The Extended Cleavage Specificity of Channel Catfish Granzyme-like II, A Highly Specific Elastase, Expressed by Natural Killer-like Cells
Abstract
:1. Introduction
2. Results
2.1. Phylogenetic Analyses of a Panel of Fish Proteases Related in Sequence to the Mammalian Hematopoietic Serine Proteases
2.2. Production, Purification, and Activation of Catfish Granzyme-like II, Zebrafish Esterase-like (AE-like), and Zebrafish SPA
2.3. Substrate Phage Display
2.4. Peptide Cleavage Analysis
2.5. Phage Display Sequence Verification Using Recombinant Substrates
2.6. Analysis of the Cleavage Specificity of Zebrafish SPA
2.7. Analysis of the Cleavage of Caspase 6 by Zebrafish AE-like
2.8. Screening for Potential In Vivo Substrates
2.9. Screening for Similar Protease Specificity
2.10. The Genomic Loci Encoding the Catfish Granzyme-like I, II, and III
3. Discussion
4. Materials and Methods
4.1. Phylogenetic Analyses
4.2. Production of Recombinant Catfish Granzyme-like II, Zebrafish AE-like, and Zebrafish SPA
4.3. Activation of Recombinant Catfish Granzyme-like II, Zebrafish SPA, and Zebrafish AE-like
4.4. Substrate Phage Display
4.5. Phage Display Sequence Verification Using a Two-Thioredoxin Approach
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Neurath, H. The versatility of proteolytic enzymes. J. Cell. Biochem. 1986, 32, 35–49. [Google Scholar] [CrossRef] [PubMed]
- Hellman, L.; Thorpe, M. Granule proteases of hematopoietic cells, a family of versatile inflammatory mediators—An update on their cleavage specificity, in vivo substrates, and evolution. Biol. Chem. 2014, 395, 15–49. [Google Scholar] [CrossRef] [PubMed]
- Akula, S.; Thorpe, M.; Boinapally, V.; Hellman, L. Granule Associated Serine Proteases of Hematopoietic Cells—An Analysis of Their Appearance and Diversification during Vertebrate Evolution. PLoS ONE 2015, 10, e0143091. [Google Scholar]
- Fu, Z.; Thorpe, M.; Akula, S.; Chahal, G.; Hellman, L. Extended cleavage specificity of human neutrophil elastase, human proteinase 3 and their distant orthologue clawed frog PR3—Three elastases with similar primary but different extended specificities and stability. Front. Immunol. 2018, 9, 2387. [Google Scholar] [CrossRef] [PubMed]
- Fu, Z.; Thorpe, M.; Alemayehu, R.; Roy, A.; Kervinen, J.; de Garavilla, L.; Åbrink, M.; Hellman, L. Highly Selective Cleavage of Cytokines and Chemokines by the Human Mast Cell Chymase and Neutrophil Cathepsin G. J. Immunol. 2017, 198, 1474–1483. [Google Scholar] [CrossRef] [PubMed]
- Akula, S.; Fu, Z.; Wernersson, S.; Hellman, L. The Evolutionary History of the Chymase Locus -a Locus Encoding Several of the Major Hematopoietic Serine Proteases. Int. J. Mol. Sci. 2021, 22, 10975. [Google Scholar] [CrossRef] [PubMed]
- Reimer, J.M.; Samollow, P.B.; Hellman, L. High degree of conservation of the multigene tryptase locus over the past 150-200 million years of mammalian evolution. Immunogenetics 2010, 62, 369–382. [Google Scholar] [CrossRef] [PubMed]
- Andersson, M.K.; Enoksson, M.; Gallwitz, M.; Hellman, L. The extended substrate specificity of the human mast cell chymase reveals a serine protease with well-defined substrate recognition profile. Int. Immunol. 2009, 21, 95–104. [Google Scholar] [CrossRef]
- Andersson, M.K.; Karlson, U.; Hellman, L. The extended cleavage specificity of the rodent beta-chymases rMCP-1 and mMCP-4 reveal major functional similarities to the human mast cell chymase. Mol. Immunol. 2008, 45, 766–775. [Google Scholar] [CrossRef]
- Andersson, M.K.; Pemberton, A.D.; Miller, H.R.; Hellman, L. Extended cleavage specificity of mMCP-1, the major mucosal mast cell protease in mouse-High specificity indicates high substrate selectivity. Mol. Immunol. 2008, 45, 2548–2558. [Google Scholar] [CrossRef]
- Reimer, J.M.; Enoksson, M.; Samollow, P.B.; Hellman, L. Extended substrate specificity of opossum chymase-Implications for the origin of mast cell chymases. Mol. Immunol. 2008, 45, 2116–2125. [Google Scholar] [CrossRef] [PubMed]
- Fu, Z.; Akula, S.; Qiao, C.; Ryu, J.; Chahal, G.; de Garavilla, L.; Kervinen, J.; Thorpe, M.; Hellman, L. Duodenases are a small subfamily of ruminant intestinal serine proteases that have undergone a remarkable diversification in cleavage specificity. PLoS ONE 2021, 16, e0252624. [Google Scholar] [CrossRef] [PubMed]
- Fu, Z.; Akula, S.; Thorpe, M.; Chahal, G.; de Garavilla, L.; Kervinen, J.; Hellman, L. Extended cleavage specificity of sheep mast cell protease-2: A classical chymase with preference to aromatic P1 substrate residues. Dev. Comp. Immunol. 2019, 92, 160–169. [Google Scholar] [CrossRef] [PubMed]
- Fu, Z.; Akula, S.; Thorpe, M.; Hellman, L. Extended cleavage specificities of two mast cell chymase-related proteases and one granzyme B-like protease from the platypus, a monotreme. Int. J. Mol. Sci. 2020, 21, 319. [Google Scholar] [CrossRef]
- Fu, Z.; Thorpe, M.; Akula, S.; Hellman, L. Asp-ase Activity of the Opossum Granzyme B Supports the Role of Granzyme B as Part of Anti-Viral Immunity Already during Early Mammalian Evolution. PLoS ONE 2016, 11, e0154886. [Google Scholar] [CrossRef]
- Fu, Z.; Thorpe, M.; Hellman, L. rMCP-2, the Major Rat Mucosal Mast Cell Protease, an Analysis of Its Extended Cleavage Specificity and Its Potential Role in Regulating Intestinal Permeability by the Cleavage of Cell Adhesion and Junction Proteins. PLoS ONE 2015, 10, e0131720. [Google Scholar] [CrossRef]
- Wernersson, S.; Reimer, J.M.; Poorafshar, M.; Karlson, U.; Wermenstam, N.; Bengten, E.; Wilson, M.; Pilström, L.; Hellman, L. Granzyme-like sequences in bony fish shed light on the emergence of hematopoietic serine proteases during vertebrate evolution. Dev. Comp. Immunol. 2006, 30, 901–918. [Google Scholar] [CrossRef]
- Thorpe, M.; Akula, S.; Hellman, L. Channel catfish granzyme-like I is a highly specific serine protease with metase activity that is expressed by fish NK-like cells. Dev. Comp. Immunol. 2016, 63, 84–95. [Google Scholar] [CrossRef]
- Fu, Z.; Akula, S.; Olsson, A.K.; Hellman, L. Chicken cathepsin G-like—A highly specific serine protease with a peculiar tryptase specificity expressed by chicken thrombocytes. Dev. Comp. Immunol. 2021, 129, 104337. [Google Scholar] [CrossRef]
- Ryu, J.; Fu, Z.; Akula, S.; Olsson, A.K.; Hellman, L. Extended cleavage specificity of a Chinese alligator granzyme B homologue, a strict Glu-ase in contrast to the mammalian Asp-ases. Dev. Comp. Immunol. 2021, 128, 104324. [Google Scholar] [CrossRef]
- Praveen, K.; Evans, D.L.; Jaso-Friedmann, L. Evidence for the existence of granzyme-like serine proteases in teleost cytotoxic cells. J. Mol. Evol. 2004, 58, 449–459. [Google Scholar] [CrossRef] [PubMed]
- Praveen, K.; Leary, J.H., 3rd; Evans, D.L.; Jaso-Friedmann, L. Molecular characterization and expression of a granzyme of an ectothermic vertebrate with chymase-like activity expressed in the cytotoxic cells of Nile tilapia (Oreochromis niloticus). Immunogenetics 2006, 58, 41–55. [Google Scholar] [CrossRef] [PubMed]
- Praveen, K.; Leary, J.H., 3rd; Evans, D.L.; Jaso-Friedmann, L. Nonspecific cytotoxic cells of teleosts are armed with multiple granzymes and other components of the granule exocytosis pathway. Mol. Immunol. 2006, 43, 1152–1162. [Google Scholar] [CrossRef] [PubMed]
- Chaves-Pozo, E.; Valero, Y.; Lozano, M.T.; Rodriguez-Cerezo, P.; Miao, L.; Campo, V.; Esteban, M.A.; Cuesta, A. Fish Granzyme A Shows a Greater Role Than Granzyme B in Fish Innate Cell-Mediated Cytotoxicity. Front. Immunol. 2019, 10, 2579. [Google Scholar] [CrossRef] [PubMed]
- Perona, J.J.; Hedstrom, L.; Rutter, W.J.; Fletterick, R.J. Structural origins of substrate discrimination in trypsin and chymotrypsin. Biochemistry 1995, 34, 1489–1499. [Google Scholar] [CrossRef] [PubMed]
- Shen, L.; Stuge, T.B.; Bengten, E.; Wilson, M.; Chinchar, V.G.; Naftel, J.P.; Bernanke, J.M.; Clem, L.; Miller, N.W. Identification and characterization of clonal NK-like cells from channel catfish (Ictalurus punctatus). Dev. Comp. Immunol. 2004, 28, 139–152. [Google Scholar] [CrossRef] [PubMed]
- Kelly, J.M.; Waterhouse, N.J.; Cretney, E.; Browne, K.A.; Ellis, S.; Trapani, J.A.; Smyth, M.J. Granzyme M mediates a novel form of perforin-dependent cell death. J. Biol. Chem. 2004, 279, 22236–22242. [Google Scholar] [CrossRef] [PubMed]
- Aybay, E.; Elkhalifa, M.; Akula, S.; Wernersson, S.; Hellman, L. Two granzyme A/K homologs in Zebra mbuna have different specificities, one classical tryptase and one with chymase activity. Dev. Comp. Immunol. 2023, 148, 104920. [Google Scholar] [CrossRef]
- Volff, J.N. Genome evolution and biodiversity in teleost fish. Heredity 2005, 94, 280–294. [Google Scholar] [CrossRef]
- Vernersson, M.; Ledin, A.; Johansson, J.; Hellman, L. Generation of therapeutic antibody responses against IgE through vaccination. FASEB J. 2002, 16, 875–877. [Google Scholar] [CrossRef]
- Neuhoff, V.; Arold, N.; Taube, D.; Ehrhardt, W. Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie Brilliant Blue G-250 and R-250. Electrophoresis 1988, 9, 255–262. [Google Scholar] [CrossRef] [PubMed]
RRRAAA |
Shogushin isoforms (guides chromosome cohesion during cell division bundling microtubules) |
Supervillin isoforms (possibly act as high-affinity link between actin filaments and plasma membrane) |
RRRA |
Dystonin isoform X18 (microtubule binding, cytoskeleton organization, and intracellular transport) |
Nebulin isoforms (A large actin-binding protein) |
RRAA |
Microtubule-actin cross-linking factor 1 isoforms |
Plectin isoforms (link between actin, microtubule, and intermediate filaments) |
Unconventional myosin IXAb isoforms (perform key roles in a broad range of fundamental cellular processes) |
RVRA |
Nesprin 2 isoforms (Nuclear outer membrane component that binds actin filaments) |
Cytoplasmic dynein 2 isoforms (drives the movement of cargoes along microtubules within cilia) |
Microtubule-associated protein 1A isoforms (involved in microtubule assembly) |
Filamin C isoforms (crosslink actin filaments into orthogonal networks) |
Filamin B isoforms (cross-linking of actin to allow direct communication between the cell membrane and cytoskeletal network) |
Myosin 10 isoforms (an actin-based motor protein) |
RRGA |
Microtubule-actin cross-linking factor 1 isoforms |
Obscurin isoforms (may have a role in the organization of myofibrils) |
Heat repeat-containing protein 5A isoforms (predicted to be involved in endocytosis) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thorpe, M.; Akula, S.; Fu, Z.; Hellman, L. The Extended Cleavage Specificity of Channel Catfish Granzyme-like II, A Highly Specific Elastase, Expressed by Natural Killer-like Cells. Int. J. Mol. Sci. 2024, 25, 356. https://doi.org/10.3390/ijms25010356
Thorpe M, Akula S, Fu Z, Hellman L. The Extended Cleavage Specificity of Channel Catfish Granzyme-like II, A Highly Specific Elastase, Expressed by Natural Killer-like Cells. International Journal of Molecular Sciences. 2024; 25(1):356. https://doi.org/10.3390/ijms25010356
Chicago/Turabian StyleThorpe, Michael, Srinivas Akula, Zhirong Fu, and Lars Hellman. 2024. "The Extended Cleavage Specificity of Channel Catfish Granzyme-like II, A Highly Specific Elastase, Expressed by Natural Killer-like Cells" International Journal of Molecular Sciences 25, no. 1: 356. https://doi.org/10.3390/ijms25010356
APA StyleThorpe, M., Akula, S., Fu, Z., & Hellman, L. (2024). The Extended Cleavage Specificity of Channel Catfish Granzyme-like II, A Highly Specific Elastase, Expressed by Natural Killer-like Cells. International Journal of Molecular Sciences, 25(1), 356. https://doi.org/10.3390/ijms25010356