A Study of the Chemical Composition and Biological Activity of Michelia macclurei Dandy Heartwood: New Sources of Natural Antioxidants, Enzyme Inhibitors and Bacterial Inhibitors
Abstract
:1. Introduction
2. Results and Discussion
2.1. Volatile Components of MDHW Determined by GC-MS
2.2. Non-Volatile Components of MDHW with UPLC-MS/MS
2.2.1. Benzylisoquinoline Alkaloids
2.2.2. Aporphine Alkaloids
2.2.3. Protoberberine Alkaloids
2.2.4. Tetrahydroprotoberberine Alkaloids
2.2.5. Protopine Alkaloids
2.2.6. Benzophenanthridine Alkaloids
2.3. Biological Activity of the MDHW Extract
2.3.1. Antioxidant Properties
2.3.2. Enzyme Inhibition Effects
2.3.3. Antimicrobial Activities
3. Materials and Methods
3.1. Plant Material
3.2. Preparation of Plant Extracts
3.2.1. Volatile Compounds
3.2.2. Non-Volatile Compounds
3.3. GC-MS Analysis
3.3.1. Instrument Condition
3.3.2. Component Identification
3.4. UPLC-MS Analysis
3.4.1. Instrument Condition
3.4.2. Component Identification
3.5. Biological Activity
3.5.1. Antioxidant Assays
3.5.2. Enzyme Inhibitory Assays
3.5.3. Antimicrobial Assay
3.6. Data Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sut, S.; Baldan, V.; Faggian, M.; Peron, G.; Dall, A.S. Nutraceuticals, a new challenge for medicinal chemistry. Curr. Med. Chem. 2016, 23, 3198–3223. [Google Scholar] [CrossRef]
- Yingming, P.; Ying, L.; Hengshan, W.; Min, L. Antioxidant activities of several chinese medicine herbs. Food Chem. 2004, 88, 347–350. [Google Scholar] [CrossRef]
- Ma, S.; Qiao, M.; Fu, Y.; Wei, P.; Li, Y.; Liu, Z. Comparative analysis of biological activity of artificial and wild agarwood. Forests 2021, 12, 1532. [Google Scholar] [CrossRef]
- Nouri, L.; Nafchi, A.M.; Karim, A.A. Phytochemical, antioxidant, antibacterial, and α-amylase inhibitory properties of different extracts from betel leaves. Ind. Crop. Prod. 2014, 62, 47–52. [Google Scholar] [CrossRef]
- Bekir, J.; Cazaux, S.; Mars, M.; Bouajila, J. In vitro anti-cholinesterase and anti-hyperglycemic activities of flowers extracts from seven pomegranate varieties. Ind. Crop. Prod. 2016, 81, 176–179. [Google Scholar] [CrossRef]
- Luo, X.; Zeng, L.; Li, Q.; Wang, Z.; Kong, F.; Bi, Y. β-cyclodextrin inclusion complex containing essential oil from wampee [Clausena lansium (lour.) Skeels] fruit pericarp: Synthesis, characterization, and evaluation of antioxidant activity. J. Mol. Struct. 2022, 1266, 133525. [Google Scholar] [CrossRef]
- Shakeri, A.; Khakdan, F.; Soheili, V.; Sahebkar, A.; Shaddel, R.; Asili, J. Volatile composition, antimicrobial, cytotoxic and antioxidant evaluation of the essential oil from Nepeta sintenisii bornm. Ind. Crop. Prod. 2016, 84, 224–229. [Google Scholar] [CrossRef]
- Lee, Y.J.; Lee, Y.M.; Lee, C.K.; Jung, J.K.; Han, S.B.; Hong, J.T. Therapeutic applications of compounds in the Magnolia family. Pharmacol. Ther. 2011, 130, 157–176. [Google Scholar] [CrossRef] [PubMed]
- Cheng, K.; Nadri, M.H.; Othman, N.Z.; Rashid, S.N.A.A.; Lim, Y.; Leong, H. Phytochemistry, bioactivities and traditional uses of Michelia × alba. Molecules 2022, 27, 3450. [Google Scholar] [CrossRef]
- Jiang, Q.; Li, Q.; Chen, Y.; Zhong, C.; Zhang, Y.; Chen, Z.; Pinyopusarerk, K.; Bush, D. Arbuscular mycorrhizal fungi enhanced growth of Magnolia macclurei (dandy) figlar seedlings grown under glasshouse conditions. For. Sci. 2017, 63, 441–448. [Google Scholar] [CrossRef]
- Niu, D.; Wang, S.; Ouyang, Z. Comparisons of carbon storages in Cunninghamia lanceolata and Michelia macclurei plantations during a 22-year period in southern china. J. Environ. Sci. China 2009, 21, 801–805. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Wang, S.; Zhong, M. Ecosystem carbon storage and soil organic carbon stability in pure and mixed stands of Cunninghamia lanceolata and michelia macclurei. Plant Soil 2013, 370, 295–304. [Google Scholar] [CrossRef]
- Hui-Fen, M.A.; Yong-Kang, S.; Jia-Bo, H.; Shao-Yu, C.; Ming-Yue, H.; Dan, L.I.; Liang, X.U.; Bin, Z.; Yong, C. Study on chemical components in the volatile oils from Michelia polyneura c.y.wu ex law et y.f.wu.and michelia macclurei dandy. Guangdong Agric. Sci. 2011, 38, 110–113. [Google Scholar]
- Xiao-Kai, S.; Chun-Liang, L.U.; Kun, H.U.; Xiao-Yan, W.; Hai-Yang, J.; Sai-Juan, C. Gc-ms analysis of volatile components from barks of Michelia macclurei and their inhibition on in vitro growth of hepg2 cells. Chin. Tradit. Herb. Drugs 2011, 42, 2213–2215. [Google Scholar]
- Moniodis, J.; Jones, C.G.; Barbour, E.L.; Plummer, J.A.; Ghisalberti, E.L.; Bohlmann, J. The transcriptome of sesquiterpenoid biosynthesis in heartwood xylem of western australian sandalwood (Santalum spicatum). Phytochemistry 2015, 113, 79–86. [Google Scholar] [CrossRef]
- Ma, R.; Luo, J.; Qiao, M.; Fu, Y.; Zhu, P.; Wei, P.; Liu, Z. Chemical composition of extracts from Dalbergia odorifera heartwood and its correlation with color. Ind. Crop. Prod. 2022, 180, 114728. [Google Scholar] [CrossRef]
- Xiaokai, S.; Zhiling, C.; Lei, G.; Zhihua, L.I. GC-MS analysis of volatile components from trunk of michelia macclurei dandy.and the inhibition of etmmd on growth of mda-mb-231 cell lines and its apoptosis-inducing. Chin. J. Mod. Appl. Pharm. 2014, 31, 911–915. [Google Scholar]
- Fukushima, S.; Cohen, S.M.; Eisenbrand, G.; Gooderham, N.J.; Taylor, S.V. Fema gras assessment of natural flavor complexes: Lavender, guaiac coriander-derived and related flavoring ingredients. Food Chem. Toxicol. 2020, 145, 111584. [Google Scholar] [CrossRef]
- Kumar, D.; Kumar, S.; Taprial, S.; Kashyap, D.; Kumar, A.; Prakash, O. A review of chemical and biological profile of genus Michelia. Chin. J. Integr. Med. 2012, 10, 1336–1341. [Google Scholar] [CrossRef]
- Sua, Y.; Hsub, K.; Wang, E.I.; Hob, C. Chemical composition and anti-mildew activities of essential oils from different parts of Michelia compressa var. Formosana. Nat. Prod. Commun. 2015, 10, 665–668. [Google Scholar] [CrossRef]
- Wu, C.; Huang, S.; Ko, C.; Chang, H. Antifungal sesquiterpenoids from Michelia formosana leaf essential oil against wood-rotting fungi. Molecules 2022, 27, 2136. [Google Scholar] [CrossRef] [PubMed]
- Zhai, B.; Zeng, Y.; Zeng, Z.; Zhang, N.; Li, C.; Zeng, Y.; You, Y.; Wang, S.; Chen, X.; Sui, X.; et al. Drug delivery systems for elemene, its main active ingredient β-elemene, and its derivatives in cancer therapy. Int. J. Nanomed. 2018, 13, 6279–6296. [Google Scholar] [CrossRef] [PubMed]
- Acharya, B.; Chaijaroenkul, W.; Na Bangchang, K. Therapeutic potential and pharmacological activities of β-eudesmol. Chem. Biol. Drug Des. 2021, 97, 984–996. [Google Scholar] [CrossRef] [PubMed]
- Qing, Z.; Yan, F.; Huang, P.; Zeng, J. Establishing the metabolic network of isoquinoline alkaloids from the Macleaya genus. Phytochemistry 2021, 185, 112696. [Google Scholar] [CrossRef]
- Qing, Z.; Cheng, P.; Liu, X.; Liu, Y.; Zeng, J. Systematic identification of alkaloids in Macleaya microcarpa fruits by liquid chromatography tandem mass spectrometry combined with the isoquinoline alkaloids biosynthetic pathway. J. Pharm. Biomed. Anal. 2015, 103, 26–34. [Google Scholar] [CrossRef]
- Jeong, E.; Lee, S.Y.; Yu, S.M.; Park, N.H.; Lee, H.; Yim, Y.; Hwang, G.; Cheong, C.; Jung, J.H.; Hong, J. Identification of structurally diverse alkaloids in Corydalis species by liquid chromatography/electrospray ionization tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2012, 26, 1661–1674. [Google Scholar] [CrossRef]
- Menendez-Perdomo, I.M.; Facchini, P.J. Isolation and characterization of two o-methyltransferases involved in benzylisoquinoline alkaloid biosynthesis in sacred lotus (Nelumbo nucifera). J. Biol. Chem. 2020, 295, 1598–1612. [Google Scholar] [CrossRef]
- Guo, K.; Tong, C.; Fu, Q.; Xu, J.; Shi, S.; Xiao, Y. Identification of minor lignans, alkaloids, and phenylpropanoid glycosides in Magnolia officinalis by hplcnulldadnullqtof-ms/ms. J. Pharm. Biomed. Anal. 2019, 170, 153–160. [Google Scholar] [CrossRef]
- Sim, H.; Yoon, S.H.; Kim, M.S.; Kim, B.; Park, H.; Hong, J. Identification of alkaloid constituents from Fangchi species using ph control liquid-liquid extraction and liquid chromatography coupled to quadrupole time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. RCM 2015, 29, 837–854. [Google Scholar] [CrossRef]
- Okon, E.; Kukula-Koch, W.; Jarzab, A.; Halasa, M.; Stepulak, A.; Wawruszak, A. Advances in chemistry and bioactivity of magnoflorine and magnoflorine-containing extracts. Int. J. Mol. Sci. 2020, 21, 1330. [Google Scholar] [CrossRef]
- Yeha, Y.; Huangb, J.; Kuoc, P.; Chena, C. Bioactive constituents from Michelia champaca. Nat. Prod. Commun. 2011, 9, 1251–1252. [Google Scholar]
- De Lima, B.; Da Silva, F.; Soares, E.; de Almeida, R.; Da Silva-Filho, F.; Barison, A.; Costa, E.; Koolen, H.; de Souza, A.; Pinheiro, M.L. Integrative approach based on leaf spray mass spectrometry, hplc-dad-ms/ms, and nmr for comprehensive characterization of isoquinoline-derived alkaloids in leaves of Onychopetalum amazonicum r. E. Fr. J. Braz. Chem. Soc. 2020, 31, 79–89. [Google Scholar] [CrossRef]
- Deng, Y.; Liao, Q.; Li, S.; Bi, K.; Pan, B.; Xie, Z. Simultaneous determination of berberine, palmatine and jatrorrhizine by liquid chromatography–tandem mass spectrometry in rat plasma and its application in a pharmacokinetic study after oral administration of coptis–evodia herb couple. J. Chromatogr. B 2008, 863, 195–205. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.; Liu, J.; Lin, C.; Miao, L.; Lin, L. Alkaloid profiling of the traditional chinese medicine rhizoma corydalis using high performance liquid chromatography-tandem quadrupole time-of-flight mass spectrometry. Acta Pharm. Sin. B 2014, 4, 208–216. [Google Scholar] [CrossRef] [PubMed]
- Le, P.M.; Mccooeye, M.; Windust, A. Application of uplc-qtof-ms in mse mode for the rapid and precise identification of alkaloids in goldenseal (Hydrastis canadensis). Anal. Bioanal. Chem. 2014, 406, 1739–1749. [Google Scholar] [CrossRef]
- Móricz, Á.M.; Fornal, E.; Jesionek, W.; Majer-Dziedzic, B.; Choma, I.M. Effect-directed isolation and identification of antibacterial Chelidonium majus l. Alkaloids. Chromatographia 2015, 78, 707–716. [Google Scholar] [CrossRef]
- Ruan, X.; Cui, W.; Yang, L.; Li, Z.; Liu, B.; Wang, Q. Extraction of total alkaloids, peimine and peiminine from the flower of Fritillaria thunbergii miq using supercritical carbon dioxide. J. CO2 Util. 2017, 18, 283–293. [Google Scholar] [CrossRef]
- Wu, M.; Xu, J.; Zhang, H.; Xia, W.; Li, W.; Zhang, W. Purification and identification of flavonoid molecules from Rosa setate x rosa rugosa waste extracts and evaluation of antioxidant, antiproliferative and antimicrobial activities. Molecules 2022, 27, 4379. [Google Scholar] [CrossRef]
- Hagel, J.M.; Facchini, P.J. Benzylisoquinoline alkaloid metabolism: A century of discovery and a brave new world. Plant Cell Physiol. 2013, 54, 647–672. [Google Scholar] [CrossRef]
- Khizrievaa, S.S.; Borisenkoa, S.N.; Maksimenkoa, E.V.; Vetrovaa, E.V.; Borisenkoa, A.V.I.M.N.I. Antioxidant properties and effects of aporphine alkaloids and their phenanthrene seco-isomers on acetylcholinesterase activity. Russ. J. Bioorg. Chem. 2022, 48, 237–246. [Google Scholar]
- Liu, C.; Kao, C.; Wu, H.; Li, W.; Huang, C.; Li, H.; Chen, C. Antioxidant and anticancer aporphine alkaloids from the leaves of Nelumbo nucifera gaertn. Cv. Rosa-plena. Molecules 2014, 19, 17829–17838. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Kong, L.; Cao, Y.; Yan, L. Identification and quantification, metabolism and pharmacokinetics, pharmacological activities, and botanical preparations of protopine: A review. Molecules 2022, 27, 215. [Google Scholar] [CrossRef]
- Pereira, D.M.; Ferreres, F.; Oliveira, J.M.A.; Gaspar, L.; Faria, J.; Valentão, P.; Sottomayor, M.; Andrade, P.B. Pharmacological effects of Catharanthus roseus root alkaloids in acetylcholinesterase inhibition and cholinergic neurotransmission. Phytomedicine 2010, 17, 646–652. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, P.K.; Satheeshkumar, N.; Venkatesh, P.; Venkatesh, M. Lead finding for acetyl cholinesterase inhibitors from natural origin: Structure activity relationship and scope. Mini Rev. Med. Chem. 2011, 11, 247. [Google Scholar] [CrossRef] [PubMed]
- Siatka, T.; Adamcová, M.; Opletal, L.; Cahlíková, L.; Jun, D.; Hrabinová, M.; Kuneš, J.; Chlebek, J. Cholinesterase and prolyl oligopeptidase inhibitory activities of alkaloids from Argemone platyceras (papaveraceae). Molecules 2017, 22, 1181. [Google Scholar] [CrossRef]
- Huang, Q.; Bi, J.; Sun, Q.; Yang, F.; Wang, H.; Tang, G.; Zhao, F.; Huanwang, J.X.E.J. Bioactive isoquinoline alkaloids from Corydalis saxicola. Planta Med. 2012, 1, 65–70. [Google Scholar] [CrossRef] [PubMed]
- Kausar, M.A.; Anwar, S.; Eltayb, W.A.; Kuddus, M.; Khatoon, F.; El-Arabey, A.A.; Khalifa, A.M.; Rizvi, M.R.; Najm, M.Z.; Thakur, L.; et al. Md simulation studies for selective phytochemicals as potential inhibitors against major biological targets of diabetic nephropathy. Molecules 2022, 27, 4980. [Google Scholar] [CrossRef]
- Wang, F.; Zhu, N.; Zhou, F.; Lin, D. Natural aporphine alkaloids with potential to impact metabolic syndrome. Molecules 2021, 26, 6117. [Google Scholar] [CrossRef]
- Cushnie, T.P.T.; Cushnie, B.; Lamb, A.J. Alkaloids: An overview of their antibacterial, antibiotic-enhancing and antivirulence activities. Int. J. Antimicrob. Agents 2014, 44, 377–386. [Google Scholar] [CrossRef]
- Atlas, R.M. Handbook of Microbiological Media for the Examination of Food; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar]
- Gill, A.O.; Holley, R.A. Disruption of Escherichia coli, Listeria monocytogenes and Lactobacillus sakei cellular membranes by plant oil aromatics. Int. J. Food Microbiol. 2006, 108, 1–9. [Google Scholar] [CrossRef]
- Agüero, M.B.; Svetaz, L.; Baroni, V.; Lima, B.; Luna, L.; Zacchino, S.; Saavedra, P.; Wunderlin, D.; Feresin, G.E.; Tapia, A. Urban propolis from san juan province (argentina): Ethnopharmacological uses and antifungal activity against Candida and dermatophytes. Ind. Crop. Prod. 2014, 57, 166–173. [Google Scholar] [CrossRef]
- Yan, Y.; Li, X.; Zhang, C.; Lv, L.; Gao, B.; Li, M. Research progress on antibacterial activities and mechanisms of natural alkaloids: A review. Antibiotics 2021, 10, 318. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Du, F.; Yan, L.; He, G.; He, J.; Wang, C.; Rao, G.; Jiang, Y.; Xu, G. Potent activities of roemerine against Candida albicans and the underlying mechanisms. Molecules 2015, 20, 17913–17928. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Liu, T.; Tseng, W.; Lu, F.; Hung, R.; Chen, C.; Chen, C. (−)-anonaine induces apoptosis through bax- and caspase-dependent pathways in human cervical cancer (hela) cells. Food Chem. Toxicol. 2008, 46, 2694–2702. [Google Scholar] [CrossRef] [PubMed]
- Ben Hsouna, A.; Michalak, M.; Ben Akacha, B.; Dhifi, W.; Ben Saad, R.; Brini, F.; Mnif, W. Assessment of the phytochemical composition, antimicrobial activity and anti-inflammatory effects of Lobularia maritima extracts on lipopolysaccharide-stimulated raw 264.7 cells and their capacity to extend the shelf life of raw minced beef. J. Funct. Food. 2022, 99, 105327. [Google Scholar] [CrossRef]
- Yin, L.; Han, H.; Zheng, X.; Wang, G.; Li, Y.; Wang, W. Flavonoids analysis and antioxidant, antimicrobial, and anti-inflammatory activities of crude and purified extracts from Veronicastrum latifolium. Ind. Crop. Prod. 2019, 137, 652–661. [Google Scholar] [CrossRef]
- Jin, L.; Song, Z.; Cai, F.; Ruan, L.; Jiang, R. Chemistry and biological activities of naturally occurring and structurally modified podophyllotoxins. Molecules 2023, 28, 302. [Google Scholar] [CrossRef] [PubMed]
- Demirpolat, A.; Akman, F.; Kazachenko, A.S. An experimental and theoretical study on essential oil of Aethionema sancakense: Characterization, molecular properties and rdg analysis. Molecules 2022, 27, 6129. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Wang, H.; Dong, A. Systematic separation and purification of alkaloids from Euchresta tubulosa dunn. By various chromatographic methods. Processes 2019, 7, 924. [Google Scholar] [CrossRef]
- Ben Akacha, B.; Garzoli, S.; Ben Saad, R.; Brini, F.; Mnif, W.; Kačániová, M.; Ben Hsouna, A. Biopreservative effect of the tunisian halophyte Lobularia maritima flavonoid fraction, used alone and in combination with linalool in stored minced beef meat. Metabolites 2023, 13, 371. [Google Scholar] [CrossRef]
- Ben Akacha, B.; Avarc-Gajić, J.; Elhadef, K.; Ben Saad, R.; Brini, F.; Mnif, W.; Smaoui, S.; Ben Hsouna, A. The essential oil of tunisian halophyte Lobularia maritima: A natural food preservative agent of ground beef meat. Life 2022, 12, 1571. [Google Scholar] [CrossRef] [PubMed]
NO | Compounds | RIcal | RIlit | RA (%) | Type | Identification | |
---|---|---|---|---|---|---|---|
SD | UE | ||||||
1 | δ-3-Carene | 1013 | 1011 | 0.06 | 0.07 | MH | MS; RI |
2 | Dodecane, 2,6,11-trimethyl- | 1275 | 1275 | - | 1.44 | FC | MS; RI |
3 | Copaene | 1367 | 1365 | 0.03 | 0.51 | SH | MS; RI |
4 | β-Longipinene | 1395 | 1394 | 0.02 | 0.19 | SH | MS; RI |
5 | β-elemene | 1405 | 1400 | 11.88 | 8.20 | SH | MS; RI |
6 | sesquithujene | 1414 | 1417 | 0.42 | 0.35 | SH | MS; RI |
7 | α-Bergamotene | 1422 | 1422 | 0.17 | 0.12 | SH | MS; RI |
8 | caryophyllene | 1428 | 1425 | 7.43 | - | SH | MS; RI |
9 | 1,9-Aristoladiene | 1441 | 1435 | 0.23 | 0.15 | SH | MS; RI |
10 | Alloaromadendrene | 1466 | 1462 | 0.30 | 0.18 | SH | MS; RI |
11 | γ-Muurolene | 1474 | 1472 | 2.93 | - | SH | MS; RI |
12 | α-Bisabolene | 1488 | 1479 | 1.26 | 2.18 | SH | MS; RI |
13 | β-Bisabolene | 1519 | 1519 | 4.25 | - | SH | MS; RI |
14 | Cadina-1(10),4-diene | 1528 | 1525 | 0.44 | 0.44 | SH | MS; RI |
15 | Elemol | 1543 | 1546 | 2.79 | 0.56 | SO | MS; RI |
16 | Guaiol | 1600 | 1600 | 10.67 | 0.54 | SO | MS; RI |
17 | β-Eudesmol | 1628 | 1628 | 9.68 | - | SO | MS; RI |
18 | Epicubenol | 1649 | 1642 | 3.92 | - | SO | MS; RI |
19 | δ-Cadinol | 1669 | 1670 | 4.35 | SO | MS; RI | |
20 | β-Bisabolol | 1690 | 1675 | 7.14 | - | SO | MS; RI |
21 | Farnesol | 1713 | 1710 | 9.98 | - | SO | MS; RI |
22 | Crocetane | 1805 | 1813 | - | 1.16 | FC | MS; RI |
23 | Heptadecane,2,6,10,15-tetramethyl- | 1908 | 1914 | - | 2.23 | FC | MS; RI |
24 | 7,9-Di-tert-butyl-1-oxaspiro(4,5)deca-6,9-diene-2,8-dione | 1921 | 1916 | - | 0.84 | AC | MS; RI |
25 | Isoeicosane | 1952 | 1962 | - | 1.55 | FC | MS; RI |
26 | Octadecane,3-ethyl-5-(2-ethylbutyl)- | 2989 | - | - | 1.03 | FC | MS |
27 | Tris(2,4-di-tert-butylphenyl)phosphite | 3401 | 3396 | 29.26 | FC | MS; RI | |
28 | Tris(2,4-di-tert-butylphenyl)phosphate | 3580 | 3582 | 18.43 | FC | MS; RI | |
Group and Count | |||||||
Monoterpene hydrocarbons (MH) | 0.78 | 0.07 | |||||
Sesquiterpene hydrocarbons (SH) | 38.74 | 13.23 | |||||
Oxygenated sesquiterpenes (SO) | 57.66 | 0.54 | |||||
Fatty compounds (FC) | 0.00 | 59.93 | |||||
Aromatic compounds (AC) | 0.37 | 2.38 | |||||
Total identified | 97.54 | 76.15 |
NO | RT (min) | Identification | Molecular Formula | Exact Mass | Error (ppm) | Main Fragments (m/z) |
---|---|---|---|---|---|---|
Alkaloid | ||||||
1 | 1.232 | Choline | C5H13NO | 103.1001 | 3.87 | 88.0238, 84.9603, 72.0814, 60.0817 |
2 * | 1.419 | (S)-Scoulerine | C19H21NO4 | 327.1466 | −1.51 | 297.1110, 179.0896, 178.0862, 151.0752 |
3 * | 1.453 | Magnoflorine | C20H23NO4 | 341.1622 | −1.62 | 297.1119, 282.0880, 265.0859, 237.0910 |
4 * | 1.46 | (S)-Reticuline | C19H23NO4 | 329.1621 | −1.75 | 299.1273, 192.1018, 175.0753, 143.0492 |
5 | 1.515 | Betaine | C5 H11NO2 | 117.0579 | 0.41 | 72.0451, 59.0738, 58.0659 |
6 * | 1.198 | Laurifoline | C20H23NO4 | 341.1620 | −2.12 | 297.1121, 282.0882, 265.0858, 237.0910 |
7 * | 5.923 | Corytuberine | C19H21NO4 | 327.1460 | −3.29 | 297.1119, 266.0900, 265.0858, 237.0908 |
8 * | 6.025 | N,N-Dimethylglaucine | C21H23NO5 | 369.1562 | −3.75 | 354.1327, 325.1069, 326.1107, 293.0805 |
9 * | 6.179 | Protopine | C20H19NO5 | 353.1258 | −1.54 | 339.1100, 336.2278, 324.0865, 206.1176 |
10 * | 6.204 | Bulbocapnine | C19H19NO4 | 325.11668 | −3.07 | 295.1157, 294.1124, 265. 0851, 237.0548 |
11 * | 6.616 | Apomorphine | C17H17NO2 | 267.1249 | −3.87 | 237.0909, 220.0841,219.0804, 191.0855 |
12 * | 6.924 | Norarmepavine | C18H21NO3 | 299.1515 | −2.23 | 269.1170, 292.1019, 175.0753, 161.0832 |
13 * | 7.005 | N-Methylasimilobine | C18H19NO2 | 281.1043 | −3.08 | 251.1065, 249.0907, 219.0804, 191.0855 |
14 * | 7.143 | Isococlaurine | C17 H19NO3 | 285.1355 | −1.50 | 269.1169, 237.0906, 175.0752, 107.0494 |
15 * | 7.156 | (S)-Coclaurine | C17 H19NO3 | 285.1925 | 3.99 | 269.1170, 237.0905, 175.0752, 107.0484 |
16 * | 7.168 | Asimilobine | C17H17NO2 | 267.1249 | −3.87 | 251.1064, 219.0803, 191.0853 |
17 * | 7.183 | Ushinsunine | C18H17NO3 | 295.1198 | −3.65 | 280.1235, 279.1206, 278.1173, 265.0855 |
18 * | 7.748 | O-Methylarmepavine | C20H25NO3 | 327.1822 | −3.87 | 297.1481, 285.1476, 190.0946, 159.0804 |
19 * | 7.498 | Corydaline | C22 H27NO4 | 369.1927 | −3.53 | 206.11754, 192.1012, 179.1605, 165.0908 |
20 * | 8.008 | Menisperine | C21H25NO4 | 355.1043 | −3.64 | 311.1273, 296.1041, 280.1091, 279.1011 |
21 * | 8.070 | Palmatine | C21H21NO4 | 351.1095 | −3.47 | 336.1229, 322.1064, 308.1275, 294.1075 |
22 * | 8.106 | Chelidonine | C20H19NO5 | 353.1249 | −3.96 | 338.1337, 337.1303, 336.1228, 322.1071 |
23 * | 8.722 | 8-Methyldihydrochelerythrine | C22H21NO4 | 363.1457 | −3.89 | 349.1306, 333.1312, 319.0916, 288.1016 |
24 * | 8.634 | Anolobine | C17H15NO3 | 281.1615 | −4.46 | 265.1246, 264.1017, 250.0948, 234.1031 |
25 * | 8.819 | Cheilanthifoline | C19H19NO4 | 325.0938 | −3.80 | 324.1592, 309.0950, 308.0915, 294.1157 |
26 * | 9.221 | Chelerythrine | C21H17NO4 | 347.1145 | −0.60 | 333.0993, 318.1170, 302.1170, 290.11835 |
27 * | 10.775 | Roemerine | C18H17NO2 | 279.0887 | −3.02 | 250.0944, 249.0910, 220.0851, 219.0805 |
28 | 17.736 | (S)-Nicotine | C10H14N2 | 162.1154 | 0.39 | 143.9970, 120.9812, 116.9725, 84.9605 |
29 | 17.92 | Phenmetrazine | C11 H15NO | 177.1154 | 0.38 | 146.9616, 128.9510, 119.0495 |
30 | 17.931 | Ammodendrine | C12 H20N2O | 208.1572 | −1.56 | 167.0123, 162.0073, 143.9968, 84.9603 |
31 * | 18.397 | Xanthoplanine | C21H25NO4 | 355.17747 | 3.06 | 311.0907, 296.1039, 280.1065, 279.1009 |
32 * | 18.524 | Armepavine | C19H23NO3 | 313.1670 | −2.67 | 283.1323, 206.1173, 189.0903, 175.0750 |
33 * | 18.527 | Michelalbine | C17H15NO3 | 281.1047 | −1.8 | 265.1123, 264.1018, 250.0949, 234.1038 |
34 * | 18.621 | Tetrahydrocolumbamine | C20H23NO4 | 341.1624 | −0.8 | 323.2523, 192.1020, 165.0912, 151.0755 |
35 | 18.673 | Acetylcadaverine | C7H16N2O | 144.1261 | −0.99 | 121.9664, 123.9644, 72.0451 |
36 | 18.707 | Acronidine | C18H17NO4 | 311.1157 | −0.18 | 295.0964, 266.0893, 265.0860, 251.10664 |
37 * | 18.749 | Magnocurarine | C19 H23NO3 | 313.1675 | 2.18 | 296.0992, 283.1327, 269.1171, 237.0911 |
38 * | 18.846 | Allocrytopine | C21H23NO5 | 369.1936 | 0.88 | 355.1764, 206.1177, 190.0867,165.0909 |
39 * | 18.954 | Laudanosine | C21H27NO4 | 357.1933 | −1.87 | 327.1582, 315.1587, 296.1402,284.1399 |
40 | 19.034 | Koenigine | C19H19NO3 | 309.1359 | −2.1 | 269.0859, 253.0813, 252.0777, 207.0799 |
41 * | 19.075 | Anonaine | C17H15NO2 | 265.1102 | −0.38 | 250.0944, 249.0910, 220.0837, 219.0805 |
42 * | 19.1 | (S)-Tetrahydropalmatine | C21H25NO4 | 355.1052 | 1.85 | 265.0859, 192.1017, 206.1184, 165.0904 |
43 * | 19.428 | Protosinomenine | C19H23NO4 | 329.1620 | −2.11 | 192.1016, 175.0751, 151.0752, 143.0490 |
44 | 19.861 | Diethyltoluamide | C12H17NO | 191.1307 | −1.44 | 175.1482, 135.0442, 128.0194, 107.9602 |
45 | 20.472 | Thalicpureine | C22H27NO5 | 374.1889 | −0.16 | 340.2593, 322.2490, 312.1594, 295.1329 |
Flavonoid | ||||||
46 | 1.206 | Taxifolin | C15H12O7 | 304.0577 | −1.94 | 287.0548, 259.0596, 231.0648, 153.0180 |
47 | 18.322 | Robinin | C33H40O19 | 740.2144 | −2.73 | 288.0578, 287.0544, 129.0544, 85.0289 |
48 | 18.323 | Luteolin | C15H10O6 | 286.047 | −2.06 | 243.0647, 215.0696, 153.0180,149.0231 |
49 | 18.427 | Kaempferol | C15H10O6 | 286.0472 | −2.05 | 251.1637, 233.1531, 205.1584, 187.1478 |
50 | 18.533 | Nictoflorin | C27H30O15 | 594.1573 | −2.01 | 288.0578, 287.0545, 85.0289, 71.0498 |
51 | 18.993 | 4′,5,6,7-Tetramethoxyflavanone | C19H20O6 | 344.1252 | −2.28 | 327.1231, 299.0921, 267.1016, 177.0548 |
52 | 19.126 | Rhoifolin | C27H30O14 | 578.1617 | −3.16 | 409.0904, 287.0547, 271.0593, 127.0390 |
53 | 19.26 | Kievitone | C20 H20O6 | 356.1252 | −2.21 | 321.1117, 307.0958, 165.0543, 137.0596 |
54 | 20.485 | Dimefline | C20H21NO3 | 323.1519 | −0.75 | 279.8514, 266.1257, 233.0962, 163.1115 |
Lignan | ||||||
55 | 18.922 | Podophyllotoxin | C22H22O8 | 414.1305 | −2.39 | 235.0962, 195.0650, 181.0493, 89.0602 |
56 | 19.212 | Acetoxypinoresinol | C22H24O8 | 416.1462 | −2.31 | 233.0801, 191.0698, 181.0491, 167.0700 |
57 | 19.37 | Matricin | C17H22O5 | 306.1458 | −3.1 | 265.1432, 247.1326, 229.20, 201.1270 |
58 | 20.377 | Magnoshinin | C24H30O6 | 414.2034 | −2.02 | 120.0888, 119.0856 |
59 | 21.344 | Cinchonain Ia | C24H20O9 | 452.1101 | −1.33 | 322.2477, 239.1487, 133.0859, 89.0602 |
60 | 22.14 | Peiminine | C27H43NO3 | 429.3236 | −1.56 | 177.1122, 133.0860, 123.1171, 89.0602 |
Terpenoid | ||||||
61 | 19.22 | Gibberellin A7 | C19H22O5 | 330.1465 | −0.71 | 285.1120, 255.1016, 223.0755, 151.0754 |
62 | 21.067 | Samandarin | C19H31NO2 | 305.2352 | −0.83 | 260.8843, 250.1800, 194.1177, 142.0561 |
63 | 22.538 | 5-Androstenetriol | C19H30O3 | 306.2191 | −1.18 | 233.1536, 187.1481, 147.1170, 123.1170 |
Coumarin | ||||||
64 | 19.517 | Pteryxin | C21H22O7 | 386.1362 | −0.93 | 357.1337, 353.1117, 340.2560, 137.0599 |
65 | 19.873 | 7-Hydroxycoumarine | C9H6O3 | 162.0316 | −0.41 | 135.0442, 133.0285, 107.0858, 89.0603 |
Lipid | ||||||
66 | 19.103 | 12-Aminododecanoic acid | C12H25NO2 | 215.1886 | 0.32 | 198.1853, 156.1747, 155.0702 |
67 | 23.613 | Macamide B | C23 H39NO | 345.3027 | −1.28 | 239.2373, 137.1325, 133.0859, 91.0548 |
Sample | IC50(mg/mL) | ||||
---|---|---|---|---|---|
DPPH | ABTS | Total Reducing Power | AChE | α-Glucosidase | |
Crude extract | 0.10 ± 0.001 a | 0.05 ± 0.034 a | 0.29 ± 0.006 a | 0.07 ± 0.015 a | 0.21 ± 0.051 a |
Alkaloid | 0.16 ± 0.026 a | 0.05 ± 0.002 a | 0.14 ± 0.004 b | 0.08 ± 0.019 a | 0.04 ± 0.008 b |
Non-alkaloid | 0.42 ± 0.041 b | 0.84 ± 0.020 b | 1.43 ± 0.023 c | 0.56 ± 0.036 b | 2.21 ± 0.032 c |
Samples | S. aureus | B. subtilis | E. coli | E. carotovora |
---|---|---|---|---|
Crude extract (mg/mL) | 0.25 | 0.25 | 1 | 0.5 |
Alkaloid (mg/mL) | 0.125 | 0.25 | 0.5 | 0.25 |
Non-alkaloid (mg/mL) | 0.5 | 1 | 2 | 2 |
Kanamycin (100 μg/mL) | - | - | - | - |
Methanol (50%) | + | + | + | + |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, S.; Wei, B.; Fu, Y. A Study of the Chemical Composition and Biological Activity of Michelia macclurei Dandy Heartwood: New Sources of Natural Antioxidants, Enzyme Inhibitors and Bacterial Inhibitors. Int. J. Mol. Sci. 2023, 24, 7972. https://doi.org/10.3390/ijms24097972
Chen S, Wei B, Fu Y. A Study of the Chemical Composition and Biological Activity of Michelia macclurei Dandy Heartwood: New Sources of Natural Antioxidants, Enzyme Inhibitors and Bacterial Inhibitors. International Journal of Molecular Sciences. 2023; 24(9):7972. https://doi.org/10.3390/ijms24097972
Chicago/Turabian StyleChen, Shixiang, Bochen Wei, and Yunlin Fu. 2023. "A Study of the Chemical Composition and Biological Activity of Michelia macclurei Dandy Heartwood: New Sources of Natural Antioxidants, Enzyme Inhibitors and Bacterial Inhibitors" International Journal of Molecular Sciences 24, no. 9: 7972. https://doi.org/10.3390/ijms24097972
APA StyleChen, S., Wei, B., & Fu, Y. (2023). A Study of the Chemical Composition and Biological Activity of Michelia macclurei Dandy Heartwood: New Sources of Natural Antioxidants, Enzyme Inhibitors and Bacterial Inhibitors. International Journal of Molecular Sciences, 24(9), 7972. https://doi.org/10.3390/ijms24097972