B.; van den Beek, M.; Bouvier, D.; Cech, M.; Chilton, J.; Clements, D.; Coraor, N.; Gruning, B.A.; et al. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update. Nucleic Acids Res. 2018, 46, W537–W544. [Google Scholar] [CrossRef]
- Rentzsch, P.; Witten, D.; Cooper, G.M.; Shendure, J.; Kircher, M. CADD: Predicting the deleteriousness of variants throughout the human genome. Nucleic Acids Res. 2019, 47, D886–D894. [Google Scholar] [CrossRef]
- Vaser, R.; Adusumalli, S.; Leng, S.N.; Sikic, M.; Ng, P.C. SIFT missense predictions for genomes. Nat. Protoc. 2016, 11, 1–9. [Google Scholar] [CrossRef]
- Adzhubei, I.; Jordan, D.M.; Sunyaev, S.R. Predicting functional effect of human missense mutations using PolyPhen-2. Curr. Protoc. Hum. Genet. 2013, 76, 7–20. [Google Scholar] [CrossRef]
- Schwarz, J.M.; Cooper, D.N.; Schuelke, M.; Seelow, D. MutationTaster2: Mutation prediction for the deep-sequencing age. Nat. Methods 2014, 11, 361–362. [Google Scholar] [CrossRef]
- Fadista, J.; Oskolkov, N.; Hansson, O.; Groop, L. LoFtool: A gene intolerance score based on loss-of-function variants in 60 706 individuals. Bioinformatics 2017, 33, 471–474. [Google Scholar] [CrossRef]
- Reva, B.; Antipin, Y.; Sander, C. Predicting the functional impact of protein mutations: Application to cancer genomics. Nucleic Acids Res. 2011, 39, e118. [Google Scholar] [CrossRef]
- Shihab, H.A.; Gough, J.; Cooper, D.N.; Stenson, P.D.; Barker, G.L.; Edwards, K.J.; Day, I.N.; Gaunt, T.R. Predicting the functional, molecular, and phenotypic consequences of amino acid substitutions using hidden Markov models. Hum. Mutat. 2013, 34, 57–65. [Google Scholar] [CrossRef]
- Venselaar, H.; Te Beek, T.A.; Kuipers, R.K.; Hekkelman, M.L.; Vriend, G. Protein structure analysis of mutations causing inheritable diseases. An e-Science approach with life scientist friendly interfaces. BMC Bioinform. 2010, 11, 548. [Google Scholar] [CrossRef]
- Tripathi, S.; Pohl, M.O.; Zhou, Y.; Rodriguez-Frandsen, A.; Wang, G.; Stein, D.A.; Moulton, H.M.; DeJesus, P.; Che, J.; Mulder, L.C.; et al. Meta- and Orthogonal Integration of Influenza “OMICs” Data Defines a Role for UBR4 in Virus Budding. Cell Host Microbe 2015, 18, 723–735. [Google Scholar] [CrossRef]
- Giurgiu, M.; Reinhard, J.; Brauner, B.; Dunger-Kaltenbach, I.; Fobo, G.; Frishman, G.; Montrone, C.; Ruepp, A. CORUM: The comprehensive resource of mammalian protein complexes-2019. Nucleic Acids Res. 2019, 47, D559–D563. [Google Scholar] [CrossRef]
- Chen, J.; Bardes, E.E.; Aronow, B.J.; Jegga, A.G. ToppGene Suite for gene list enrichment analysis and candidate gene prioritization. Nucleic Acids Res. 2009, 37, W305–W311. [Google Scholar] [CrossRef]
- World Medical Association. World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects. JAMA 2013, 310, 2191–2194. [Google Scholar] [CrossRef]
Family ID | Total Variants | Total Nonsynonymous Exonic and Splicing Variants | Total of Rare Variants MAF ≤ 0.001 | Total of Rare Variants MAF = 0 | Pedigree Filtering | Total Variants with CADD ≥ 20 and/or ACMG Class ≥ 3 | Segregating Variants | ||
---|---|---|---|---|---|---|---|---|---|
Total | Genes | ||||||||
Familial non-RET MTC | MTC_1 | 287,437 | 26,590 | 1710 | 589 | 150 | 32 | 1 | PTPRS |
MTC_2 | 278,892 | 26,647 | 1798 | 561 | 141 | 47 | 0 | ||
MTC_3 | 377,719 | 31,384 | 2118 | 635 | 62 | 10 | 1 | TBC1D4 | |
MTC_4 | 331,244 | 27,660 | 1815 | 639 | 223 | 25 | 9 | UBA7 NICN1 MROH2A Il16 DDX51 CCDC134 ANKRD24 DNAH11 * MAPK12 ** | |
MTC_5 | 327,240 | 27,595 | 1822 | 609 | 36 | 14 | 5 | ZNF19 USP40 MSH6 DGKQ COL4A4 | |
Familial NMTC | NMTC _1 | 283,011 | 26,096 | 1649 | 539 | 36 | 17 | 4 | FOXM1 EpCAM KTR39 BTBD16 |
NMTC _2 | 295,103 | 26,564 | 1692 | 543 | 32 | 12 | 3 | CACNA2D1 SHISA6 AATK | |
NMTC _3 | 293,795 | 25,850 | 1662 | 549 | 22 | 11 | 0 | ||
NMTC _4 | 350,840 | 27,682 | 1850 | 602 | 20 | 8 | 2 | JMJD1C AGXT | |
NMTC_5 | 293,604 | 26,576 | 1726 | 591 | 45 | 28 | 0 | ||
NMTC_6 | 308,316 | 26,747 | 1643 | 535 | 34 | 7 | 3 | HOOK3 RNF20 GGNBP2 | |
NMTC_7 | 166,962 | 23,462 | 1303 | 409 | 245 | 18 | 9 | NKD1 ROBO1 MYH10 TTC28 ZZEF1 CLIC6 CSMD2 STK32A TG | |
NMTC_8 | 362,285 | 29,160 | 1892 | 633 | 12 | 4 | 0 | ||
NMTC_9 | 307,691 | 26,615 | 1817 | 529 | 16 | 6 | 0 | ||
NMTC_10 | 343,679 | 28,984 | 1850 | 571 | 21 | 4 | 0 | ||
NMTC_11 | 306,989 | 26,246 | 1536 | 499 | 34 | 12 | 5 | NTRK1 TNKS PPP6R2 OR51M1 ANKRD35 | |
NMTC_12 | 166,132 | 23,605 | 1370 | 461 | 256 | 13 | 8 | FNTB ITPR1 PRKG1 DENND2B BMP1 USH2 INC THSD7A | |
NMTC_13 | 281,709 | 26,292 | 1795 | 604 | 27 | 10 | 3 | MPPE1 BEAN1 KTI12 |
Family ID | Gene | Position | cDNA | Protein | dbSNP | ACMG Class | Clin Sig. | Previous TC-assoc. | |
---|---|---|---|---|---|---|---|---|---|
Familial non - RET MTC | MTC_1 | PTPRS | chr19:5220272 | NM_002850.4:c.3548A>G | p.Glu1183Gly | - | LP | NAa,b | No |
MTC_3 | TBC1D4 | chr13:75900504 | NM_014832.5:c.1862C>T | p.Ser621Leu | rs888445750 | VUS | NAa,b | No | |
MTC_4 | UBA7 | chr3:49848264 | NM_003335.3:c.1232G>A | p.Arg411Lys | - | VUS | NAa,b | No | |
NICN1 | chr3:49466617 | NM_032316.3:c.56G>A | p.Gly19Asp | - | VUS | NAa,b | No | ||
MROH2A | chr2:234712121 | NM_001367507.1:c.1736T>C | p.Leu579Pro | - | VUS | NAa,b | No | ||
IL16 | chr15:81585187 | NM_172217.5:c.1712_1718del | p.Glu571Glyfs*7 | - | LP | NAa,b | No | ||
DDX51 | chr12:132625554 | NM_175066.4:c.1262C>T | p.Pro421Leu | - | VUS | NAa,b | No | ||
CCDC134 | chr22:42205996 | NM_024821.5:c.217del | p.Leu73Serfs*29 | - | VUS | NAa,b | No | ||
ANKRD24 | chr19:4217972 | NM_133475.1:c.2815G>C | p.Glu939Gln | - | LB | NAa,b | No | ||
DNAH11 | chr7:21628196 | NM_001277115.2:c.1915C>T | p.Gln639* | rs200073714 | LP | NAa/Pb | No | ||
MAPK12 | chr22:50699625 | NM_002969.6:c.226C>T | p.Arg76Cys | rs138533200 | VUS | NAa,b | No | ||
MTC_5 | ZNF19 | chr16:71509902 | NM_006961.4:c.548A>G | p.His183Arg | - | VUS | NAa,b | No | |
USP40 | chr2:234394522 | NM_001365479.2:c.3299C>A | p.Ala1111Asp | - | VUS | NAa,b | No | ||
MSH6 | chr2:48030612 | NM_000179.3:c.3226C>T | p.Arg1076Cys | rs63750617 | P | LPa,b | Yes | ||
DGKQ | chr4:955789 | NM_001347.4:c.2296C>T | p.Pro766Ser | - | VUS | NAa,b | No | ||
COL4A4 | chr2:227985771 | NM_000092.5:c.286G>A | p.Asp96Asn | rs772710366 | VUS | NAa,b | No | ||
Familial NMTC | NMTC_1 | FOXM1 | chr12:2983469 | NM_202002.2:c.176C>A | p.Pro59Gln | - | VUS | NAa,b | Yes |
EpCAM | chr2:47613735 | NM_002354.3:c.928A>T | p.Arg310Trp | - | LP | NAa,b | Yes | ||
KRT39 | chr17:39118666 | NM_213656.4:c.858del | p.Trp286Cysfs*6 | - | LP | NAa,b | No | ||
BTBD16 | chr10:124045631 | NM_144587.5:c.253G>T | p.Glu85* | - | VUS | NAa,b | No | ||
NMTC_2 | CACNA2D1 | chr7:81579757 | NM_000722.4:c.3227A>C | p.Gln1076Pro | - | VUS | NAa,b | No | |
SHISA6 | chr17:11461541 | NM_207386.4:c.1576C>T | p.His526Tyr | - | VUS | NAa,b | No | ||
AATK | chr17:79096394 | NM_001080395.3:c.1342C>T | p.Pro448Ser | rs1256230088 | LP | NAa,b | No | ||
NMTC_4 | JMJD1C | chr10:64967686 | NM_032776.3:c.3743A>G | p.Gln1248Arg | - | LP | VUSa/LPb | No | |
AGXT | chr2:241815402 | NM_000030.3:c.827T>G | p.Leu276Arg | - | LP | NAa,b | No | ||
NMTC_6 | HOOK3 | chr8:42841854 | NM_032410.4:c.1448G>T | p.Gly483Val | - | VUS | NAa,b | Yes | |
RNF20 | chr9:104313988 | NM_019592.7:c.1295A>C | p.Lys432Thr | - | VUS | NAa,b | No | ||
GGNBP2 | chr17:34913065 | NM_024835.5:c.317C>G | p.Ser106Cys | - | LP | NAa,b | No | ||
NMTC_7 | NKD1 | chr16:50667583 | NM_033119.5:c.1304T>C | p.Leu435Pro | - | VUS | NAa,b | No | |
ROBO1 | chr3:78763666 | NM_002941.4:c.926T>C | p.Ile309Thr | - | VUS | NAa,b | No | ||
MYH10 | chr17:8393804 | NM_001256012.3:c.4738G>A | p.Glu1580Lys | - | VUS | NAa,b | No | ||
TTC28 | chr22:28497190 | NM_001145418.1:c.3386C>T | p.Ala1129Val | - | VUS | NAa,b | No | ||
ZZEF1 | chr17:3937398 | NM_015113.4:c.6495C>A | p.Asn2165Lys | - | VUS | NAa,b | No | ||
CLIC6 | chr21:36043050 | NM_053277.3:c.1363C>T | p.Leu455Phe | - | LP | NAa,b | No | ||
CSMD2 | chr1:34068036 | NM_052896.4:c.6649G>A | p.Gly2217Ser | - | LP | NAa,b | No | ||
STK32A | chr5:146741154 | NM_001112724.2:c.637G>A | p.Ala213Thr | - | LP | NAa,b | No | ||
TG | chr8:134030213 | NM_003235.5:c.6753G>T | p.Trp2251Cys | - | P | NAa,b | Yes | ||
NMTC_11 | NTRK1 | chr1:156843512 | NM_002529.3:c.938T>A | p.Leu313Gln | - | VUS | NAa,b | Yes | |
TNKS | chr8:9578001 | NM_003747.3:c.1867C>A | p.Gln623Lys | - | VUS | NAa,b | No | ||
ANKRD35 | chr1:145562755 | NM_144698.5:c.2443T>C | p.Tyr815His | - | VUS | NAa,b | No | ||
OR51M1 | chr11:5410964 | NM_001004756.2:c.336G>C | p.Gln112His | - | VUS | NAa,b | No | ||
PPP6R2 | chr22:50878140 | NM_001242898.2:c.2139G>A | p.Trp713* | - | P | NAa,b | No | ||
NMTC_12 | FNTB | chr14:65519983 | NM_001202559.1:c.1166G>A | p.Trp389* | - | P | NAa,b | No | |
ITPR1 | chr3:4856888 | NM_001168272.2:c.7808C>T | p.Thr2603Met | - | LP | NAa,b | No | ||
PRKG1 | chr10:53921669 | NM_006258.4:c.1022G>A | p.Gly341Glu | - | VUS | NAa,b | No | ||
DENND2B | chr11:8752138 | NM_213618.2:c.697_699del | p.Ser233del | - | VUS | NAa,b | No | ||
BMP1 | chr8:22064964 | NM_006129.5:c.2510T>C | p.Met837Thr | - | VUS | NAa,b | Yes | ||
THSD7A | chr7:11521463 | NM_015204.3:c.1969G>A | p.Gly657Arg | - | LP | NAa,b | No | ||
INSC | chr11:15243030 | NM_001031853.4:c.968G>T | p.Gly323Val | - | LP | NAa,b | No | ||
USH2A | chr1:215848853 | NM_206933.4:c.12400G>A | p.Ala4134Thr | - | LP | NAa,b | No | ||
NMTC_13 | MPPE1 | chr18:11886989 | NM_023075.6:c.605del | p.Asp202Valfs*20 | rs570653089 | VUS | NAa,b | No | |
KTI12 | chr1:52498811 | NM_138417.3:c.623T>A | p.Leu208His | - | VUS | NAa,b | No | ||
BEAN1 | chr16:66511533 | NM_001178020.3:c.360G>A | p.Trp120* | - | LP | NAa,b | No |
Name | Genes | p-Value |
---|---|---|
MRE11 interactions | NTRK1; HOOK3; BMP1; MSH6 | 2.1 × 10−7 |
RAD50 interactions | NTRK1; HOOK3; BMP1; MSH6 | 2.9 × 10−7 |
NBN interactions | HOOK3; BMP1; MSH6 | 9.8 × 10−6 |
SMC2 interactions | FOXM1; NTRK1; BMP1 | 1.6 × 10−5 |
Family ID | Gene | cDNA | SIFT | PolyPhen2 | LoFtool | Mutation Assessor | Mutation Taster | FATHMM | CADD phred | |
---|---|---|---|---|---|---|---|---|---|---|
Familial non-RET MTC | MTC_1 | PTPRS | c.3548A>G | D (0.019) | P (1) | PD (0.317) | M (2.5) | DC (1) | T (0.52) | 33 |
MTC_3 | TBC1D4 | c.1862C>T | D (0.007) | PD (0.9) | B (0.771) | L (1.7) | DC (1) | T (0.95) | 23.6 | |
MTC_4 | UBA7 | c.1232G>A | T (0.96) | B (0.002) | B (0.935) | L (1.2) | DC (1) | T(0.04) | 20.7 | |
NICN1 | c.56G>A | D (0) | PD (0.99) | PD (0.403) | M (2.11) | DC (1) | T (1.82) | 29.6 | ||
MROH2A | c.1736T>C | D (0.004) | --- | --- | --- | DC (1) | T (0.56) | 28.3 | ||
IL16 | c.1712_1718del | --- | --- | PD (0.492) | --- | --- | --- | 22.8 | ||
DDX51 | c.1262C>T | T (0.2) | B (0.44) | B (0.767) | L (1.83) | DC (1) | T (4.43) | 22.3 | ||
CCDC134 | c.217del | --- | --- | PD (0.373) | --- | --- | --- | 33 | ||
ANKRD24 | c.2815G>C | D (0.047) | B (0.1) | B (0.852) | L (0.55) | DC (1) | T (1.32) | 21.4 | ||
DNAH11 | c.1915C>T | --- | --- | --- | --- | DC (1) | --- | 34 | ||
MAPK12 | c.226C>T | D (0.01) | P (1) | B (0.778) | L (1.8) | DC (1) | T (−0.24) | 32 | ||
MTC_5 | ZNF19 | c.548A>G | D (0.001) | PD (0.66) | B (0.78) | M (3.15) | DC (1) | T (−0.27) | 22.7 | |
USP40 | c.3299C>A | T (0.063) | PD (0.718) | B (0.986) | M (2.71) | DC (1) | T (3.4) | 23.3 | ||
MSH6 | c.3226C>T | D (0.023) | PD (0.99) | PD (0.112) | M (2.29) | DC (1) | D (−2.03) | 29.3 | ||
DGKQ | c.2296C>T | D (0.002) | P (1) | PD (0.367) | H (3.75) | DC (1) | T (1) | 29.7 | ||
COL4A4 | c.286G>A | T (0.14) | PD (0.85) | D (−2.67) | L (1.105) | DC (0.62) | D (−3.38) | 23.2 | ||
Familial NMTC | NMTC_1 | FOXM1 | c.176C>A | D (0.001) | PD (0.99) | PD (0.0154) | M (2.82) | DC (0.99) | D (−3.17) | 26.3 |
EpCAM | c.928A>T | D (0.001) | P (1) | --- | M (2.95) | DC (0.95) | T (−0.9) | 23.3 | ||
KRT39 | c.858del | --- | --- | --- | --- | --- | --- | 33 | ||
BTBD16 | c.253G>T | --- | --- | --- | --- | DC (1) | --- | 36 | ||
NMTC_2 | CACNA2D1 | c.3227A>C | D (0.004) | PD (0.99) | PD (0.258) | M (2.62) | DC (0.99) | T (3.14) | 25.6 | |
SHISA6 | c.1576C>T | D (0.017) | PD (0.99) | --- | L (1.39) | DC (0.83) | --- | 25.1 | ||
AATK | c.1342C>T | D (0) | P (1) | --- | M (3.22) | DC (0.99) | D (−2.06) | 25.4 | ||
NMTC_4 | JMJD1C | c.3743A>G | D (0) | PD (0.99) | PD (0.0285) | M (1.97) | DC (0.99) | T (0.03) | 25.3 | |
AGXT | c.827T>G | D (0) | PD (0.99) | PD (0.0556) | H (4.23) | DC (1) | D (−2.56) | 28 | ||
NMTC_6 | HOOK3 | c.1448G>T | D (0.004) | PD (0.88) | PD (0.17) | M (2.1) | DC (1) | T (2.2) | 24.6 | |
RNF20 | c.1295A>C | D (0.002) | PD (0.9) | B (0.764) | M (2.01) | DC (0.99) | T (1.19) | 23.1 | ||
GGNBP2 | c.317C>G | -- | PD (0.98) | PD (0.157) | M (2.25) | DC (0.99) | --- | 26.3 | ||
NMTC_7 | NKD1 | c.1304T>C | D (0) | PD (0.99) | PD (0.0705) | L (1.38) | DC (1) | T(−1.09) | 24.3 | |
ROBO1 | c.926T>C | D (0.001) | PD (0.83) | B (0.687) | M (2.155) | DC (0.99) | T (−0.4) | 26.6 | ||
MYH10 | c.4738G>A | D (0.013) | PD (0.86) | --- | H (3.815) | DC (1) | D (−2.04) | 26.6 | ||
TTC28 | c.3386C>T | D (0.013) | PD (0.83) | --- | L (1.61) | DC (1) | T (−1.01) | 25.4 | ||
ZZEF1 | c.6495C>A | T (0.1) | B (0.001) | PD (0.55) | L (0.345) | DC (0.83) | T (2.17) | 20.2 | ||
CLIC6 | c.1363C>T | D (0) | PD (0.99) | --- | L (1.9) | DC (1) | T (0.9) | 29.9 | ||
CSMD2 | c.6649G>A | D (0) | PD (0.99) | PD (0.316) | M (2.745) | DC (1) | T 1.22) | 31 | ||
STK32A | c.637G>A | D (0) | PD (0.99) | B (0.87) | L (0.99) | DC (0.99) | T (1.83) | 25.8 | ||
TG | c.6753G>T | D (0) | PD (0.99) | B (0.858) | H (4.57) | DC (1) | T (−0.97) | 32 | ||
NMTC_11 | NTRK1 | c.938T>A | D (0.001) | PD (0.98) | PD (0.0395) | M (2.285) | DC (1) | T (1.44) | 27.6 | |
TNKS | c.1867C>A | D (0.024) | B (0.43) | PD (0.41) | M (2.545) | DC (1) | T (0.67) | 23.8 | ||
ANKRD35 | c.2443T>C | --- | --- | B (0.99) | --- | --- | --- | 24.2 | ||
OR51M1 | c.336G>C | D (0) | --- | PD (0.377) | H (3.73) | DC (1) | T (7.19) | 24.6 | ||
PPP6R2 | c.2139G>A | --- | --- | --- | --- | DC (1) | --- | 47 | ||
NMTC_12 | FNTB | c.1166G>A | --- | --- | --- | --- | DC (1) | --- | 45 | |
ITPR1 | c.7808C>T | D (0) | PD (0.98) | PD (0.0141) | M (3.013) | DC (1) | T (0.81) | 30 | ||
PRKG1 | c.1022G>A | D (0.001) | PD (0.98) | PD (0.0367) | L (1.53) | DC (1) | T (1.5) | 28 | ||
DENND2B | c.697_699del | --- | --- | PD (0.39) | --- | --- | --- | 21.6 | ||
BMP1 | c.2510T>C | D (0.001) | PD (0.98) | B (0.687) | M (2.99) | DC (1) | T (2.05) | 26.8 | ||
THSD7A | c.1969G>A | D (0) | P (1) | --- | H (3.865) | DC (1) | D (−1.75) | 31 | ||
INSC | c.968G>T | D (0) | PD (0.99) | B (0.687) | L (1.04) | DC (1) | T (0.93) | 26.9 | ||
USH2A | c.12400G>A | D (0) | PD (0.99) | B (0.92) | M (3.425) | DC (1) | T (−1.02) | 28.5 | ||
NMTC_13 | MPPE1 | c.605del | --- | --- | B (0.93) | --- | --- | --- | 31 | |
KTI12 | c.623T>A | D (0.004) | P (1) | --- | M (3.15) | DC (0.99) | T (1.23) | 25 | ||
BEAN1 | c.360G>A | --- | --- | --- | --- | DC (1) | --- | 37 |
ID | SNVs | Gene | Wild-Type Size and (Charge) | Mutant Size and (Charge) | Characteristics & Features | |
---|---|---|---|---|---|---|
Familial non-RET MTC | MTC_4 | R411K | UBA7 | Large & (0) | Small & (0) | The mutation is located within a stretch of residues annotated as a special region: 2 approximate repeats |
Loss of interaction: High | ||||||
Protean folding: Affected | ||||||
L579P | MROH2A | Large & (0) | Small & (0) | The mutation is located within a stretch of residues that is repeated in the protein, HEAT 7 | ||
Loss of interaction: High | ||||||
Protean folding: Affected | ||||||
P421L | DDX51 | Small & (0) | Large & (0) | The mutation is located within a domain, Helicase ATP-binding | ||
Loss of interaction: High | ||||||
Protean folding: Affected | ||||||
R76C | MAPK12 | Large & (+ve) | Small & (0) | The mutation is located within a domain, Protein kinase | ||
Hydrophobicity: High | ||||||
Loss of interaction: High | ||||||
Protean folding: Affected | ||||||
MTC_5 | H183R | ZNF19 | Small & (0) | Large & (+ve) | Mutant residue disturb the interaction with the metal-ion: “Zinc” | |
Loss of interaction: High | ||||||
Protean folding: Affected | ||||||
D96N | COL4A4 | Small & (−ve) | Small & (0) | The mutation is located within a special motif: Cell attachment site and Triple-helical region | ||
Loss of interaction: High | ||||||
Protean folding: Affected | ||||||
Familial NMTC | NMTC_2 | Q1076P | CACNA2D1 | Small & (0) | Large & (0) | The residue is located in a region annotated as a transmembrane domain |
Loss of interaction: High | ||||||
Protean folding: Affected | ||||||
Hydrophobicity: High | ||||||
NMTC_7 | I309T | ROBO1 | Large | Small | The mutation is located within a domain, Ig-like C2-type 3 | |
Loss of interaction: High | ||||||
Protean folding: Affected | ||||||
Hydrophobicity: Lost | ||||||
G2217S | CSMD2 | Small | Large | The mutation is located within a domain, CUB 13 | ||
Loss of interaction: High | ||||||
Protean folding: Affected | ||||||
A213T | STK32A | Small | Large | The mutation is located within a domain, Protein kinase | ||
Loss of interaction: High | ||||||
Protean folding: Affected | ||||||
Hydrophobicity: Lost | ||||||
W2251C | TG | Large | Small | The mutation is located within a special region: Cholinesterase-like (ChEL) | ||
Loss of interaction: High | ||||||
Protean folding: Affected | ||||||
NMTC_11 | L313Q | NTRK1 | Small | Large | The mutation is located within a domain, Ig-like C2-type 2 | |
Loss of interaction: High | ||||||
Protean folding: Affected | ||||||
Hydrophobicity: Lost | ||||||
Q623K | TNKS | Small & (0) | Large & (+ve) | The mutation is located within a stretch of residues that is repeated in the protein, ANK 12 | ||
Loss of interaction: High | ||||||
Protean folding: Affected | ||||||
Q112H | OR51M1 | Small | Large | The residue is located in a region annotated as a transmembrane domain | ||
Loss of interaction: High | ||||||
Protean folding: Affected | ||||||
NMTC_12 | G341E | PRKG1 | Small & (0) | Large & (−ve) | The mutation is located within a domain, GMP-binding, low affinity | |
Loss of interaction: High | ||||||
Protean folding: Affected | ||||||
M837T | BMP1 | Large | Small | The mutation is located within a domain, CUB 4 | ||
Loss of interaction: High | ||||||
Protean folding: Affected | ||||||
Hydrophobicity: Lost | ||||||
G657R | THSD7A | Small & (0) | Large & (+ve) | The mutation is located within a domain, TSP type-1 7 | ||
Loss of interaction: High | ||||||
Protean folding: Affected | ||||||
A4134T | USH2A | Large & (+ve) | Small & (0) | The mutation is located within a domain, Laminin EGF-like 3 | ||
Loss of interaction: High | ||||||
Protean folding: Affected | ||||||
Hydrophobicity: High |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tous, C.; Muñoz-Redondo, C.; Bravo-Gil, N.; Gavilan, A.; Fernández, R.M.; Antiñolo, J.; Navarro-González, E.; Antiñolo, G.; Borrego, S. Identification of Novel Candidate Genes for Familial Thyroid Cancer by Whole Exome Sequencing. Int. J. Mol. Sci. 2023, 24, 7843. https://doi.org/10.3390/ijms24097843
Tous C, Muñoz-Redondo C, Bravo-Gil N, Gavilan A, Fernández RM, Antiñolo J, Navarro-González E, Antiñolo G, Borrego S. Identification of Novel Candidate Genes for Familial Thyroid Cancer by Whole Exome Sequencing. International Journal of Molecular Sciences. 2023; 24(9):7843. https://doi.org/10.3390/ijms24097843
Chicago/Turabian StyleTous, Cristina, Carmen Muñoz-Redondo, Nereida Bravo-Gil, Angela Gavilan, Raquel María Fernández, Juan Antiñolo, Elena Navarro-González, Guillermo Antiñolo, and Salud Borrego. 2023. "Identification of Novel Candidate Genes for Familial Thyroid Cancer by Whole Exome Sequencing" International Journal of Molecular Sciences 24, no. 9: 7843. https://doi.org/10.3390/ijms24097843
APA StyleTous, C., Muñoz-Redondo, C., Bravo-Gil, N., Gavilan, A., Fernández, R. M., Antiñolo, J., Navarro-González, E., Antiñolo, G., & Borrego, S. (2023). Identification of Novel Candidate Genes for Familial Thyroid Cancer by Whole Exome Sequencing. International Journal of Molecular Sciences, 24(9), 7843. https://doi.org/10.3390/ijms24097843