Theranostics Nanomedicine Applications for Colorectal Cancer and Metastasis: Recent Advances
Abstract
:1. Introduction
2. Colorectal Liver Metastasis
3. Applications of Nanotechnology for CRC Diagnosis and Treatment
4. Iron Oxide Nanoparticles (IONS)
5. Quantum Dots
6. Poly (Lactic-co-glycolic Acid) NPs/Nano Cells
7. Dendrimers
8. Carbon Nanotubes
9. Liposomes
10. Gold NPs
11. Nanoemulsions
12. Other NPs
13. Targeted NPs in CRC Research
14. Passive Targeted NPs
14.1. Facile NPs
14.2. Targeted NPs with a pH Sensitivity
14.3. NPs with Redox Responsiveness
15. Combine Nanotechnology-Based Approaches for CRC Detection and Treatment
16. Enhancement of Imaging Techniques
17. Combined Drug Delivery
18. Conclusions and Future Prospective
Author Contributions
Funding
Conflicts of Interest
Abbreviations
CRC | Colorectal cancer |
CRLM | Colorectal liver metastases |
SEER | Surveillance, Epidemiology, and End Results |
NM’s | Nanomaterials |
IONs | Iron oxide nanoparticles |
SPIONs | Superparamagnetic iron oxide nanoparticles |
QDot | Quantum dots |
VEGFR2 | Vascular endothelial growth factor receptor 2 |
PLGA | Poly-(lactic-co-glycolic acid) |
5-FU | 5-Fluorouracil |
PAMAM | Poly (amidoamine) |
CNTs | Carbon Nanotubes |
FDA | U.S. Food and Drug Administration |
PEG | Polyethylene glycol |
PLA | Polylactic acid |
PCL | Polycaprolactone |
EPR | Enhanced permeability and retention |
TME | Tumor microenvironment |
GSH | Reducing substance glutathione |
DEG | Ethylene glycol oligomers |
SWCNTs | Single-walled carbon nanotubes |
PLNPs | Persistent luminescence nanoparticles |
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Cardoso, R.; Guo, F.; Heisser, T.; Hackl, M.; Ihle, P.; De Schutter, H.; Van Damme, N.; Valerianova, Z.; Atanasov, T.; Májek, O.; et al. Colorectal cancer incidence, mortality, and stage distribution in European countries in the colorectal cancer screening era: An international population-based study. Lancet Oncol. 2021, 22, 1002–1013. [Google Scholar] [CrossRef] [PubMed]
- Veettil, S.K.; Wong, T.Y.; Pharm, B.; Loo, Y.S.; Pharm, B.; Playdon, M.C.; Lai, N.M. Role of Diet in Colorectal Cancer Incidence Umbrella Review of Meta-analyses of Prospective Observational Studies. JAMA Netw. Open 2021, 4, e2037341. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, M.; Zou, Y.; Jin, L.; Zhao, Z.; Liu, Q.; Wang, S.; Li, J. Mechanisms of chemotherapeutic resistance and the application of targeted nanoparticles for enhanced chemotherapy in colorectal cancer. J. Nanobiotechnol. 2022, 20, e2037341. [Google Scholar] [CrossRef]
- Shaukat, A.; Kaltenbach, T.; Dominitz, J.A.; Robertson, D.J.; Anderson, J.C.; Cruise, M.; Burke, C.A.; Gupta, S.; Lieberman, D.; Syngal, S.; et al. Endoscopic Recognition and Management Strategies for Malignant Colorectal Polyps: Recommendations of the US Multi-Society Task Force on Colorectal Cancer. Am. J. Gastroenterol. 2020, 115, 1751–1767. [Google Scholar] [CrossRef] [PubMed]
- John, M.; Chyke, A. DoubeniCauses of Socioeconomic Disparities in Colorectal Cancer and Intervention Framework and Strategies. Gastroenterology 2021, 158, 354–367. [Google Scholar] [CrossRef]
- Silveira, M.J.; Castro, F.; Oliveira, M.J. Biomaterials Science cancer treatment: A landscape to be explored? Biomater. Sci. 2021, 9, 3228–3243. [Google Scholar] [CrossRef] [PubMed]
- Barani, M.; Bilal, M.; Rahdar, A.; Arshad, R.; Kumar, A.; Hamishekar, H.; Kyzas, G.Z. Nanodiagnosis and nanotreatment of colorectal cancer: An overview. J. Nanopart. Res. 2021, 23, 18. [Google Scholar] [CrossRef]
- Martin, J.; Petrillo, A.; Smyth, E.C.; Shaida, N.; Khwaja, S.; Cheow, H.K.; Heister, P.; Praseedom, R.; Jah, A.; Balakrishnan, A.; et al. Colorectal liver metastases: Current management and future perspectives. World J. Clin. Oncol. 2020, 11, 761. [Google Scholar] [CrossRef]
- Valderrama-treviño, A.I.; Valderrama-treviño, A.I.; Barrera-mera, B.; Ceballos-villalva, J.C.; Montalvo-javé, E.E. Hepatic Metastasis from Colorectal Cancer. Euroasian J. Hepato Gastroenterol. 2017, 7, 166–175. [Google Scholar] [CrossRef]
- Zhou, H.; Liu, Z.; Wang, Y.; Wen, X.; Amador, E.H.; Yuan, L.; Ran, X.; Xiong, L.; Ran, Y.; Chen, W.; et al. Colorectal liver metastasis: Molecular mechanism and interventional therapy. Signal Transduct. Target. Ther. 2022, 7, 70. [Google Scholar] [CrossRef]
- Takahashi, H.; Berber, E. Role of thermal ablation in the management of colorectal liver metastasis. Hepato Biliary Surg. Nutr. 2020, 9, 49–58. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Jin, L.; Chen, P.; Li, D.; Gao, W.; Dong, G. Colorectal cancer immunotherapy-Recent progress and future directions. Cancer Lett. 2022, 545, 215816. [Google Scholar] [CrossRef] [PubMed]
- Mao, Q.; Min, J.; Zeng, R.; Liu, H.; Li, H.; Zhang, C.; Zheng, A.; Lin, J.; Liu, X.; Wu, M. Self-assembled traditional Chinese nanomedicine modulating tumor immunosuppressive microenvironment for colorectal cancer immunotherapy. Theranostics 2022, 12, 6088–6105. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Liu, C.; Liu, C.; Zhong, D.; Hua, S.; He, J.; Wang, K.; Zhou, M. Wrapping Porphyromonas gingivalis for tumor microenvironment immunomodulation and photothermal immunotherapy. Nano Today 2021, 41, 101311. [Google Scholar] [CrossRef]
- Hu, X.; Hou, B.; Xu, Z.; Saeed, M.; Sun, F.; Gao, Z.; Lai, Y.; Zhu, T.; Zhang, F.; Zhang, W.; et al. Supramolecular Prodrug Nanovectors for Active Tumor Targeting and Combination Immunotherapy of Colorectal Cancer. Adv. Sci. 2020, 7, 1903332. [Google Scholar] [CrossRef]
- Ding, D.; Zhong, H.; Liang, R.; Lan, T.; Zhu, X.; Huang, S.; Wang, Y.; Shao, J.; Shuai, X.; Wei, B. Multifunctional Nanodrug Mediates Synergistic Photodynamic Therapy and MDSCs-Targeting Immunotherapy of Colon Cancer. Adv. Sci. 2021, 8, 2100712. [Google Scholar] [CrossRef]
- Li, M.; Yang, J.; Yao, X.; Li, X.; Xu, Z.; Tang, S.; Sun, B.; Lin, S.; Yang, C.; Liu, J. Multifunctional Mesoporous Silica-Coated Gold Nanorods Mediate Mild Photothermal Heating-Enhanced Gene/Immunotherapy for Colorectal Cancer. Pharmaceutics 2023, 15, 854. [Google Scholar] [CrossRef]
- Chen, W.; Jiang, M.; Yu, W.; Xu, Z.; Liu, X.; Jia, Q.; Guan, X.; Zhang, W. CpG-Based Nanovaccines for Cancer Immunotherapy. Int. J. Nanomed. 2021, 16, 5281–5299. [Google Scholar] [CrossRef]
- Zhou, Y.; Quan, G.; Wu, Q.; Zhang, X.; Niu, B.; Wu, B.; Huang, Y.; Pan, X.; Wu, C. Mesoporous silica nanoparticles for drug and gene delivery. Acta Pharm. Sin. B 2018, 8, 165–177. [Google Scholar] [CrossRef]
- Zhang, H.; Li, M.; Kaboli, P.J.; Ji, H.; Du, F.; Wu, X.; Zhao, Y.; Shen, J.; Wan, L.; Yi, T.; et al. Identification of cluster of differentiation molecule-associated microRNAs as potential therapeutic targets for gastrointestinal cancer immunotherapy. Int. J. Biol. Mrk. 2021, 36, 22–32. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, M.R.; Carvalho, C.R.; Maia, F.R.; Caballero, D.; Kundu, S.C.; Reis, R.L.; Oliveira, J.M. Peptide-Modified Dendrimer Nanoparticles for Targeted Therapy of Colorectal Cancer. Adv. Ther. 2019, 2, 1900132. [Google Scholar] [CrossRef]
- Briolay, T.; Petithomme, T.; Fouet, M.; Nguyen-Pham, N.; Blanquart, C.; Boisgerault, N. Delivery of cancer therapies by synthetic and bio-inspired nanovectors. Mol. Cancer 2021, 20, 55. [Google Scholar] [CrossRef] [PubMed]
- Palzer, J.; Eckstein, L.; Slabu, I.; Reisen, O.; Neumann, U.P.; Roeth, A.A. Iron oxide nanoparticle-based hyperthermia as a treatment option in various gastrointestinal malignancies. Nanomaterials 2021, 11, 3013. [Google Scholar] [CrossRef]
- Suciu, M.; Ionescu, C.M.; Ciorita, A.; Tripon, S.C.; Nica, D.; Al-Salami, H.; Barbu-Tudoran, L. Applications of superparamagnetic iron oxide nanoparticles in drug and therapeutic delivery, and biotechnological advancements. Beilstein J. Nanotechnol. 2020, 11, 1092–1109. [Google Scholar] [CrossRef]
- Dabaghi, M.; Rasa, S.M.M.; Cirri, E.; Ori, A.; Neri, F.; Quaas, R.; Hilger, I. Iron oxide nanoparticles carrying 5-fluorouracil in combination with magnetic hyperthermia induce thrombogenic collagen fibers, cellular stress, and immune responses in heterotopic human colon cancer in mice. Pharmaceutics 2021, 13, 1625. [Google Scholar] [CrossRef]
- Alkahtane, A.A.; Alghamdi, H.A.; Aljasham, A.T.; Alkahtani, S. A possible theranostic approach of chitosan-coated iron oxide nanoparticles against human colorectal carcinoma (HCT-116) cell line. Saudi J. Biol. Sci. 2022, 29, 154–160. [Google Scholar] [CrossRef]
- Gil, H.M.; Price, T.W.; Chelani, K.; Bouillard, J.S.G.; Calaminus, S.D.J.; Stasiuk, G.J. NIR-quantum dots in biomedical imaging and their future. iScience 2021, 24, 102189. [Google Scholar] [CrossRef]
- Molaei, M.J. Carbon quantum dots and their biomedical and therapeutic applications: A review. RSC Adv. 2019, 9, 6460–6481. [Google Scholar] [CrossRef]
- Lidke, D.S.; Lidke, K.A.; Rieger, B.; Jovin, T.M.; Arndt-Jovin, D.J. Reaching out for signals: Filopodia sense EGF and respond by directed retrograde transport of activated receptors. J. Cell Biol. 2005, 170, 619–626. [Google Scholar] [CrossRef]
- Jaiswal, J.K.; Mattoussi, H.; Mauro, J.M.; Simon, S.M. Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat. Biotechnol. 2003, 21, 47–51. [Google Scholar] [CrossRef] [PubMed]
- Carbary-Ganz, J.L.; Welge, W.A.; Barton, J.K.; Utzinger, U. In vivo molecular imaging of colorectal cancer using quantum dots targeted to vascular endothelial growth factor receptor 2 and optical coherence tomography/laser-induced fluorescence dual-modality imaging. J. Biomed. Opt. 2015, 20, 96015. [Google Scholar] [CrossRef] [PubMed]
- Ailuno, G.; Balboni, A.; Caviglioli, G.; Lai, F.; Barbieri, F.; Dellacasagrande, I.; Florio, T.; Baldassari, S. Boron Vehiculating Nanosystems for Neutron Capture Therapy in Cancer Treatment. Cells 2022, 11, 4029. [Google Scholar] [CrossRef]
- Kozien, D.; Szermer-Olearnik, B.; Rapak, A.; Szczygieł, A.; Anger-Góra, N.; Boratynski, J.; Pajtasz-Piasecka, E.; Bucko, M.M.; Pedzich, Z. Boron-Rich Boron Carbide Nanoparticles as a Carrier in Boron Neutron Capture Therapy: Their Influence on Tumor and Immune Phagocytic Cells. Materials 2021, 14, 3010. [Google Scholar] [CrossRef] [PubMed]
- Lee, P.W.; Pokorski, J.K. Poly(lactic-co-glycolic acid) devices: Production and applications for sustained protein delivery. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2018, 10, e1516. [Google Scholar] [CrossRef] [PubMed]
- Emami, F.; Yazdi, S.J.; Na, D.H. Poly(lactic acid)/poly(lactic-co-glycolic acid) particulate carriers for pulmonary drug delivery. J. Pharm. Investig. 2019, 49, 427–442. [Google Scholar] [CrossRef]
- Rezvantalab, S.; Drude, N.I.; Moraveji, M.K.; Güvener, N.; Koons, E.K.; Shi, Y.; Lammers, T.; Kiessling, F. PLGA-based nanoparticles in cancer treatment. Front. Pharmacol. 2018, 9, 1260. [Google Scholar] [CrossRef]
- Jain, A.K.; Swarnakar, N.K.; Godugu, C.; Singh, R.P.; Jain, S. The effect of the oral administration of polymeric nanoparticles on the efficacy and toxicity of tamoxifen. Biomaterials 2011, 32, 503–515. [Google Scholar] [CrossRef]
- Al-Jamal, K.T.; Bai, J.; Wang, J.T.W.; Protti, A.; Southern, P.; Bogart, L.; Heidari, H.; Li, X.; Cakebread, A.; Asker, D.; et al. Magnetic Drug Targeting: Preclinical in Vivo Studies, Mathematical Modeling, and Extrapolation to Humans. Nano Lett. 2016, 16, 5652–5660. [Google Scholar] [CrossRef]
- Eynali, S.; Khoei, S.; Khoee, S.; Esmaelbeygi, E. Evaluation of the cytotoxic effects of hyperthermia and 5-fluorouracil-loaded magnetic nanoparticles on human colon cancer cell line HT-29. Int. J. Hyperth. 2017, 33, 327–335. [Google Scholar] [CrossRef]
- Wu, P.; Zhou, Q.; Zhu, H.; Zhuang, Y.; Bao, J. Enhanced antitumor efficacy in colon cancer using EGF functionalized PLGA nanoparticles loaded with 5-Fluorouracil and perfluorocarbon. BMC Cancer 2020, 20, 354. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Zhang, F.; Yang, C.; Wang, L.; Sung, J.; Garg, P.; Zhang, M.; Merlin, D. Oral targeted delivery by nanoparticles enhances efficacy of an Hsp90 inhibitor by reducing systemic exposure in murine models of colitis and colitis-associated cancer. J. Crohn’s Colitis 2020, 14, 130–141. [Google Scholar] [CrossRef] [PubMed]
- Handali, S.; Moghimipour, E.; Rezaei, M.; Ramezani, Z.; Dorkoosh, F.A. PHBV/PLGA nanoparticles for enhanced delivery of 5-fluorouracil as promising treatment of colon cancer. Pharm. Dev. Technol. 2020, 25, 206–218. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Yu, F.; Chen, Y.; Oupický, D. Polymeric drugs: Advances in the development of pharmacologically active polymers. J. Control. Release 2015, 219, 369–382. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Smet, M.; Dehaen, W.; Xu, H. Selenium—Platinum Coordination Dendrimers with Controlled Anti-Cancer Activity. ACS Appl. Mater. Interfaces 2016, 8, 3609–3614. [Google Scholar] [CrossRef] [PubMed]
- Yan, W.; Tao, M.; Jiang, B.; Yao, M.; Jun, Y.; Dai, W.; Tang, Z.; Gao, Y.; Zhang, L.; Chen, X.; et al. Overcoming Drug Resistance in Colon Cancer by Aptamer-Mediated Targeted Co-Delivery of Drug and siRNA Using Grapefruit-Derived Nanovectors. Cell. Physiol. Biochem. 2018, 223300, 79–91. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Wang, J.; Chen, H.; Shen, W.; Sinko, P.J.; Dong, H.; Zhao, R.; Lu, Y.; Zhu, Y.; Jia, L. Multivalent Conjugation of Antibody to Dendrimers for the Enhanced Capture and Regulation on Colon Cancer Cells. Sci. Rep. 2015, 5, srep09445. [Google Scholar] [CrossRef]
- Nabavizadeh, F.; Fanaei, H.; Imani, A.; Vahedian, J.; Amoli, F.A.; Ghorbi, J.; Sohanaki, H.; Mohammadi, S.M.; Golchoobian, R. Evaluation of Nanocarrier Targeted Drug Delivery of Capecitabine-PAMAM Dendrimer Complex in a Mice Colorectal Cancer Model. Acta MEDICA Iran. 2016, 54. [Google Scholar]
- Alibolandi, M.; Hoseini, F.; Mohammadi, M.; Ramezani, P.; Einafshar, E.; Taghdisi, S.M.; Ramezani, M.; Abnous, K. Curcumin-entrapped MUC-1 aptamer targeted dendrimer-gold hybrid nanostructure as a theranostic system for colon adenocarcinoma. Int. J. Pharm. 2018, 549, 67–75. [Google Scholar] [CrossRef]
- Alibolandi, M.; Taghdisi, S.M.; Ramezani, P.; Hosseini Shamili, F.; Farzad, S.A.; Abnous, K.; Ramezani, M. Smart AS1411-aptamer conjugated pegylated PAMAM dendrimer for the superior delivery of camptothecin to colon adenocarcinoma in vitro and in vivo. Int. J. Pharm. 2017, 519, 352–364. [Google Scholar] [CrossRef]
- England, R.M.; Hare, J.I.; Barnes, J.; Wilson, J.; Smith, A.; Strittmatter, N.; Kemmitt, P.D.; Waring, M.J.; Barry, S.T.; Alexander, C.; et al. Tumour regression and improved gastrointestinal tolerability from controlled release of SN-38 from novel polyoxazoline-modified dendrimers. J. Control. Release 2017, 247, 73–85. [Google Scholar] [CrossRef] [PubMed]
- Narmani, A.; Kamali, M.; Amini, B.; Salimi, A.; Panahi, Y. Targeting delivery of oxaliplatin with smart PEG-modified PAMAM G4 to colorectal cell line: In vitro studies. Process. Biochem. 2018, 69, 178–187. [Google Scholar] [CrossRef]
- Liu, X.; Ying, Y.; Ping, J. Biosensors and bioelectronics structure, synthesis, and sensing applications of single-walled carbon nanohorns. Biosens. Bioelectron. 2020, 167, 112495. [Google Scholar] [CrossRef] [PubMed]
- Jin, H.; Gao, S.; Song, D.; Liu, Y.; Chen, X. Intratumorally CpG immunotherapy with carbon nanotubes inhibits local tumor growth and liver metastasis by suppressing the epithelial–mesenchymal transition of colon cancer cells. Anti Cancer Drugs 2020, 32, 278–285. [Google Scholar] [CrossRef] [PubMed]
- Lee, P.-C.; Chiou, Y.-C.; Wong, J.-M.; Peng, C.-L.; Shieh, M.-J. Targeting colorectal cancer cells with single-walled carbon nanotubes conjugated to anticancer agent SN-38 and EGFR antibody. Biomaterials 2013, 34, 8756–8765. [Google Scholar] [CrossRef]
- González-Domínguez, J.; Grasa, L.; Frontiñán-Rubio, J.; Abás, E.; Domínguez-Alfaro, A.; Mesonero, J.; Criado, A.; Ansón-Casaos, A. Intrinsic and selective activity of functionalized carbon nanotube/nanocellulose platforms against colon cancer cells. Colloids Surf. B Biointerfaces 2022, 212, 112363. [Google Scholar] [CrossRef]
- Sciences, M. Effective Photodynamic Therapy for Colon Cancer Cells Using Chlorin e6 Coated Hyaluronic Acid-Based Carbon Nanotubes. Int. J. Mol. Sci. 2020, 21, 4745. [Google Scholar]
- Silva, R.; Ferreira, H.; Cavaco-Paulo, A. Sonoproduction of Liposomes and Protein Particles as Templates for Delivery Purposes. Biomacromolecules 2011, 12, 3353–3368. [Google Scholar] [CrossRef]
- Patil, Y.P.; Jadhav, S. Novel methods for liposome preparation. Chem. Phys. Lipids 2014, 177, 8–18. [Google Scholar] [CrossRef]
- Noble, G.T.; Stefanick, J.F.; Ashley, J.D.; Kiziltepe, T.; Bilgicer, B. Ligand-targeted liposome design: Challenges and fundamental considerations. Trends Biotechnol. 2014, 32, 32–45. [Google Scholar] [CrossRef]
- Allen, T.M.; Cullis, P.R. Liposomal drug delivery systems: From concept to clinical applications. Adv. Drug Deliv. Rev. 2013, 65, 36–48. [Google Scholar] [CrossRef] [PubMed]
- Maruyama, K.; Ishida, O.; Kasaoka, S.; Takizawa, T.; Utoguchi, N.; Shinohara, A.; Chiba, M.; Kobayashi, H.; Eriguchi, M.; Yanagie, H. Intracellular targeting of sodium mercaptoundecahydrododecaborate (BSH) to solid tumors by transferrin-PEG liposomes, for boron neutron-capture therapy (BNCT). J. Control. Release 2004, 98, 195–207. [Google Scholar] [CrossRef] [PubMed]
- Siddique, S.; Chow, J.C.L. applied sciences Gold Nanoparticles for Drug Delivery and Cancer Therapy. Appl. Sci. 2020, 10, 3824. [Google Scholar] [CrossRef]
- Zhao, X.; Pan, J.; Li, W.; Yang, W.; Qin, L.; Pan, Y. Gold nanoparticles enhance cisplatin delivery and potentiate chemotherapy by decompressing colorectal cancer vessels. Int. J. Nanomed. 2018, 13, 6207–6221. [Google Scholar] [CrossRef] [PubMed]
- Pissuwan, D.; Gazzana, C.; Mongkolsuk, S.; Cortie, M.B. Single and multiple detections of foodborne pathogens by gold nanoparticle assays. WIREs Nanomed. Nanobiotechnology 2019, 12, e1584. [Google Scholar] [CrossRef]
- Ganta, S.; Talekar, M.; Singh, A.; Coleman, T.P.; Amiji, M.M. Nanoemulsions in Translational Research—Opportunities and Challenges in Targeted Cancer Therapy. AAPS PharmSciTech 2014, 15, 694–708. [Google Scholar] [CrossRef]
- Sánchez-López, E.; Guerra, M.; Dias-Ferreira, J.; Lopez-Machado, A.; Ettcheto, M.; Cano, A.; Espina, M.; Camins, A.; Garcia, M.L.; Souto, E.B. Current Applications of Nanoemulsions in Cancer Therapeutics. Nanomaterials 2019, 9, 821. [Google Scholar] [CrossRef]
- Brar, B.; Ranjan, K.; Palria, A.; Kumar, R.; Ghosh, M.; Sihag, S.; Minakshi, P. Nanotechnology in Colorectal Cancer for Precision Diagnosis and Therapy. Front. Nanotechnol. 2021, 3, 699266. [Google Scholar] [CrossRef]
- Jong, W.H. De Drug delivery and nanoparticles: Applications and hazards. Int. J. Nanomed. 2008, 3, 133–149. [Google Scholar] [CrossRef]
- Swetledge, S.; Jung, J.P.; Carter, R.; Sabliov, C. Distribution of polymeric nanoparticles in the eye: Implications in ocular disease therapy. J. Nanobiotechnol. 2021, 19, 10. [Google Scholar] [CrossRef]
- Verma, P.; Srivastava, A.; Srikanth, C.V.; Bajaj, A. Nanoparticle-mediated gene therapy strategies for mitigating inflammatory bowel disease. Biomater. Sci. 2020, 9, 1481–1502. [Google Scholar] [CrossRef] [PubMed]
- Thurner, G.C.; Haybaeck, J.; Debbage, P. Targeting Drug Delivery in the Elderly: Are Nanoparticles an Option for Treating Osteoporosis? Int. J. Mol. Sci. 2021, 22, 8932. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, P.V.; Roney, C.A.; Antich, P.P.; Bonte, F.J.; Raghu, A. Quinoline-n-butylcyanoacrylate-based nanoparticles for brain targeting for the diagnosis of Alzheimer’s disease. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2010, 2, 35–47. [Google Scholar] [CrossRef] [PubMed]
- Alkaff, S.A.; Radhakrishnan, K.; Nedumaran, A.M.; Liao, P.; Czarny, B. Nanocarriers for Stroke Therapy: Advances and Obstacles in Translating Animal Studies. Int. J. Nanomed. 2020, 15, 445–464. [Google Scholar] [CrossRef] [PubMed]
- Taurin, S.; Nehoff, H.; Greish, K. Anticancer nanomedicine and tumor vascular permeability; Where is the missing link? J. Control Release 2012, 164, 265–275. [Google Scholar] [CrossRef]
- Chen, Y.; Ye, J.; Lv, G.; Liu, W.; Jiang, H.; Liu, X.; Wang, X. Hydrogen Peroxide and Hypochlorite Responsive Fluorescent Nanoprobes for Sensitive Cancer Cell Imaging. Biosensors 2022, 12, 111. [Google Scholar] [CrossRef]
- Wang, J.; Li, Y.; Nie, G. Multifunctional biomolecule nanostructures for cancer therapy. Nat. Rev. Mater. 2021, 6, 766–783. [Google Scholar] [CrossRef]
- Mundekkad, D.; Sciences, M. Nanoparticles in Clinical Translation for Cancer Therapy. Int. J. Mol. Sci. 2022, 23, 1685. [Google Scholar] [CrossRef]
- Baek, S.; Singh, R.K.; Khanal, D.; Patel, K.D.; Lee, E.-J.; Leong, K.W.; Chrzanowski, W.; Kim, H.-W. Smart multifunctional drug delivery towards anticancer therapy harmonized in mesoporous nanoparticles. Nanoscale 2015, 7, 14191–14216. [Google Scholar] [CrossRef]
- Govindarasu, M.; Abirami, P.; Alharthi, S.S.; Thiruvengadam, M.; Rajakumar, G.; Vaiyapuri, M. Synthesis, physicochemical characterization, and in vitro evaluation of biodegradable PLGA nanoparticles entrapped to folic acid for targeted delivery of kaempferitrin. Biotechnol. Appl. Biochem. 2022, 69, 2387–2398. [Google Scholar] [CrossRef]
- Sun, T.; Zhang, Y.S.; Pang, B.; Hyun, D.C.; Yang, M.; Xia, Y. Engineered Nanoparticles for Drug Delivery in Cancer Therapy. Angew. Chem. Int. Ed. 2014, 53, 12320–12364. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, A.L.; Fernandes, R.; Ara, D.; Chan, A.B.; Schomann, T.; Tamburini, F. Effect of oxaliplatin-loaded poly (d, l-Lactide-co-Glycolic Acid)(PLGA) nanoparticles combined with retinoic acid and cholesterol on apoptosis, drug resistance, and metastasis factors of colorectal cancer. Pharmaceutics 2020, 12, 193. [Google Scholar] [CrossRef] [PubMed]
- Toudeshkchouei, M.G.; Zahedi, P.; Shavandi, A. Microfluidic-Assisted Preparation of 5-Fluorouracil-Loaded PLGA Nanoparticles as a Potential System for Colorectal Cancer Therapy. Materials 2020, 13, 1483. [Google Scholar] [CrossRef] [PubMed]
- Xiao, B.; Si, X.; Han, M.K.; Viennois, E.; Zhang, M.; Merlin, D.; State, G.; Affairs, V. Co-delivery of camptothecin and curcumin by cationic polymeric nanoparticles for synergistic colon cancer combination chemotherapy. J. Mater. Chem. B Mater. Biol. Med. 2015, 3, 7724–7733. [Google Scholar] [CrossRef]
- Li, L.; Yang, J.; Wang, W.-W.; Yao, Y.-C.; Fang, S.-H.; Dai, Z.-Y.; Hong, H.-H.; Yang, X.; Shuai, X.-T.; Gao, G.-Q. Pigment epithelium-derived factor gene loaded in cRGD–PEG–PEI suppresses colorectal cancer growth by targeting endothelial cells. Int. J. Pharm. 2012, 438, 1–10. [Google Scholar] [CrossRef]
- Shi, G.; Li, J.; Yan, X.; Jin, K.; Li, W.; Liu, X.; Zhao, J.; Shang, W.; Zhang, R. Low-density lipoprotein-decorated and Adriamycin-loaded silica nanoparticles for tumor-targeted chemotherapy of colorectal cancer. Adv. Clin. Exp. Med. 2018, 28, 479–487. [Google Scholar] [CrossRef]
- Liang, G.; Zhu, Y.; Jing, A.; Wang, J.; Hu, F.; Feng, W.; Xiao, Z.; Chen, B. Cationic microRNA-delivering nanocarriers for efficient treatment of colon carcinoma in xenograft model. Gene Ther. 2016, 23, 829–838. [Google Scholar] [CrossRef]
- Javan, B.; Atyabi, F.; Shahbazi, M. Hypoxia-inducible bidirectional shRNA expression vector delivery using PEI/chitosan-TBA copolymers for colorectal Cancer gene therapy. Life Sci. 2018, 202, 140–151. [Google Scholar] [CrossRef]
- Zhu, Y.; Chen, F. pH-Responsive Drug-Delivery Systems. Chem. Asian J. 2015, 10, 284–305. [Google Scholar] [CrossRef]
- Sani, N.S.; Onsori, H.; Akrami, S.; Rahmati, M. A Comparison of the Anti-Cancer Effects of Free and PLGA-PAA Encapsulated Hydroxytyrosol on the HT-29 Colorectal Cancer Cell Line. Anti-Cancer Agents Med. Chem. 2022, 22, 390–394. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, M.; Cao, N.; Qin, W.; Zhao, M.; Wu, J.; Lin, D. Construction of a tumor microenvironment pH-responsive cleavable PEGylated hyaluronic acid nano-drug delivery system for colorectal cancer treatment. Biomater. Sci. 2020, 8, 1885–1896. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Y.; Xiao, C.; Li, Z.; Yang, X. Engineering nanomedicine for glutathione depletion-augmented cancer therapy. Chem. Soc. Rev. 2021, 50, 6013–6041. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.-J.; Lau, J.T.F.; Wang, Q.; Ng, D.K.P.; Lo, P.-C. pH- and Thiol-Responsive BODIPY-Based Photosensitizers for Targeted Photodynamic Therapy. Chem. A Eur. J. 2016, 22, 8273–8281. [Google Scholar] [CrossRef] [PubMed]
- Brunato, S.; Mastrotto, F.; Bellato, F.; Bastiancich, C.; Travanut, A.; Garofalo, M.; Mantovani, G.; Alexander, C.; Preat, V.; Salmaso, S.; et al. PEG-polyaminoacid based micelles for controlled release of doxorubicin: Rational design, safety and efficacy study. J. Control. Release 2021, 335, 21–37. [Google Scholar] [CrossRef]
- Tasdogan, A.; Ubellacker, J.M.; Morrison, S.J. Redox Regulation in Cancer Cells during Metastasis. Cancer Discov. 2021, 11, 2682–2692. [Google Scholar] [CrossRef]
- Li, D.; Zhang, R.; Liu, G.; Kang, Y.; Wu, J. Redox-Responsive Self-Assembled Nanoparticles for Cancer Therapy. Adv. Healthc. Mater. 2020, 9, 2000605. [Google Scholar] [CrossRef]
- Sauraj; Kumar, A.; Kumar, B.; Kulshreshtha, A.; Negi, Y.S. Redox-sensitive nanoparticles based on xylan-lipoic acid conjugate for tumor targeted drug delivery of niclosamide in cancer therapy. Carbohydr. Res. 2020, 499, 108222. [Google Scholar] [CrossRef]
- Wang, J.; Sun, X.; Mao, W.; Sun, W.; Tang, J.; Sui, M.; Shen, Y.; Gu, Z. Tumor Redox Heterogeneity-Responsive Prodrug Nanocapsules for Cancer Chemotherapy. Adv. Mater. 2013, 25, 3670–3676. [Google Scholar] [CrossRef]
- Lee, H.L.; Hwang, S.C.; Nah, J.W.; Kim, J.; Cha, B.; Kang, D.H.; Jeong, Y.-I. Redox- and pH-Responsive Nanoparticles Release Piperlongumine in a Stimuli-Sensitive Manner to Inhibit Pulmonary Metastasis of Colorectal Carcinoma Cells. J. Pharm. Sci. 2018, 107, 2702–2712. [Google Scholar] [CrossRef]
- Durán-Lobato, M.; Álvarez-Fuentes, J.; Fernández-Arévalo, M.; Martín-Banderas, L. Receptor-targeted nanoparticles modulate cannabinoid anticancer activity through delayed cell internalization. Sci. Rep. 2022, 12, 1297. [Google Scholar] [CrossRef]
- Lee, Y.; Geckeler, K.E. Cellular Interactions of a Water-Soluble Supramolecular Polymer Complex of Carbon Nanotubes with Human Epithelial Colorectal Adenocarcinoma Cells. Macromol. Biosci. 2012, 12, 1060–1067. [Google Scholar] [CrossRef] [PubMed]
- Lima, S.A.C.; Gaspar, A.; Reis, S.; Durães, L. Multifunctional nanospheres for co-delivery of methotrexate and mild hyperthermia to colon cancer cells. Mater. Sci. Eng. C 2017, 75, 1420–1426. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.-C.; Yang, S.-Y.; Ho, C.-S.; Chang, J.-F.; Liu, B.-H.; Huang, K.-W. Development of antibody functionalized magnetic nanoparticles for the immunoassay of carcinoembryonic antigen: A feasibility study for clinical use. J. Nanobiotechnol. 2014, 12, 44. [Google Scholar] [CrossRef] [PubMed]
- Chuah, L.H.; Roberts, C.; Billa, N.; Abdullah, S.; Rosli, R.; Manickam, S. Using Nanoparticle Tracking Analysis (NTA) to Decipher Mucoadhesion Propensity of Curcumin-Containing Chitosan Nanoparticles and Curcumin Release. J. Dispers. Sci. Technol. 2014, 35, 1201–1207. [Google Scholar] [CrossRef]
- Maksimenko, A.; Alami, M.; Zouhiri, F.; Brion, J.; Pruvost, A.; Mougin, J.; Hamze, A.; Boissenot, T.; Provot, O.; Desmae, D. Therapeutic modalities of squalenoyl nanocomposites in colon cancer: An ongoing search for improved efficacy. ACS Nano 2018, 8, 2018–2032. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Gao, Y.; Zhao, R.; Sinko, P.J.; Gu, S.; Wang, J.; Li, Y.; Lu, Y.; Yu, S.; Wang, L.; et al. Ex vivo and in vivo capture and deactivation of circulating tumor cells by dual-antibody-coated nanomaterials. J. Control. Release 2015, 209, 159–169. [Google Scholar] [CrossRef]
- Singhana, B. Targeted Gold Nanoshells; Woodhead Publishing Limited: Sawston, UK, 2015; ISBN 9781908818782. [Google Scholar]
- Anitha, A.; Maya, S.; Sivaram, A.J.; Mony, U.; Jayakumar, R. Combinatorial nanomedicines for colon cancer therapy. WIREs Nanomed. Nanobiotechnol. 2016, 8, 151–159. [Google Scholar] [CrossRef]
- Chibaudel, B.; Maindrault-Gœbel, F.; Bachet, J.; Louvet, C.; Khalil, A.; Dupuis, O.; Hammel, P.; Garcia, M.; Bennamoun, M.; Brusquant, D.; et al. PEPCOL: A GERCOR randomized phase II study of nanoliposomal irinotecan PEP 02 (MM-398) or irinotecan with leucovorin/5-fluorouracil as second-line therapy in metastatic colorectal cancer. Cancer Med. 2016, 5, 676–683. [Google Scholar] [CrossRef]
- Pangeni, R.; Choi, S.W.; Jeon, O.-C.; Byun, Y.; Park, J.W. Multiple nanoemulsion system for an oral combinational delivery of oxaliplatin and 5-fluorouracil: Preparation and in vivo evaluation. Int. J. Nanomed. 2016, 11, 6379–6399. [Google Scholar] [CrossRef]
- Hosseinifar, T.; Sheybani, S.; Abdouss, M.; Najafabadi, S.A.H.; Ardestani, M.S. Pressure responsive nanogel base on Alginate-Cyclodextrin with enhanced apoptosis mechanism for colon cancer delivery. J. Biomed. Mater. Res. Part A 2018, 106, 349–359. [Google Scholar] [CrossRef]
- Zheng, Y.; You, X.; Guan, S.; Huang, J.; Wang, L.; Zhang, J.; Wu, J. Poly(Ferulic Acid) with an Anticancer Effect as a Drug Nanocarrier for Enhanced Colon Cancer Therapy. Adv. Funct. Mater. 2019, 29, 1808646. [Google Scholar] [CrossRef]
- Wu, C.; Zhang, Y.; Yang, D.; Zhang, J.; Ma, J.; Cheng, D.; Chen, J.; Deng, L. Novel SN38 derivative-based liposome as anticancer prodrug: An in vitro and in vivo study. Int. J. Nanomed. 2019, 14, 75–85. [Google Scholar] [CrossRef] [PubMed]
- Canton, A.S.; Broek, N.V.D.; Danelon, C. Development of a lipid-based delivery system for the chemotherapeutic compound SN-38. bioRxiv 2019, 792317. [Google Scholar] [CrossRef]
- Guo, J.; Yu, Z.; Das, M.; Huang, L. Nano Codelivery of Oxaliplatin and Folinic Acid Achieves Synergistic Chemo-Immunotherapy with 5-Fluorouracil for Colorectal Cancer and Liver Metastasis. ACS Nano 2020, 14, 5075–5089. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Wang, A.; Jiang, W.; Guan, Z. Pharmacokinetic characteristics and anticancer effects of 5-Fluorouracil loaded nanoparticles. BMC Cancer 2008, 8, 103. [Google Scholar] [CrossRef]
- Urbanska, A.M.; Karagiannis, E.D.; Guajardo, G.; Langer, R.S.; Anderson, D.G. Therapeutic effect of orally administered microencapsulated oxaliplatin for colorectal cancer. Biomaterials. NIH Public Access 2013, 33, 4752–4761. [Google Scholar] [CrossRef]
- Blanco, E.; Hsiao, A.; Mann, A.P.; Landry, M.G.; Meric-Bernstam, F.; Ferrari, M. Nanomedicine in cancer therapy: Innovative trends and prospects. Cancer Sci. 2011, 102, 1247–1252. [Google Scholar] [CrossRef]
- Cevenini, A.; Celia, C.; Orrù, S.; Sarnataro, D.; Raia, M.; Mollo, V.; Locatelli, M.; Imperlini, E.; Peluso, N.; Peltrini, R.; et al. Liposome-Embedding Silicon Microparticle for Oxaliplatin Delivery in Tumor Chemotherapy. Pharmaceutics 2020, 12, 559. [Google Scholar] [CrossRef]
- Han, W.; Xie, B.; Li, Y.; Shi, L.; Wan, J.; Chen, X.; Wang, H. Orally Deliverable Nanotherapeutics for the Synergistic Treatment of Colitis-Associated Colorectal Cancer. Theranostics 2019, 9, 7458–7473. [Google Scholar] [CrossRef]
- Venkatesan, P.; Puvvada, N.; Dash, R.; Kumar, B.P.; Sarkar, D.; Azab, B.; Pathak, A.; Kundu, S.C.; Fisher, P.B.; Mandal, M. The potential of celecoxib-loaded hydroxyapatite-chitosan nanocomposite for the treatment of colon cancer. Biomaterials 2011, 32, 3794–3806. [Google Scholar] [CrossRef]
- Tran, P.H.; Wang, T.; Yin, W.; Tran, T.T.; Nguyen, T.N.; Lee, B.-J.; Duan, W. Aspirin-loaded nanoexosomes as cancer therapeutics. Int. J. Pharm. 2019, 572, 118786. [Google Scholar] [CrossRef]
- Minelli, R.; Serpe, L.; Pettazzoni, P.; Minero, V.; Barrera, G.; Gigliotti, C.; Mesturini, R.; Rosa, A.; Gasco, P.; Vivenza, N.; et al. Cholesteryl butyrate solid lipid nanoparticles inhibit the adhesion and migration of colon cancer cells. Br. J. Pharmacol. 2012, 166, 587–601. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Hu, S. Suitable carriers for encapsulation and distribution of endostar: Comparison of endostar-loaded particulate carriers. Int. J. Nanomed. 2011, 6, 1535–1541. [Google Scholar] [CrossRef]
- Marill, J.; Anesary, N.M.; Paris, S. DNA damage enhancement by radiotherapy-activated hafnium oxide nanoparticles improves cGAS-STING pathway activation in human colorectal cancer cells. Radiother. Oncol. 2019, 141, 262–266. [Google Scholar] [CrossRef] [PubMed]
- Rampado, R.; Crotti, S.; Caliceti, P.; Pucciarelli, S.; Agostini, M. Nanovectors Design for Theranostic Applications in Colorectal Cancer. J. Oncol. 2019, 2019, 1–27. [Google Scholar] [CrossRef]
- Fortina, P.; Kricka, L.J.; Graves, D.J.; Park, J.; Hyslop, T.; Tam, F.; Halas, N.; Surrey, S.; Waldman, S.A. Applications of nanoparticles to diagnostics and therapeutics in colorectal cancer. Trends Biotechnol. 2007, 25, 145–152. [Google Scholar] [CrossRef]
- Bose, S.; Panda, A.K.; Mukherjee, S.; Sa, G. Curcumin and tumor immune-editing: Resurrecting the immune system. Cell Div. 2015, 10, 6. [Google Scholar] [CrossRef]
- Lambe, U.; P, M.; Brar, B.; Guray, M.; NA, I.; Ranjan, K.; Bansal, N.; Khurana, S.K.; J, M.; Nrce, H. Nanodiagnostics: A new frontier for veterinary and medical sciences. J. Exp. Biol. Agric. Sci. 2016, 4, 307–320. [Google Scholar] [CrossRef]
- Yallapu, M.M.; Nagesh, P.K.B.; Jaggi, M.; Chauhan, S.C. Therapeutic Applications of Curcumin Nanoformulations. AAPS J. 2015, 17, 1341–1356. [Google Scholar] [CrossRef]
- Lécuyer, T.; Teston, E.; Ramirez-Garcia, G.; Maldiney, T.; Viana, B.; Seguin, J.; Mignet, N.; Scherman, D.; Richard, C. Chemically engineered persistent luminescence nanoprobes for bioimaging. Theranostics 2016, 6, 2488–2523. [Google Scholar] [CrossRef]
- Rosado-De-Castro, P.H.; Morales, M.D.P.; Pimentel-Coelho, P.M.; Mendez-Otero, R.; Herranz, F. Development and Application of Nanoparticles in Biomedical Imaging. Contrast Media Mol. Imaging 2018, 2018, 1700. [Google Scholar] [CrossRef]
- Linton, S.S.; Sherwood, S.G.; Drews, K.C.; Kester, M. Targeting cancer cells in the tumor microenvironment: Opportunities and challenges in combinatorial nanomedicine. WIREs Nanomed. Nanobiotechnol. 2016, 8, 208–222. [Google Scholar] [CrossRef] [PubMed]
- Cabeza, L.; Perazzoli, G.; Mesas, C.; Jiménez-Luna, C.; Prados, J.; Rama, A.R.; Melguizo, C. Nanoparticles in Colorectal Cancer Therapy: Latest In Vivo Assays, Clinical Trials, and Patents. AAPS PharmSciTech 2020, 21, 178. [Google Scholar] [CrossRef] [PubMed]
- Goñi-De-Cerio, F.; Thevenot, J.; Oliveira, H.; Pérez-Andrés, E.; Berra, E.; Masa, M.; Suárez-Merino, B.; Lecommandoux, S.; Heredia, P. Cellular Uptake and Cytotoxic Effect of Epidermal Growth Factor Receptor Targeted and Plitidepsin Loaded Co-Polymeric Polymersomes on Colorectal Cancer Cell Lines. J. Biomed. Nanotechnol. 2015, 11, 2034–2049. [Google Scholar] [CrossRef] [PubMed]
- Gidding, C. Vincristine revisited. Crit. Rev. Oncol. 1999, 29, 267–287. [Google Scholar] [CrossRef]
- Bala, V.; Rao, S.; Boyd, B.J.; Prestidge, C.A. Prodrug and nanomedicine approaches for the delivery of the camptothecin analogue SN38. J. Control. Release 2013, 172, 48–61. [Google Scholar] [CrossRef]
- Phase 2 Study of Thermodox as Adjuvant Therapy with Thermal Ablation (RFA) in Treatment of Metastatic Colorectal Cancer(mCRC)—Full Text View—ClinicalTrials.gov. Available online: https://clinicaltrials.gov/ct2/show/NCT01464593 (accessed on 13 March 2023).
- NIH. Clinical Trials.gov. Available online: https://clinicaltrials.gov/ (accessed on 13 March 2023).
- Force, U.P.; Davidson, K.W.; Barry, M.J.; Mangione, C.M.; Cabana, M.; Chelmow, D.; Coker, T.R.; Davis, E.M.; Donahue, K.E.; Jaén, C.R.; et al. Aspirin Use to Prevent Cardiovascular Disease. JAMA 2022, 327, 1577–1584. [Google Scholar] [CrossRef]
- Hamaguchi, T.; Tsuji, A.; Yamaguchi, K.; Takeda, K.; Uetake, H.; Esaki, T.; Amagai, K.; Sakai, D.; Baba, H.; Kimura, M.; et al. A phase II study of NK012, a polymeric micelle formulation of SN-38, in unresectable, metastatic or recurrent colorectal cancer patients. Cancer Chemother. Pharmacol. 2018, 82, 1021–1029. [Google Scholar] [CrossRef]
Drug/Inhibitor | Action | References |
---|---|---|
Lentinan (LNT) and Ursolic acid (UA) | Apoptosis was induced and immunogenic cell death was initiated in CRC | [14] |
Porphyromonas gingivalis | For the treatment of cancer, M1/M2 macrophages, the growth of primary and secondary tumors in CT26 colon cancer were slowed by laser and anti-PD-1 treatment. | [15] |
NLG919 | NLG919-mediated suppression of indoleamine 2,3-dioxygenase 1 (IDO-1) resulted in the reversal of the immunosuppressive tumor microenvironment. The outcomes demonstrated that this method might successfully eradicate CT26 colon cancers. | [16] |
IPI-549 | Utilizing Ce6 as a photosensitizer in immunotherapy for colon cancer | [17] |
PD-L1 | Inhibit tumor growth and invasion of CRC | [18] |
Cytosine-phosphate-guanine oligodeoxynucleotides (CpG ODNs) | The greatest immunological supplements | [19] |
Mesoporous SiO2 (or Mesoporous silica, MS) | Medication delivery systems to enhance cancer treatment, very effective administration, excellent biocompatibility, simple surface modification, and self-adjuvanticity | [20] |
CD166& miR-148a | A good prognostic marker for CRC | [21] |
Nanocompositions | Structure /Drug Loading/Encapsulation Efficiency | Application | Reference |
---|---|---|---|
Carbon nanotubes | Synthetic polyampholyte conjugated into single-walled carbon nanotubes (SWCNTs) for the delivery of Paclitaxel in cancerous cells | Detection and Treatment | [101] |
Iron oxide nanocrystals | The diameter of iron oxide particles is with 1–100 nm. Wheat germ agglutinin (WGA) and Methotrexate SPIONS | Detection | [102,103] |
CUR-CS-NP | Curcumin incorporated with chitosan nanoparticles (200–300 nm/-/80%/) | Detection and Treatment | [104] |
Carbon nanotubes | Synthetic polyampholyte conjugated into single-walled carbon tubes (SWCNTs) for the delivery of paclitaxel in cancerous cells (142 nm/-/93%) | Detection and Treatment | [105] |
NP SQ emcitabinel isoCA-4 | Precipitates of gemcitabine, isocombretastain A-4 (isoCA-4) | Treatment | [105] |
Dendrimers | Synthetic polymer with hyper-branched pattern with monomer units of regular repeats | Detection and Treatment | [106] |
Gold Nanoshells | Gold surface plasmon resonant made up of silica nano core-shell and surrounded by an ultra-thin shell of gold | Detection and Treatment | [107] |
Quantum dots | Semiconductor nanocrystals range from 2–10 nm in diameter | Detection and Treatment | [107] |
Nanocells or PLGA nanoparticles | PLGA copolymers with different structural variants are used as efficient carriers of drug delivery | US FDA-approved therapy and detection | [108] |
Liposomes | Closed and self-assembled lipid bilayer structure and colloidal (-/400–600 mg/m2/17%) | Detection and Treatment | [109] |
Oxaliplatin/DCK and 5-FU | Nanoemulsion loaded into hydrophilic 5-FU and amphiphilic Oxaliplatin linked N-deoxycholic-L-methyl ester (DCK) (20 nm/10 mg /38.1%) | Treatment | [110] |
Nanogel | In aqueous solutions Beta cyclodextrin and nanoparticles from nano gels in the presence of a cross-linker 5-FU. Nanogels are biocompatible materials and are efficient in releasing the drugs (55 nm/-/40.48%) | Treatment | [111] |
PFA@PTX NPs | Poly (ferulic acid) (PFA) and PFA NPs loaded into paclitaxel (PTX) (100 nm/-/5.1–8.3%) | Treatment and Detection | [112] |
SN-38 Liposome | SN 38-PA prodrug was synthesized by conjugating the SN38-C10 ester bond to the palmitic acid and encapsulated using the film dispersion method into the liposomal carrier (80.13 nm/3 mg/-) | Used for the treatment of metastatic CRC patients | [113,114] |
FOLFOX | 5FU, oxaliplatin incorporated into lipid nanoparticles | Treatment (efficiently treated in mice models) | [115] |
5FU/PEG-PBLG | Polymeric nanoparticles loaded with 5FU (200–400 nm/20–30 g/-) | Treatment | [116] |
Oxaliplatin polymeric nanoparticles | Oxaliplatin encapsulated in chitosan-coated alginate microspheres | Treatment | [117] |
Chitosan-HA oxa NPs | Oxaliplatin-loaded polymeric NPs | Targeted delivery to the tumor environment | [118] |
Oxaliplatin liposomes | Liposome embedding silicon microparticles | Treatment | [119] |
nSN38 | NCURSN38, Curcumin conjugated NPs (-/10 mg/-) | Treatment | [120] |
Celecoxib conjugated NPs | Celecoxib containing Hap-Cht Nanoparticles | Treatment | [121] |
Aspirin conjugated NPs | Aspirin-loaded nano exosomes (50–150 nm/5%) | Treatment | [122] |
Chol-butryrate SLNP formulation | Butyric acid lipid-based nanoparticles | Treatment | [123] |
Endostatin polymeric NPs | PEG-PLGA-Endostar Nanoparticles (120–150 nm/20 mg) | Detection and Treatment | [124] |
NBTX3 | Hafnium oxide nanoparticles (NBTXR3) | Treatment | [125] |
S.No | Nanosystem | Drug Used | Application | FDA Approval Status | Reference |
---|---|---|---|---|---|
1 | Carbon Nanoparticles | Carbon Nanoparticles | Used in CRC laparoscopic surgery | Phase I trial of 150 participants | [134] |
2 | Cyclodextrin Nanoparticles | Camptothecin | Rectal cancer, solid tumors, renal cell carcinoma, and non-small lung cell cancer | Phase I/II trial | [135] |
3 | Liposome | Vincristine | Sarcoma, colorectal cancer, neuroblastoma, acute lymphoblastic leukemia, brain tumors, and lymphoma | FDA approved | [136] |
4 | Liposome | SN38 | Metastatic CRC | Phase II trial | [137] |
5 | Liposome | Aroplatin (Liposomal cisplatin analog) | Colorectal cancer | Phase I/II trial | [137] |
6 | Liposome | Doxorubicin | Colon cancer and liver metastasis | Phase II trial | [138] |
7 | Liposome | Liposome-encapsulated Irinotecan (IRI) hydrochloride PE | Second-line therapy for the metastatic CRC | Phase II trial (Subsequently terminated) | [139] |
8 | Liposome | SN 38 liposome | Metastatic CRC | Phase II trial (Subsequently terminated) | [140] |
9 | Liposome | PEGylated liposome (Narket-102), Irinotecan | Colorectal and Breast cancer | Phase III and I trail | [137] |
10 | CPX-1 liposome | Floxuridine and Irinotecan | Advanced colorectal cancer | Phase II trial 65 participants | [134] |
11 | PEP02 liposome | Leucovorin and Irinotecan and 5-FU | Metastatic CRC | Phase II trial 55 participants | [134] |
12 | MM-398 | Liposomal IRI | Advanced cancer of unresectable nature | Phase Ib trial 10 participants | [134] |
13 | Nal-IRI | Irinotecan | Gastrointestinal and colorectal cancer | Phase I/II trial 64 participants | [134] |
14 | NKTR-102/IRI | Formulation of IRI conjugated with PEG/RI for prolonged release | KRAS mutant metastatic colorectal cancer | Phase II clinical trial 83 participants | [134] |
15 | Polymer | DAVANAT (Carbohydrate polymer) and 5-FU | Colorectal cancer treatment | Phase I/II trial (Subsequently terminated) | [84] |
16 | PEG-PGA polymeric micelle | SN38 | Ovarian, lung, and colorectal cancers | Phase II trial | [141] |
17 | PEG-rhG-CSF | PEGylated recombinant human granulocyte colony-stimulating factor (CSF) | Solid malignant tumors (Head, lung, ovarian, colorectal, and neck cancer) | Phase IV trial 420 participants | [134] |
18 | Polymeric NPs + Cetuximab + Somatostatin analog | Somatostatin analog and combination of NPs cetuximab | Metastatic CRC | Phase I trial 30 participants | [134] |
19 | Silica NPs | Fluorescent CRGDY-PEG-Cy5.5- carbon dots | Colorectal malignancies and Breast cancer | Phase I/II trial 86 participants | [134] |
20 | Regulatory lymphocytes (Tregs); anti-CTLA-4 | Ipilimumab and anti-PDL1 atezolizumab Cytotoxic antibodies expressed on the surface of Tregs | Colorectal cancer | FDA approved | [126] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kasi, P.B.; Mallela, V.R.; Ambrozkiewicz, F.; Trailin, A.; Liška, V.; Hemminki, K. Theranostics Nanomedicine Applications for Colorectal Cancer and Metastasis: Recent Advances. Int. J. Mol. Sci. 2023, 24, 7922. https://doi.org/10.3390/ijms24097922
Kasi PB, Mallela VR, Ambrozkiewicz F, Trailin A, Liška V, Hemminki K. Theranostics Nanomedicine Applications for Colorectal Cancer and Metastasis: Recent Advances. International Journal of Molecular Sciences. 2023; 24(9):7922. https://doi.org/10.3390/ijms24097922
Chicago/Turabian StyleKasi, Phanindra Babu, Venkata Ramana Mallela, Filip Ambrozkiewicz, Andriy Trailin, Václav Liška, and Kari Hemminki. 2023. "Theranostics Nanomedicine Applications for Colorectal Cancer and Metastasis: Recent Advances" International Journal of Molecular Sciences 24, no. 9: 7922. https://doi.org/10.3390/ijms24097922
APA StyleKasi, P. B., Mallela, V. R., Ambrozkiewicz, F., Trailin, A., Liška, V., & Hemminki, K. (2023). Theranostics Nanomedicine Applications for Colorectal Cancer and Metastasis: Recent Advances. International Journal of Molecular Sciences, 24(9), 7922. https://doi.org/10.3390/ijms24097922