Intestinal Behcet’s Disease: A Review of the Immune Mechanism and Present and Potential Biological Agents
Abstract
:1. Introduction
2. Immunity Mechanism
2.1. Immunogens
2.2. Cellular Immunity in Adaptive Immunity
2.3. Humoral Immunity in Adaptive Immunity
2.4. Innate Immunity
3. Present and Potential Biological Agents
3.1. Anti-TNF-α Agents
3.2. IFN-α
3.3. IL-1 Antagonist
3.4. IL-6 Antagonist
3.5. IL-17 Antagonist
3.6. IL-12/IL-23 Antagonist
3.7. Small Molecule Targeted Agents
3.8. Other Biological Agents
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hatemi, G.; Seyahi, E.; Fresko, I.; Talarico, R.; Ucar, D.; Hamuryudan, V. Behcet’s syndrome: One year in review 2022. Clin. Exp. Rheumatol. 2022, 40, 1461–1471. [Google Scholar] [CrossRef] [PubMed]
- Yazici, H.; Seyahi, E.; Hatemi, G.; Yazici, Y. Behcet syndrome: A contemporary view. Nat. Rev. Rheumatol. 2018, 14, 107–119. [Google Scholar] [CrossRef] [PubMed]
- Guan, J. New Concept of Behcet’s Disease; Fudan University Press: Shanghai, China, 2021; pp. 55–91. [Google Scholar]
- Bettiol, A.; Hatemi, G.; Vannozzi, L.; Barilaro, A.; Prisco, D.; Emmi, G. Treating the Different Phenotypes of Behcet’s Syndrome. Front. Immunol. 2019, 10, 2830. [Google Scholar] [CrossRef] [PubMed]
- Hatemi, G.; Christensen, R.; Bang, D.; Bodaghi, B.; Celik, A.F.; Fortune, F.; Gaudric, J.; Gul, A.; Kotter, I.; Leccese, P.; et al. 2018 update of the EULAR recommendations for the management of Behcet’s syndrome. Ann. Rheum. Dis. 2018, 77, 808–818. [Google Scholar] [CrossRef] [PubMed]
- Hatemi, I.; Hatemi, G.; Celik, A.F. Gastrointestinal Involvement in Behcet Disease. Rheum. Dis. Clin. N. Am. 2018, 44, 45–64. [Google Scholar] [CrossRef] [PubMed]
- Skef, W.; Hamilton, M.J.; Arayssi, T. Gastrointestinal Behcet’s disease: A review. World J. Gastroenterol. 2015, 21, 3801–3812. [Google Scholar] [CrossRef]
- Soejima, Y.; Kirino, Y.; Takeno, M.; Kurosawa, M.; Takeuchi, M.; Yoshimi, R.; Sugiyama, Y.; Ohno, S.; Asami, Y.; Sekiguchi, A.; et al. Changes in the proportion of clinical clusters contribute to the phenotypic evolution of Behçet’s disease in Japan. Arthritis Res. Ther. 2021, 23, 49. [Google Scholar] [CrossRef]
- Kim, D.H.; Cheon, J.H. Intestinal Behcet’s Disease: A True Inflammatory Bowel Disease or Merely an Intestinal Complication of Systemic Vasculitis? Yonsei Med. J. 2016, 57, 22–32. [Google Scholar] [CrossRef]
- He, K.; Wu, D. Clinical characteristics, diagnosis and evaluation of intestinal Behcet′s disease. Chin. J. Gen. Pract. 2022, 21, 1101–1106. [Google Scholar] [CrossRef]
- Salmaninejad, A.; Zamani, M.R.; Shabgah, A.G.; Hosseini, S.; Mollaei, F.; Hosseini, N.; Sahebkar, A. Behcet’s disease: An immunogenetic perspective. J. Cell. Physiol. 2019, 234, 8055–8074. [Google Scholar] [CrossRef]
- Gong, L.; Zhang, Y.L.; Sun, L.X.; Chen, G.R.; Wu, D. Mucosal healing in intestinal Behcet’s disease: A systematic review and meta-analysis. J. Dig. Dis. 2021, 22, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, A.; Upadhyay, S.; Javaid, M.A.; Qureshi, A.M.; Haseeb, S.; Javed, N.; Cormier, C.; Farooq, A.; Sheikh, A.B. Behcet’s Disease: An In-Depth Review about Pathogenesis, Gastrointestinal Manifestations, and Management. Inflamm. Intest. Dis. 2021, 6, 175–185. [Google Scholar] [CrossRef] [PubMed]
- Alibaz-Oner, F.; Direskeneli, H. Biologic treatments in Behcet’s disease. Eur. J. Rheumatol. 2021, 8, 217–222. [Google Scholar] [CrossRef]
- Bozkurt, T.; Karabacak, M.; Karatas, H.; KutlugAgackiran, S.; Ergun, T.; Direskeneli, H.; Alibaz-Oner, F. Earlier and more aggressive treatment with biologics may prevent relapses and further new organ involvement in Behcet’s disease. Clin. Immunol. 2023, 248, 109263. [Google Scholar] [CrossRef]
- Watanabe, K.; Tanida, S.; Inoue, N.; Kunisaki, R.; Kobayashi, K.; Nagahori, M.; Arai, K.; Uchino, M.; Koganei, K.; Kobayashi, T.; et al. Evidence-based diagnosis and clinical practice guidelines for intestinal Behcet’s disease 2020 edited by Intractable Diseases, the Health and Labour Sciences Research Grants. J. Gastroenterol. 2020, 55, 679–700. [Google Scholar] [CrossRef]
- Tong, B.; Liu, X.; Xiao, J.; Su, G. Immunopathogenesis of Behcet’s Disease. Front. Immunol. 2019, 10, 665. [Google Scholar] [CrossRef] [PubMed]
- Iris, M.; Ozcikmak, E.; Aksoy, A.; Alibaz-Oner, F.; Inanc, N.; Ergun, T.; Direskeneli, H.; Mumcu, G. The assessment of contributing factors to oral ulcer presence in Behcet’s disease: Dietary and non-dietary factors. Eur. J. Rheumatol. 2018, 5, 240–243. [Google Scholar] [CrossRef]
- Mumcu, G.; Direskeneli, H. Triggering agents and microbiome as environmental factors on Behcet’s syndrome. Intern. Emerg. Med. 2019, 14, 653–660. [Google Scholar] [CrossRef]
- Yan, X.; Wu, D. Research progress on the pathogenesis of intestinal Behcet’s syndrome. Chin. J. Alergy Clin. Immunol. 2022, 16, 501–505. (In Chinese) [Google Scholar] [CrossRef]
- Park, U.C.; Kim, T.W.; Yu, H.G. Immunopathogenesis of ocular Behcet’s disease. J. Immunol. Res. 2014, 2014, 653539. [Google Scholar] [CrossRef]
- Pineton de Chambrun, M.; Wechsler, B.; Geri, G.; Cacoub, P.; Saadoun, D. New insights into the pathogenesis of Behçet’s disease. Autoimmun. Rev. 2012, 11, 687–698. [Google Scholar] [CrossRef] [PubMed]
- Direskeneli, H.; Saruhan-Direskeneli, G. The role of heat shock proteins in Behet’s disease. Clin. Exp. Rheumatol. 2003, 21 (Suppl. S30), S44–S48. [Google Scholar] [PubMed]
- Birtas-Atesoglu, E.; Inanc, N.; Yavuz, S.; Ergun, T.; Direskeneli, H. Serum levels of free heat shock protein 70 and anti-HSP70 are elevated in Behçet’s disease. Clin. Exp. Rheumatol. 2008, 26 (Suppl. S50), S96–S98. [Google Scholar] [PubMed]
- Mahesh, S.P.; Li, Z.; Buggage, R.; Mor, F.; Cohen, I.R.; Chew, E.Y.; Nussenblatt, R.B. Alpha tropomyosin as a self-antigen in patients with Behçet’s disease. Clin. Exp. Immunol. 2005, 140, 368–375. [Google Scholar] [CrossRef]
- Consolandi, C.; Turroni, S.; Emmi, G.; Severgnini, M.; Fiori, J.; Peano, C.; Biagi, E.; Grassi, A.; Rampelli, S.; Silvestri, E.; et al. Behçet’s syndrome patients exhibit specific microbiome signature. Autoimmun. Rev. 2015, 14, 269–276. [Google Scholar] [CrossRef]
- Shimizu, J.; Kubota, T.; Takada, E.; Takai, K.; Fujiwara, N.; Arimitsu, N.; Ueda, Y.; Wakisaka, S.; Suzuki, T.; Suzuki, N. Relative abundance of Megamonas hypermegale and Butyrivibrio species decreased in the intestine and its possible association with the T cell aberration by metabolite alteration in patients with Behcet’s disease (210 characters). Clin. Rheumatol. 2019, 38, 1437–1445. [Google Scholar] [CrossRef]
- Shimizu, J.; Kubota, T.; Takada, E.; Takai, K.; Fujiwara, N.; Arimitsu, N.; Ueda, Y.; Wakisaka, S.; Suzuki, T.; Suzuki, N. Bifidobacteria Abundance-Featured Gut Microbiota Compositional Change in Patients with Behcet’s Disease. PLoS ONE 2016, 11, e0153746. [Google Scholar] [CrossRef]
- Yasar Bilge, N.S.; Perez Brocal, V.; Kasifoglu, T.; Bilge, U.; Kasifoglu, N.; Moya, A.; Dinleyici, E.C. Intestinal microbiota composition of patients with Behcet’s disease: Differences between eye, mucocutaneous and vascular involvement. The Rheuma-BIOTA study. Clin. Exp. Rheumatol. 2020, 38 (Suppl. S127), 60–68. [Google Scholar]
- Ferrante, A.; Ciccia, F.; Principato, A.; Giardina, A.R.; Impastato, R.; Peralta, S.; Triolo, G. A Th1 but not a Th17 response is present in the gastrointestinal involvement of Behcet’s disease. Clin. Exp. Rheumatol. 2010, 28 (Suppl. S60), S27–S30. [Google Scholar]
- Emmi, G.; Silvestri, E.; Bella, C.D.; Grassi, A.; Benagiano, M.; Cianchi, F.; Squatrito, D.; Cantarini, L.; Emmi, L.; Selmi, C.; et al. Cytotoxic Th1 and Th17 cells infiltrate the intestinal mucosa of Behcet patients and exhibit high levels of TNF-alpha in early phases of the disease. Medicine 2016, 95, e5516. [Google Scholar] [CrossRef]
- Aridogan, B.C.; Yildirim, M.; Baysal, V.; Inaloz, H.S.; Baz, K.; Kaya, S. Serum Levels of IL-4, IL-10, IL-12, IL-13 and IFN-gamma in Behcet’s disease. J. Dermatol. 2003, 30, 602–607. [Google Scholar] [CrossRef] [PubMed]
- Ahn, J.K.; Yu, H.G.; Chung, H.; Park, Y.G. Intraocular cytokine environment in active Behcet uveitis. Am. J. Ophthalmol. 2006, 142, 429–434. [Google Scholar] [CrossRef] [PubMed]
- Horai, R.; Caspi, R.R. Cytokines in autoimmune uveitis. J. Interferon Cytokine Res. 2011, 31, 733–744. [Google Scholar] [CrossRef] [PubMed]
- Imamura, Y.; Kurokawa, M.S.; Yoshikawa, H.; Nara, K.; Takada, E.; Masuda, C.; Tsukikawa, S.; Ozaki, S.; Matsuda, T.; Suzuki, N. Involvement of Th1 cells and heat shock protein 60 in the pathogenesis of intestinal Behcet’s disease. Clin. Exp. Immunol. 2005, 139, 371–378. [Google Scholar] [CrossRef]
- Chi, W.; Zhu, X.; Yang, P.; Liu, X.; Lin, X.; Zhou, H.; Huang, X.; Kijlstra, A. Upregulated IL-23 and IL-17 in Behcet patients with active uveitis. Invest. Ophthalmol. Vis. Sci. 2008, 49, 3058–3064. [Google Scholar] [CrossRef] [PubMed]
- Nanke, Y.; Yago, T.; Kotake, S. The Role of Th17 Cells in the Pathogenesis of Behcet’s Disease. J. Clin. Med. 2017, 6, 74. [Google Scholar] [CrossRef] [PubMed]
- Hamzaoui, K.; Bouali, E.; Ghorbel, I.; Khanfir, M.; Houman, H.; Hamzaoui, A. Expression of Th-17 and RORgammat mRNA in Behcet’s Disease. Med. Sci. Monit. 2011, 17, CR227–CR234. [Google Scholar] [CrossRef]
- Campbell, D.J.; Koch, M.A. Phenotypical and functional specialization of FOXP3+ regulatory T cells. Nat. Rev. Immunol. 2011, 11, 119–130. [Google Scholar] [CrossRef]
- Sakaguchi, S.; Miyara, M.; Costantino, C.M.; Hafler, D.A. FOXP3+ regulatory T cells in the human immune system. Nat. Rev. Immunol. 2010, 10, 490–500. [Google Scholar] [CrossRef]
- Geri, G.; Terrier, B.; Rosenzwajg, M.; Wechsler, B.; Touzot, M.; Seilhean, D.; Tran, T.A.; Bodaghi, B.; Musset, L.; Soumelis, V.; et al. Critical role of IL-21 in modulating TH17 and regulatory T cells in Behcet disease. J. Allergy Clin. Immunol. 2011, 128, 655–664. [Google Scholar] [CrossRef]
- Hamzaoui, K.; Borhani Haghighi, A.; Ghorbel, I.B.; Houman, H. RORC and Foxp3 axis in cerebrospinal fluid of patients with neuro-Behcet’s disease. J. Neuroimmunol. 2011, 233, 249–253. [Google Scholar] [CrossRef]
- Duhen, T.; Geiger, R.; Jarrossay, D.; Lanzavecchia, A.; Sallusto, F. Production of interleukin 22 but not interleukin 17 by a subset of human skin-homing memory T cells. Nat. Immunol. 2009, 10, 857–863. [Google Scholar] [CrossRef]
- Aktas Cetin, E.; Cosan, F.; Cefle, A.; Deniz, G. IL-22-secreting Th22 and IFN-γ-secreting Th17 cells in Behçet’s disease. Mod. Rheumatol. 2014, 24, 802–807. [Google Scholar] [CrossRef] [PubMed]
- Yanaba, K.; Bouaziz, J.D.; Matsushita, T.; Magro, C.M.; St Clair, E.W.; Tedder, T.F. B-lymphocyte contributions to human autoimmune disease. Immunol. Rev. 2008, 223, 284–299. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, N.; Sakane, T.; Ueda, Y.; Tsunematsu, T. Abnormal B cell function in patients with Behcet’s disease. Arthritis Rheum. 1986, 29, 212–219. [Google Scholar] [CrossRef] [PubMed]
- Eksioglu-Demiralp, E.; Kibaroglu, A.; Direskeneli, H.; Yavuz, S.; Karsli, F.; Yurdakul, S.; Yazici, H.; Akoglu, T. Phenotypic characteristics of B cells in Behcet’s disease: Increased activity in B cell subsets. J. Rheumatol. 1999, 26, 826–832. [Google Scholar]
- Beutler, B. Innate immunity: An overview. Mol. Immunol. 2004, 40, 845–859. [Google Scholar] [CrossRef]
- Nathan, C. Neutrophils and immunity: Challenges and opportunities. Nat. Rev. Immunol. 2006, 6, 173–182. [Google Scholar] [CrossRef]
- Neves, F.S.; Spiller, F. Possible mechanisms of neutrophil activation in Behcet’s disease. Int. Immunopharmacol. 2013, 17, 1206–1210. [Google Scholar] [CrossRef]
- Keller, M.; Spanou, Z.; Schaerli, P.; Britschgi, M.; Yawalkar, N.; Seitz, M.; Villiger, P.M.; Pichler, W.J. T cell-regulated neutrophilic inflammation in autoinflammatory diseases. J. Immunol. 2005, 175, 7678–7686. [Google Scholar] [CrossRef]
- Kobayashi, M.; Ito, M.; Nakagawa, A.; Matsushita, M.; Nishikimi, N.; Sakurai, T.; Nimura, Y. Neutrophil and endothelial cell activation in the vasa vasorum in vasculo-Behcet disease. Histopathology 2000, 36, 362–371. [Google Scholar] [CrossRef]
- Becatti, M.; Emmi, G.; Silvestri, E.; Bruschi, G.; Ciucciarelli, L.; Squatrito, D.; Vaglio, A.; Taddei, N.; Abbate, R.; Emmi, L.; et al. Neutrophil Activation Promotes Fibrinogen Oxidation and Thrombus Formation in Behcet Disease. Circulation 2016, 133, 302–311. [Google Scholar] [CrossRef]
- Kucuksezer, U.C.; Aktas Cetin, E.; Esen, F.; Tahrali, I.; Akdeniz, N.; Gelmez, M.Y.; Deniz, G. The Role of Natural Killer Cells in Autoimmune Diseases. Front. Immunol. 2021, 12, 622306. [Google Scholar] [CrossRef]
- Cooper, M.A.; Fehniger, T.A.; Turner, S.C.; Chen, K.S.; Ghaheri, B.A.; Ghayur, T.; Carson, W.E.; Caligiuri, M.A. Human natural killer cells: A unique innate immunoregulatory role for the CD56(bright) subset. Blood 2001, 97, 3146–3151. [Google Scholar] [CrossRef] [PubMed]
- Moretta, A.; Marcenaro, E.; Parolini, S.; Ferlazzo, G.; Moretta, L. NK cells at the interface between innate and adaptive immunity. Cell. Death Differ. 2008, 15, 226–233. [Google Scholar] [CrossRef] [PubMed]
- Hasan, M.S.; Ryan, P.L.; Bergmeier, L.A.; Fortune, F. Circulating NK cells and their subsets in Behcet’s disease. Clin. Exp. Immunol. 2017, 188, 311–322. [Google Scholar] [CrossRef] [PubMed]
- Eberl, M.; Moser, B. Monocytes and gammadelta T cells: Close encounters in microbial infection. Trends Immunol. 2009, 30, 562–568. [Google Scholar] [CrossRef]
- Sutton, C.E.; Lalor, S.J.; Sweeney, C.M.; Brereton, C.F.; Lavelle, E.C.; Mills, K.H. Interleukin-1 and IL-23 induce innate IL-17 production from gammadelta T cells, amplifying Th17 responses and autoimmunity. Immunity 2009, 31, 331–341. [Google Scholar] [CrossRef] [PubMed]
- Parlakgul, G.; Guney, E.; Erer, B.; Kilicaslan, Z.; Direskeneli, H.; Gul, A.; Saruhan-Direskeneli, G. Expression of regulatory receptors on gammadelta T cells and their cytokine production in Behcet’s disease. Arthritis Res. Ther. 2013, 15, R15. [Google Scholar] [CrossRef]
- Ahn, J.K.; Cha, H.S.; Bae, E.K.; Lee, J.; Koh, E.M. Extracellular high-mobility group box 1 is increased in patients with Behcet’s disease with intestinal involvement. J. Korean Med. Sci. 2011, 26, 697–700. [Google Scholar] [CrossRef]
- Kirino, Y.; Takeno, M.; Watanabe, R.; Murakami, S.; Kobayashi, M.; Ideguchi, H.; Ihata, A.; Ohno, S.; Ueda, A.; Mizuki, N.; et al. Association of reduced heme oxygenase-1 with excessive Toll-like receptor 4 expression in peripheral blood mononuclear cells in Behcet’s disease. Arthritis Res. Ther. 2008, 10, R16. [Google Scholar] [CrossRef] [PubMed]
- He, K.; Wu, D. The treatment principles and targets for intestinal Behcet’s disease. Therap. Adv. Gastroenterol. 2023, 16, 17562848231167283. [Google Scholar] [CrossRef] [PubMed]
- Corominas, M.; Gastaminza, G.; Lobera, T. Hypersensitivity reactions to biological drugs. J. Investig. Allergol. Clin. Immunol. 2014, 24, 212–225. [Google Scholar]
- Purcell, R.T.; Lockey, R.F. Immunologic responses to therapeutic biologic agents. J. Investig. Allergol. Clin. Immunol. 2008, 18, 335–342. [Google Scholar]
- Vitale, A.; Emmi, G.; Lopalco, G.; Fabiani, C.; Gentileschi, S.; Silvestri, E.; Gerardo, D.S.; Iannone, F.; Frediani, B.; Galeazzi, M.; et al. Long-term efficacy and safety of golimumab in the treatment of multirefractory Behcet’s disease. Clin. Rheumatol. 2017, 36, 2063–2069. [Google Scholar] [CrossRef] [PubMed]
- Fabiani, C.; Sota, J.; Rigante, D.; Vitale, A.; Emmi, G.; Vannozzi, L.; Franceschini, R.; Bacherini, D.; Frediani, B.; Galeazzi, M.; et al. Rapid and Sustained Efficacy of Golimumab in the Treatment of Multirefractory Uveitis Associated with Behcet’s Disease. Ocul. Immunol. Inflamm. 2019, 27, 58–63. [Google Scholar] [CrossRef] [PubMed]
- Mesquida, M.; Victoria Hernandez, M.; Llorenc, V.; Pelegrin, L.; Espinosa, G.; Dick, A.D.; Adan, A. Behcet disease-associated uveitis successfully treated with golimumab. Ocul. Immunol. Inflamm. 2013, 21, 160–162. [Google Scholar] [CrossRef]
- Yao, M.; Gao, C.; Zhang, C.; Di, X.; Liang, W.; Sun, W.; Wang, Q.; Zheng, Z. Behcet’s disease with peripheral nervous system involvement successfully treated with golimumab: A case report and review of the literature. Rheumatol. Int. 2021, 41, 197–203. [Google Scholar] [CrossRef]
- Kon, T.; Hasui, K.; Suzuki, C.; Nishijima, H.; Tomiyama, M. Isolated myelitis in a patient with Behcet’s disease during golimumab therapy. J. Neuroimmunol. 2021, 354, 577533. [Google Scholar] [CrossRef]
- Melikoglu, M.; Fresko, I.; Mat, C.; Ozyazgan, Y.; Gogus, F.; Yurdakul, S.; Hamuryudan, V.; Yazici, H. Short-term trial of etanercept in Behcet’s disease: A double blind, placebo controlled study. J. Rheumatol. 2005, 32, 98–105. [Google Scholar]
- Monastirli, A.; Chroni, E.; Georgiou, S.; Ellul, J.; Pasmatzi, E.; Papathanasopoulos, P.; Tsambaos, D. Interferon-alpha treatment for acute myelitis and intestinal involvement in severe Behcet’s disease. QJM 2010, 103, 787–790. [Google Scholar] [CrossRef] [PubMed]
- Grimbacher, B.; Wenger, B.; Deibert, P.; Ness, T.; Koetter, I.; Peter, H.H. Loss of vision and diarrhoea. Lancet 1997, 350, 1818. [Google Scholar] [CrossRef] [PubMed]
- Kotter, I.; Vonthein, R.; Zierhut, M.; Eckstein, A.K.; Ness, T.; Gunaydin, I.; Grimbacher, B.; Blaschke, S.; Peter, H.H.; Stubiger, N. Differential efficacy of human recombinant interferon-alpha2a on ocular and extraocular manifestations of Behcet disease: Results of an open 4-center trial. Semin. Arthritis Rheum. 2004, 33, 311–319. [Google Scholar] [CrossRef] [PubMed]
- Cantarini, L.; Vitale, A.; Scalini, P.; Dinarello, C.A.; Rigante, D.; Franceschini, R.; Simonini, G.; Borsari, G.; Caso, F.; Lucherini, O.M.; et al. Anakinra treatment in drug-resistant Behcet’s disease: A case series. Clin. Rheumatol. 2015, 34, 1293–1301. [Google Scholar] [CrossRef]
- Vitale, A.; Rigante, D.; Caso, F.; Brizi, M.G.; Galeazzi, M.; Costa, L.; Franceschini, R.; Lucherini, O.M.; Cantarini, L. Inhibition of interleukin-1 by canakinumab as a successful mono-drug strategy for the treatment of refractory Behcet’s disease: A case series. Dermatology 2014, 228, 211–214. [Google Scholar] [CrossRef]
- Ugurlu, S.; Ucar, D.; Seyahi, E.; Hatemi, G.; Yurdakul, S. Canakinumab in a patient with juvenile Behcet’s syndrome with refractory eye disease. Ann. Rheum. Dis. 2012, 71, 1589–1591. [Google Scholar] [CrossRef]
- Cantarini, L.; Vitale, A.; Borri, M.; Galeazzi, M.; Franceschini, R. Successful use of canakinumab in a patient with resistant Behcet’s disease. Clin. Exp. Rheumatol. 2012, 30 (Suppl. S72), S115. [Google Scholar]
- Botsios, C.; Sfriso, P.; Furlan, A.; Punzi, L.; Dinarello, C.A. Resistant Behcet disease responsive to anakinra. Ann. Intern. Med. 2008, 149, 284–286. [Google Scholar] [CrossRef]
- Tugal-Tutkun, I.M.; Kadayifcilar, S.M.; Khairallah, M.M.; Lee, S.C.M.P.; Ozdal, P.; Ozyazgan, Y.; Song, J.H.M.; Yu, H.G.M.P.; Lehner, V.P.; de Cordoue, A.M.; et al. Safety and Efficacy of Gevokizumab in Patients with Behcet’s Disease Uveitis: Results of an Exploratory Phase 2 Study. Ocul. Immunol. Inflamm. 2017, 25, 62–70. [Google Scholar] [CrossRef]
- Tugal-Tutkun, I.; Pavesio, C.; De Cordoue, A.; Bernard-Poenaru, O.; Gul, A. Use of Gevokizumab in Patients with Behcet’s Disease Uveitis: An International, Randomized, Double-Masked, Placebo-Controlled Study and Open-Label Extension Study. Ocul. Immunol. Inflamm. 2018, 26, 1023–1033. [Google Scholar] [CrossRef]
- Gul, A.; Tugal-Tutkun, I.; Dinarello, C.A.; Reznikov, L.; Esen, B.A.; Mirza, A.; Scannon, P.; Solinger, A. Interleukin-1beta-regulating antibody XOMA 052 (gevokizumab) in the treatment of acute exacerbations of resistant uveitis of Behcet’s disease: An open-label pilot study. Ann. Rheum. Dis. 2012, 71, 563–566. [Google Scholar] [CrossRef] [PubMed]
- Atienza-Mateo, B.; Calvo-Río, V.; Beltrán, E.; Martínez-Costa, L.; Valls-Pascual, E.; Hernández-Garfella, M.; Atanes, A.; Cordero-Coma, M.; Miquel Nolla, J.; Carrasco-Cubero, C.; et al. Anti-interleukin 6 receptor tocilizumab in refractory uveitis associated with Behçet’s disease: Multicentre retrospective study. Rheumatology 2018, 57, 856–864. [Google Scholar] [CrossRef] [PubMed]
- Deroux, A.; Chiquet, C.; Bouillet, L. Tocilizumab in severe and refractory Behcet’s disease: Four cases and literature review. Semin. Arthritis Rheum. 2016, 45, 733–737. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Chen, S.; He, J. A case of refractory intestinal Behçet’s disease treated with tocilizumab, a humanised anti-interleukin-6 receptor antibody. Clin. Exp. Rheumatol. 2017, 35, 116–118. [Google Scholar]
- Di Scala, G.; Bettiol, A.; Cojan, R.D.; Finocchi, M.; Silvestri, E.; Emmi, G. Efficacy of the anti-IL 17 secukinumab in refractory Behçet’s syndrome: A preliminary study. J. Autoimmun. 2019, 97, 108–113. [Google Scholar] [CrossRef]
- Fagni, F.; Bettiol, A.; Talarico, R.; Lopalco, G.; Silvestri, E.; Urban, M.L.; Russo, P.A.J.; Di Scala, G.; Emmi, G.; Prisco, D. Long-term effectiveness and safety of secukinumab for treatment of refractory mucosal and articular Behçet’s phenotype: A multicentre study. Ann. Rheum. Dis. 2020, 79, 1098–1104. [Google Scholar] [CrossRef]
- Dick, A.D.; Tugal-Tutkun, I.; Foster, S.; Zierhut, M.; Melissa Liew, S.H.; Bezlyak, V.; Androudi, S. Secukinumab in the treatment of noninfectious uveitis: Results of three randomized, controlled clinical trials. Ophthalmology 2013, 120, 777–787. [Google Scholar] [CrossRef]
- Singh, S.; Murad, M.H.; Fumery, M.; Sedano, R.; Jairath, V.; Panaccione, R.; Sandborn, W.J.; Ma, C. Comparative efficacy and safety of biologic therapies for moderate-to-severe Crohn’s disease: A systematic review and network meta-analysis. Lancet Gastroenterol. Hepatol. 2021, 6, 1002–1014. [Google Scholar] [CrossRef]
- Feagan, B.G.; Sandborn, W.J.; Gasink, C.; Jacobstein, D.; Lang, Y.; Friedman, J.R.; Blank, M.A.; Johanns, J.; Gao, L.L.; Miao, Y.; et al. Ustekinumab as Induction and Maintenance Therapy for Crohn’s Disease. N. Engl. J. Med. 2016, 375, 1946–1960. [Google Scholar] [CrossRef]
- Lopalco, G.; Fabiani, C.; Venerito, V.; Lapadula, G.; Iannone, F.; Cantarini, L. Ustekinumab efficacy and safety in mucocutaneous multi-refractory Behçet’s disease. Clin. Exp. Rheumatol. 2017, 35, 130–131. [Google Scholar]
- Baerveldt, E.M.; Kappen, J.H.; Thio, H.B.; van Laar, J.A.; van Hagen, P.M.; Prens, E.P. Successful long-term triple disease control by ustekinumab in a patient with Behcet’s disease, psoriasis and hidradenitis suppurativa. Ann. Rheum. Dis. 2013, 72, 626–627. [Google Scholar] [CrossRef] [PubMed]
- Mirouse, A.; Barete, S.; Desbois, A.C.; Comarmond, C.; Sène, D.; Domont, F.; Bodaghi, B.; Ferfar, Y.; Cacoub, P.; Saadoun, D. Long-Term Outcome of Ustekinumab Therapy for Behçet’s Disease. Arthritis Rheumatol. 2019, 71, 1727–1732. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Yu, X.; Wang, Z.; Liu, W.; Liu, X.; Wang, X.; Zhang, M.; Zhao, Y.; Zhang, F.; Yang, H.; et al. Baricitinib for the treatment of intestinal Behcet’s disease: A pilot study. Clin. Immunol. 2023, 247, 109241. [Google Scholar] [CrossRef] [PubMed]
- Atienza-Mateo, B.; Martín-Varillas, J.L.; Graña, J.; Espinosa, G.; Moriano, C.; Pérez-Sandoval, T.; García-Armario, M.D.; Castellví, I.; Román-Ivorra, J.A.; Olivé, A.; et al. Apremilast in refractory orogenital ulcers and other manifestations of Behçet’s disease. A national multicentre study of 51 cases in clinical practice. Clin. Exp. Rheumatol. 2020, 38 (Suppl. S127), 69–75. [Google Scholar]
- Hatemi, G.; Mahr, A.; Ishigatsubo, Y.; Song, Y.W.; Takeno, M.; Kim, D.; Melikoglu, M.; Cheng, S.; McCue, S.; Paris, M.; et al. Trial of Apremilast for Oral Ulcers in Behcet’s Syndrome. N. Engl. J. Med. 2019, 381, 1918–1928. [Google Scholar] [CrossRef]
- Garcia-Estrada, C.; Casallas-Vanegas, A.; Zabala-Angeles, I.; Gomez-Figueroa, E.; Rivas-Alonso, V.; Flores-Rivera, J. Rituximab as an effective therapeutic option in refractory Neuro-Behçet syndrome. J. Neuroimmunol. 2020, 346, 577308. [Google Scholar] [CrossRef]
- Davatchi, F.; Shams, H.; Rezaipoor, M.; Sadeghi-Abdollahi, B.; Shahram, F.; Nadji, A.; Chams-Davatchi, C.; Akhlaghi, M.; Faezi, T.; Naderi, N. Rituximab in intractable ocular lesions of Behcet’s disease; randomized single-blind control study (pilot study). Int. J. Rheum. Dis. 2010, 13, 246–252. [Google Scholar] [CrossRef]
- Maciel, M.L.; Novello, M.; Neves, F.S. Short-term efficacy of abatacept in the treatment of refractory ocular and cutaneous Behçet’s disease. Rheumatol. Adv. Pract. 2017, 1, rkx004. [Google Scholar] [CrossRef]
- Mohammad, A.J.; Smith, R.M.; Chow, Y.W.; Chaudhry, A.N.; Jayne, D.R. Alemtuzumab as Remission Induction Therapy in Behçet Disease: A 20-year Experience. J. Rheumatol. 2015, 42, 1906–1913. [Google Scholar] [CrossRef]
- Perez-Pampin, E.; Campos-Franco, J.; Blanco, J.; Mera, A. Remission induction in a case of refractory Behçet disease with alemtuzumab. J. Clin. Rheumatol. 2013, 19, 101–103. [Google Scholar] [CrossRef]
- Arbrile, M.; Radin, M.; Rossi, D.; Menegatti, E.; Baldovino, S.; Sciascia, S.; Roccatello, D. Vedolizumab for the Management of Refractory Behçet’s Disease: From a Case Report to New Pieces of Mosaic in a Complex Disease. Front. Immunol. 2021, 12, 769785. [Google Scholar] [CrossRef] [PubMed]
- Oztas, M.O.; Onder, M.; Gurer, M.A.; Bukan, N.; Sancak, B. Serum interleukin 18 and tumour necrosis factor-alpha levels are increased in Behcet’s disease. Clin. Exp. Dermatol. 2005, 30, 61–63. [Google Scholar] [CrossRef] [PubMed]
- Kone-Paut, I.; Barete, S.; Bodaghi, B.; Deiva, K.; Desbois, A.C.; Galeotti, C.; Gaudric, J.; Kaplanski, G.; Mahr, A.; Noel, N.; et al. French recommendations for the management of Behcet’s disease. Orphanet. J. Rare. Dis. 2021, 16, 352. [Google Scholar] [CrossRef] [PubMed]
- Inflammatory Enteropathy Group, Gastroenterology Branch, Chinese Medical Association. Chinese consensus on diagnosis and treatment of intestinal Behcet′s disease. Chin. J. Dig. 2022, 42, 649–658. (In Chinese) [Google Scholar] [CrossRef]
- Tanida, S.; Inoue, N.; Kobayashi, K.; Naganuma, M.; Hirai, F.; Iizuka, B.; Watanabe, K.; Mitsuyama, K.; Inoue, T.; Ishigatsubo, Y.; et al. Adalimumab for the treatment of Japanese patients with intestinal Behcet’s disease. Clin. Gastroenterol. Hepatol. 2015, 13, 940–948.e943. [Google Scholar] [CrossRef]
- Zou, J.; Ji, D.N.; Cai, J.F.; Guan, J.L.; Bao, Z.J. Long-Term Outcomes and Predictors of Sustained Response in Patients with Intestinal Behcet’s Disease Treated with Infliximab. Dig. Dis. Sci. 2017, 62, 441–447. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, J.; Liu, T.; Han, W.; Bai, X.; Ruan, G.; Lv, H.; Shu, H.; Li, Y.; Li, J.; et al. The efficacy and safety of anti-tumor necrosis factor agents in the treatment of intestinal Behcet’s disease, a systematic review and meta-analysis. J. Gastroenterol. Hepatol. 2022, 37, 608–619. [Google Scholar] [CrossRef]
- Theofilopoulos, A.N.; Baccala, R.; Beutler, B.; Kono, D.H. Type I interferons (alpha/beta) in immunity and autoimmunity. Annu. Rev. Immunol. 2005, 23, 307–336. [Google Scholar] [CrossRef]
- Tsambaos, D.; Eichelberg, D.; Goos, M. Behcet’s syndrome: Treatment with recombinant leukocyte alpha-interferon. Arch. Dermatol. Res. 1986, 278, 335–336. [Google Scholar] [CrossRef]
- Krause, L.; Altenburg, A.; Pleyer, U.; Kohler, A.K.; Zouboulis, C.C.; Foerster, M.H. Longterm visual prognosis of patients with ocular Adamantiades-Behcet’s disease treated with interferon-alpha-2a. J. Rheumatol. 2008, 35, 896–903. [Google Scholar]
- Gueudry, J.; Wechsler, B.; Terrada, C.; Gendron, G.; Cassoux, N.; Fardeau, C.; Lehoang, P.; Piette, J.C.; Bodaghi, B. Long-term efficacy and safety of low-dose interferon alpha2a therapy in severe uveitis associated with Behcet disease. Am. J. Ophthalmol. 2008, 146, 837–844.e831. [Google Scholar] [CrossRef] [PubMed]
- Yang, P.; Huang, G.; Du, L.; Ye, Z.; Hu, K.; Wang, C.; Qi, J.; Liang, L.; Wu, L.; Cao, Q.; et al. Long-Term Efficacy and Safety of Interferon Alpha-2a in the Treatment of Chinese Patients with Behcet’s Uveitis Not Responding to Conventional Therapy. Ocul. Immunol. Inflamm. 2019, 27, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Celiker, H.; Kazokoglu, H.; Direskeneli, H. Factors Affecting Relapse and Remission in Behcet’s Uveitis Treated with Interferon Alpha2a. J. Ocul. Pharmacol. Ther. 2019, 35, 58–65. [Google Scholar] [CrossRef] [PubMed]
- Alpsoy, E.; Durusoy, C.; Yilmaz, E.; Ozgurel, Y.; Ermis, O.; Yazar, S.; Basaran, E. Interferon alfa-2a in the treatment of Behcet disease: A randomized placebo-controlled and double-blind study. Arch. Dermatol. 2002, 138, 467–471. [Google Scholar] [CrossRef] [PubMed]
- Calguneri, M.; Onat, A.M.; Ozturk, M.A.; Ozcakar, L.; Ureten, K.; Akdogan, A.; Ertenli, I.; Kiraz, S. Transverse myelitis in a patient with Behcet’s disease: Favorable outcome with a combination of interferon-alpha. Clin. Rheumatol. 2005, 24, 64–66. [Google Scholar] [CrossRef]
- Nichols, J.C.; Ince, A.; Akduman, L.; Mann, E.S. Interferon-alpha 2a treatment of neuro-Behcet disease. J. Neuroophthalmol. 2001, 21, 109–111. [Google Scholar] [CrossRef]
- Feron, E.J.; Rothova, A.; van Hagen, P.M.; Baarsma, G.S.; Suttorp-Schulten, M.S. Interferon-alpha 2b for refractory ocular Behcet’s disease. Lancet 1994, 343, 1428. [Google Scholar] [CrossRef]
- Lightman, S.; Taylor, S.R.; Bunce, C.; Longhurst, H.; Lynn, W.; Moots, R.; Stanford, M.; Tomkins-Netzer, O.; Yang, D.; Calder, V.L.; et al. Pegylated interferon-alpha-2b reduces corticosteroid requirement in patients with Behcet’s disease with upregulation of circulating regulatory T cells and reduction of Th17. Ann. Rheum. Dis. 2015, 74, 1138–1144. [Google Scholar] [CrossRef]
- Calguneri, M.; Ozturk, M.A.; Ertenli, I.; Kiraz, S.; Apras, S.; Ozbalkan, Z. Effects of interferon alpha treatment on the clinical course of refractory Behcet’s disease: An open study. Ann. Rheum. Dis. 2003, 62, 492–493. [Google Scholar] [CrossRef]
- Kötter, I.; Eckstein, A.K.; Stübiger, N.; Zierhut, M. Treatment of ocular symptoms of Behçet’s disease with interferon alpha 2a: A pilot study. Br. J. Ophthalmol. 1998, 82, 488–494. [Google Scholar] [CrossRef]
- Dinarello, C.A. Biologic basis for interleukin-1 in disease. Blood. 1996, 87, 2095–2147. [Google Scholar] [CrossRef] [PubMed]
- Pay, S.; Erdem, H.; Pekel, A.; Simsek, I.; Musabak, U.; Sengul, A.; Dinc, A. Synovial proinflammatory cytokines and their correlation with matrix metalloproteinase-3 expression in Behçet’s disease. Does interleukin-1beta play a major role in Behçet’s synovitis? Rheumatol. Int. 2006, 26, 608–613. [Google Scholar] [CrossRef] [PubMed]
- Karasneh, J.; Hajeer, A.H.; Barrett, J.; Ollier, W.E.; Thornhill, M.; Gul, A. Association of specific interleukin 1 gene cluster polymorphisms with increased susceptibility for Behcet’s disease. Rheumatology 2003, 42, 860–864. [Google Scholar] [CrossRef] [PubMed]
- Korn, T.; Bettelli, E.; Oukka, M.; Kuchroo, V.K. IL-17 and Th17 Cells. Annu. Rev. Immunol. 2009, 27, 485–517. [Google Scholar] [CrossRef] [PubMed]
- Ho, L.J.; Luo, S.F.; Lai, J.H. Biological effects of interleukin-6: Clinical applications in autoimmune diseases and cancers. Biochem. Pharmacol. 2015, 97, 16–26. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Lopes, J.E.; Chong, M.M.; Ivanov, I.I.; Min, R.; Victora, G.D.; Shen, Y.; Du, J.; Rubtsov, Y.P.; Rudensky, A.Y.; et al. TGF-beta-induced Foxp3 inhibits T(H)17 cell differentiation by antagonizing RORgammat function. Nature 2008, 453, 236–240. [Google Scholar] [CrossRef]
- Yang, L.; Anderson, D.E.; Baecher-Allan, C.; Hastings, W.D.; Bettelli, E.; Oukka, M.; Kuchroo, V.K.; Hafler, D.A. IL-21 and TGF-beta are required for differentiation of human T(H)17 cells. Nature 2008, 454, 350–352. [Google Scholar] [CrossRef]
- Khanna, D.; Denton, C.P.; Jahreis, A.; van Laar, J.M.; Frech, T.M.; Anderson, M.E.; Baron, M.; Chung, L.; Fierlbeck, G.; Lakshminarayanan, S.; et al. Safety and efficacy of subcutaneous tocilizumab in adults with systemic sclerosis (faSScinate): A phase 2, randomised, controlled trial. Lancet 2016, 387, 2630–2640. [Google Scholar] [CrossRef]
- Akiyama, M.; Kaneko, Y.; Takeuchi, T. Effectiveness of tocilizumab in Behcet’s disease: A systematic literature review. Semin. Arthritis Rheum. 2020, 50, 797–804. [Google Scholar] [CrossRef] [PubMed]
- Moseley, T.A.; Haudenschild, D.R.; Rose, L.; Reddi, A.H. Interleukin-17 family and IL-17 receptors. Cytokine Growth Factor Rev. 2003, 14, 155–174. [Google Scholar] [CrossRef]
- McGonagle, D.G.; McInnes, I.B.; Kirkham, B.W.; Sherlock, J.; Moots, R. The role of IL-17A in axial spondyloarthritis and psoriatic arthritis: Recent advances and controversies. Ann. Rheum. Dis. 2019, 78, 1167–1178. [Google Scholar] [CrossRef] [PubMed]
- Barrado-Solís, N.; Rodrigo-Nicolás, B.; De la Morena-Barrio, I.; Pérez-Pastor, G.; Sanchis-Sánchez, C.; Tomás-Cabedo, G.; Valcuende-Cavero, F. Report of two cases of Behçet’s disease developed during treatment with secukinumab. J. Eur. Acad. Dermatol. Venereol. 2020, 34, e587–e589. [Google Scholar] [CrossRef] [PubMed]
- Hueber, W.; Sands, B.E.; Lewitzky, S.; Vandemeulebroecke, M.; Reinisch, W.; Higgins, P.D.; Wehkamp, J.; Feagan, B.G.; Yao, M.D.; Karczewski, M.; et al. Secukinumab, a human anti-IL-17A monoclonal antibody, for moderate to severe Crohn’s disease: Unexpected results of a randomised, double-blind placebo-controlled trial. Gut 2012, 61, 1693–1700. [Google Scholar] [CrossRef] [PubMed]
- Chyuan, I.T.; Lai, J.H. New insights into the IL-12 and IL-23: From a molecular basis to clinical application in immune-mediated inflammation and cancers. Biochem. Pharmacol. 2020, 175, 113928. [Google Scholar] [CrossRef]
- Benson, J.M.; Sachs, C.W.; Treacy, G.; Zhou, H.; Pendley, C.E.; Brodmerkel, C.M.; Shankar, G.; Mascelli, M.A. Therapeutic targeting of the IL-12/23 pathways: Generation and characterization of ustekinumab. Nat. Biotechnol. 2011, 29, 615–624. [Google Scholar] [CrossRef]
- Trinchieri, G. Interleukin-12 and its role in the generation of TH1 cells. Immunol. Today 1993, 14, 335–338. [Google Scholar] [CrossRef]
- Zhou, Z.Y.; Chen, S.L.; Shen, N.; Lu, Y. Cytokines and Behcet’s disease. Autoimmun. Rev. 2012, 11, 699–704. [Google Scholar] [CrossRef]
- Sadeghi, A.; Davatchi, F.; Shahram, F.; Karimimoghadam, A.; Alikhani, M.; Pezeshgi, A.; Mazloomzadeh, S.; Sadeghi-Abdollahi, B.; Asadi-Khiavi, M. Serum Profiles of Cytokines in Behcet’s Disease. J. Clin. Med. 2017, 6, 49. [Google Scholar] [CrossRef]
- Mizuki, N.; Meguro, A.; Ota, M.; Ohno, S.; Shiota, T.; Kawagoe, T.; Ito, N.; Kera, J.; Okada, E.; Yatsu, K.; et al. Genome-wide association studies identify IL23R-IL12RB2 and IL10 as Behçet’s disease susceptibility loci. Nat. Genet. 2010, 42, 703–706. [Google Scholar] [CrossRef]
- Kubo, S.; Nakayamada, S.; Sakata, K.; Kitanaga, Y.; Ma, X.; Lee, S.; Ishii, A.; Yamagata, K.; Nakano, K.; Tanaka, Y. Janus Kinase Inhibitor Baricitinib Modulates Human Innate and Adaptive Immune System. Front. Immunol. 2018, 9, 1510. [Google Scholar] [CrossRef]
- Lon, H.K.; Liu, D.; DuBois, D.C.; Almon, R.R.; Jusko, W.J. Modeling pharmacokinetics/pharmacodynamics of abatacept and disease progression in collagen-induced arthritic rats: A population approach. J. Pharmacokinet. Pharmacodyn. 2013, 40, 701–712. [Google Scholar] [CrossRef] [PubMed]
- Ruck, T.; Barman, S.; Schulte-Mecklenbeck, A.; Pfeuffer, S.; Steffen, F.; Nelke, C.; Schroeter, C.B.; Willison, A.; Heming, M.; Müntefering, T.; et al. Alemtuzumab-induced immune phenotype and repertoire changes: Implications for secondary autoimmunity. Brain 2022, 145, 1711–1725. [Google Scholar] [CrossRef] [PubMed]
- Vitale, A.; Rigante, D.; Lopalco, G.; Emmi, G.; Bianco, M.T.; Galeazzi, M.; Iannone, F.; Cantarini, L. New therapeutic solutions for Behçet’s syndrome. Expert Opin. Investig. Drugs 2016, 25, 827–840. [Google Scholar] [CrossRef] [PubMed]
Intestinal Behcet’s Disease | Crohn’s Disease | |
---|---|---|
Lesion distribution | Common in ileocecal region, rare in rectum and anus, short segment lesions | Common in ileocecal region, long segment lesions, jumping distribution |
Bowel morphology | Not prone to stenosis | Thickening and stenosis |
Gastrointestinal manifestations | Abdominal pain, diarrhea, hematochezia, with or without abdominal mass sometimes | Abdominal pain, diarrhea, hematochezia, abdominal mass, with or without perianal lesion |
Extra-gastrointestinal manifestations | Oral and vulval ulcers, folliculitis or acne-like skin lesions, systemic manifestations (for example, ocular, vascular, neurological and articular symptoms) | Oral ulcers, nodular erythema, pyoderma, arthritis and so on |
Laboratory tests | Positive in acupuncture test, HLA-B5 and ASCA | Positive in ASCA |
Endoscopic findings | Round or oval ulcers, volcano-like ulcers, single or multiple ulcers ≤ 5, with definite boundary and smooth mucosa around the ulcer | Discontinuous distribution of longitudinal ulcers, paving stone-like pattern, aphthous ulcers |
Pathologic findings | Signs of vasculitis. | Transmural inflammation, fissure-like ulcers, non-caseous granuloma |
Biological Agents | Immune-Related Targets | Structure | Possible Applicable Subtypes in BD |
---|---|---|---|
Infliximab, adalimumab | TNF-α | Monoclonal antibodies against TNF-α | All subtypes of BD * [5] |
Golimumab | Intestinal BD [66]; BD with ocular and neurological involvement [67,68,69,70] | ||
Etanercept | Soluble receptors against TNF-α | Intestinal BD [71]; BD with mucocutaneous and articular involvement * [5] | |
IFN-α | Not clear | Recombinant human IFN-α-2a | Intestinal BD [72,73,74]; BD with mucocutaneous, articular, ocular, and vascular involvement * [5] |
Anakinra | IL-1 | Recombinant human IL-1 receptor antagonist | Intestinal BD [75,76]; BD with mucocutaneous * and ocular involvement [77,78,79] |
Canakinumab | Anti-IL-1β humanized monoclonal antibodies | ||
Gevokizumab | Controversial in intestinal BD [80,81]; BD with ocular involvement [80,82] | ||
Tocilizumab | IL-6 | Human IL-6 receptor monoclonal antibody | Controversial in intestinal BD; BD with ocular, neurological, and vascular involvement [83,84,85] |
Secukinumab | IL-17 | Human IL-17A monoclonal antibody | Unclear in intestinal BD; BD with mucocutaneous and articular involvement [86,87,88] |
Ustekinumab | IL-12/IL-23 | Human IL-12/IL-23p40 monoclonal antibody | Unclear in intestinal BD but effective in CD [89,90]; BD with mucocutaneous and ocular involvement [91,92,93] |
Baricitinib | JAK1/JAK2 | JAK1/JAK2 inhibitor; small molecule drug | Intestinal BD [94] |
Apremilast | Phosphodiesterase 4 | Phosphodiesterase 4 inhibitor; small molecule drug | Intestinal BD [95]; BD with mucocutaneous [95,96] |
Rituximab | CD20 | Chimeric mouse/human monoclonal antibody against CD20 antigen on the B lymphocyte | Unclear in intestinal BD; BD with mucocutaneous, articular, neurological, and ocular involvement [97,98] |
Abatacept | B7 | Selective T-cell costimulation modulator and a protein drug | Unclear in intestinal BD; BD with mucocutaneous and ocular involvement [99] |
Alemtuzumab | CD52 | Humanized monoclonal antibody against CD52 | Unclear in intestinal BD; BD with ocular, vascular, and neurological involvement [100,101] |
Vedolizumab | α4β7 integrin | Humanized anti-α4β7 integrin monoclonal antibody | Intestinal BD [102] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, K.; Yan, X.; Wu, D. Intestinal Behcet’s Disease: A Review of the Immune Mechanism and Present and Potential Biological Agents. Int. J. Mol. Sci. 2023, 24, 8176. https://doi.org/10.3390/ijms24098176
He K, Yan X, Wu D. Intestinal Behcet’s Disease: A Review of the Immune Mechanism and Present and Potential Biological Agents. International Journal of Molecular Sciences. 2023; 24(9):8176. https://doi.org/10.3390/ijms24098176
Chicago/Turabian StyleHe, Kun, Xiaxiao Yan, and Dong Wu. 2023. "Intestinal Behcet’s Disease: A Review of the Immune Mechanism and Present and Potential Biological Agents" International Journal of Molecular Sciences 24, no. 9: 8176. https://doi.org/10.3390/ijms24098176
APA StyleHe, K., Yan, X., & Wu, D. (2023). Intestinal Behcet’s Disease: A Review of the Immune Mechanism and Present and Potential Biological Agents. International Journal of Molecular Sciences, 24(9), 8176. https://doi.org/10.3390/ijms24098176