Modulating NO–GC Pathway in Pulmonary Arterial Hypertension
Abstract
:1. Introduction
2. Overview of the NO Pathway
3. NOS Regulation under Physiological Conditions
4. NOS Downstream Signaling and Its Effects on Cardiovascular System
5. NO–GC Pathway in PAH
6. Modulation of Pulmonary Vascular NO in PAH
6.1. Phosphodiesterase Type 5 Inhibitors
6.2. Soluble Guanylate Cyclase-Stimulator (sGC)
7. Conclusions and Future Directions
Author Contributions
Funding
Conflicts of Interest
References
- Hassoun, P.M. Pulmonary Arterial Hypertension. N. Engl. J. Med. 2021, 385, 2361–2376. [Google Scholar] [CrossRef] [PubMed]
- Humbert, M.; Kovacs, G.; Hoeper, M.M.; Badagliacca, R.; Berger, R.M.F.; Brida, M.; Carlsen, J.; Coats, A.J.S.; Escribano-Subias, P.; Ferrari, P.; et al. 2022 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension. Eur. Respir. J. 2023, 62, 2200879. [Google Scholar] [CrossRef] [PubMed]
- Barst, R.J.; Rubin, L.J.; Long, W.A.; McGoon, M.D.; Rich, S.; Badesch, D.B.; Groves, B.M.; Tapson, V.F.; Bourge, R.C.; Brundage, B.H.; et al. A comparison of continuous intravenous epoprostenol (prostacyclin) with conventional therapy for primary pulmonary hypertension. N. Engl. J. Med. 1996, 334, 296–301. [Google Scholar] [CrossRef] [PubMed]
- Ghimire, K.; Altmann, H.M.; Straub, A.C.; Isenberg, J.S. Nitric oxide: What’s new to NO? Am. J. Physiol. Cell Physiol. 2017, 312, C254–C262. [Google Scholar] [CrossRef]
- Mónica, F.Z.; Bian, K.; Murad, F. The Endothelium-Dependent Nitric Oxide-cGMP Pathway. Adv. Pharmacol. 2016, 77, 1–27. [Google Scholar] [CrossRef]
- Cary, S.P.; Winger, J.A.; Marletta, M.A. Tonic and acute nitric oxide signaling through soluble guanylate cyclase is mediated by nonheme nitric oxide, ATP, and GTP. Proc. Natl. Acad. Sci. USA 2005, 102, 13064–13069. [Google Scholar] [CrossRef]
- Connor, C.E.; Johnson, K.O. Neural coding of tactile texture: Comparison of spatial and temporal mechanisms for roughness perception. J. Neurosci. 1992, 12, 3414–3426. [Google Scholar] [CrossRef]
- Hare, J.M.; Colucci, W.S. Role of nitric oxide in the regulation of myocardial function. Prog. Cardiovasc. Dis. 1995, 38, 155–166. [Google Scholar] [CrossRef]
- Bredt, D.S. Endogenous nitric oxide synthesis: Biological functions and pathophysiology. Free Radic. Res. 1999, 31, 577–596. [Google Scholar] [CrossRef]
- Kwon, N.S.; Nathan, C.F.; Gilker, C.; Griffith, O.W.; Matthews, D.E.; Stuehr, D.J. L-citrulline production from L-arginine by macrophage nitric oxide synthase. The ureido oxygen derives from dioxygen. J. Biol. Chem. 1990, 265, 13442–13445. [Google Scholar] [CrossRef]
- Palmer, R.M.; Ashton, D.S.; Moncada, S. Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature 1988, 333, 664–666. [Google Scholar] [CrossRef] [PubMed]
- Balligand, J.L.; Kobzik, L.; Han, X.; Kaye, D.M.; Belhassen, L.; O’Hara, D.S.; Kelly, R.A.; Smith, T.W.; Michel, T. Nitric oxide-dependent parasympathetic signaling is due to activation of constitutive endothelial (type III) nitric oxide synthase in cardiac myocytes. J. Biol. Chem. 1995, 270, 14582–14586. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Xiao, H.; Rizzo, A.N.; Zhang, W.; Mai, Y.; Ye, M. Endothelial nitric oxide synthase dimerization is regulated by heat shock protein 90 rather than by phosphorylation. PLoS ONE 2014, 9, e105479. [Google Scholar] [CrossRef] [PubMed]
- Balligand, J.L.; Feron, O.; Dessy, C. eNOS activation by physical forces: From short-term regulation of contraction to chronic remodeling of cardiovascular tissues. Physiol. Rev. 2009, 89, 481–534. [Google Scholar] [CrossRef] [PubMed]
- Kao, W.H.; Arking, D.E.; Post, W.; Rea, T.D.; Sotoodehnia, N.; Prineas, R.J.; Bishe, B.; Doan, B.Q.; Boerwinkle, E.; Psaty, B.M.; et al. Genetic variations in nitric oxide synthase 1 adaptor protein are associated with sudden cardiac death in US white community-based populations. Circulation 2009, 119, 940–951. [Google Scholar] [CrossRef] [PubMed]
- Eijgelsheim, M.; Newton-Cheh, C.; Aarnoudse, A.L.; van Noord, C.; Witteman, J.C.; Hofman, A.; Uitterlinden, A.G.; Stricker, B.H. Genetic variation in NOS1AP is associated with sudden cardiac death: Evidence from the Rotterdam Study. Hum. Mol. Genet. 2009, 18, 4213–4218. [Google Scholar] [CrossRef] [PubMed]
- Wilcox, J.N.; Subramanian, R.R.; Sundell, C.L.; Tracey, W.R.; Pollock, J.S.; Harrison, D.G.; Marsden, P.A. Expression of multiple isoforms of nitric oxide synthase in normal and atherosclerotic vessels. Arter. Thromb. Vasc. Biol. 1997, 17, 2479–2488. [Google Scholar] [CrossRef] [PubMed]
- Balligand, J.L.; Ungureanu-Longrois, D.; Simmons, W.W.; Pimental, D.; Malinski, T.A.; Kapturczak, M.; Taha, Z.; Lowenstein, C.J.; Davidoff, A.J.; Kelly, R.A. Cytokine-inducible nitric oxide synthase (iNOS) expression in cardiac myocytes. Characterization and regulation of iNOS expression and detection of iNOS activity in single cardiac myocytes in vitro. J. Biol. Chem. 1994, 269, 27580–27588. [Google Scholar] [CrossRef]
- de Vera, M.E.; Shapiro, R.A.; Nussler, A.K.; Mudgett, J.S.; Simmons, R.L.; Morris, S.M.; Billiar, T.R.; Geller, D.A. Transcriptional regulation of human inducible nitric oxide synthase (NOS2) gene by cytokines: Initial analysis of the human NOS2 promoter. Proc. Natl. Acad. Sci. USA 1996, 93, 1054–1059. [Google Scholar] [CrossRef]
- Stuehr, D.J.; Cho, H.J.; Kwon, N.S.; Weise, M.F.; Nathan, C.F. Purification and characterization of the cytokine-induced macrophage nitric oxide synthase: An FAD- and FMN-containing flavoprotein. Proc. Natl. Acad. Sci. USA 1991, 88, 7773–7777. [Google Scholar] [CrossRef]
- Solanki, K.; Rajpoot, S.; Bezsonov, E.E.; Orekhov, A.N.; Saluja, R.; Wary, A.; Axen, C.; Wary, K.; Baig, M.S. The expanding roles of neuronal nitric oxide synthase (NOS1). PeerJ 2022, 10, e13651. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Beuve, A.; Townes-Anderson, E. The nitric oxide-cGMP signaling pathway differentially regulates presynaptic structural plasticity in cone and rod cells. J. Neurosci. 2005, 25, 2761–2770. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Chen, Y.; Yan, J.; Christensen, G.; Belhadj, S.; Tolone, A.; Paquet-Durand, F. The role of cGMP-signalling and calcium-signalling in photoreceptor cell death: Perspectives for therapy development. Pflug. Arch. 2021, 473, 1411–1421. [Google Scholar] [CrossRef] [PubMed]
- Friebe, A.; Sandner, P.; Schmidtko, A. cGMP: A unique 2nd messenger molecule–recent developments in cGMP research and development. Naunyn Schmiedebergs Arch. Pharmacol. 2020, 393, 287–302. [Google Scholar] [CrossRef] [PubMed]
- Gyurko, R.; Kuhlencordt, P.; Fishman, M.C.; Huang, P.L. Modulation of mouse cardiac function in vivo by eNOS and ANP. Am. J. Physiol. Heart Circ. Physiol. 2000, 278, H971–H981. [Google Scholar] [CrossRef]
- Petroff, M.G.; Kim, S.H.; Pepe, S.; Dessy, C.; Marbán, E.; Balligand, J.L.; Sollott, S.J. Endogenous nitric oxide mechanisms mediate the stretch dependence of Ca2+ release in cardiomyocytes. Nat. Cell Biol. 2001, 3, 867–873. [Google Scholar] [CrossRef] [PubMed]
- Balligand, J.L.; Kelly, R.A.; Marsden, P.A.; Smith, T.W.; Michel, T. Control of cardiac muscle cell function by an endogenous nitric oxide signaling system. Proc. Natl. Acad. Sci. USA 1993, 90, 347–351. [Google Scholar] [CrossRef] [PubMed]
- Massion, P.B.; Balligand, J.L. Modulation of cardiac contraction, relaxation and rate by the endothelial nitric oxide synthase (eNOS): Lessons from genetically modified mice. J. Physiol. 2003, 546, 63–75. [Google Scholar] [CrossRef]
- Melikian, N.; Seddon, M.D.; Casadei, B.; Chowienczyk, P.J.; Shah, A.M. Neuronal nitric oxide synthase and human vascular regulation. Trends Cardiovasc. Med. 2009, 19, 256–262. [Google Scholar] [CrossRef]
- Currie, S.; Smith, G.L. Enhanced phosphorylation of phospholamban and downregulation of sarco/endoplasmic reticulum Ca2+ ATPase type 2 (SERCA 2) in cardiac sarcoplasmic reticulum from rabbits with heart failure. Cardiovasc. Res. 1999, 41, 135–146. [Google Scholar] [CrossRef]
- Carnicer, R.; Crabtree, M.J.; Sivakumaran, V.; Casadei, B.; Kass, D.A. Nitric oxide synthases in heart failure. Antioxid. Redox Signal 2013, 18, 1078–1099. [Google Scholar] [CrossRef] [PubMed]
- Searles, C.D. The nitric oxide pathway and oxidative stress in heart failure. Congest. Heart Fail. 2002, 8, 142–147, 155. [Google Scholar] [CrossRef] [PubMed]
- Kinugawa, K.; Takahashi, T.; Kohmoto, O.; Yao, A.; Aoyagi, T.; Momomura, S.; Hirata, Y.; Serizawa, T. Nitric oxide-mediated effects of interleukin-6 on [Ca2+]i and cell contraction in cultured chick ventricular myocytes. Circ. Res. 1994, 75, 285–295. [Google Scholar] [CrossRef] [PubMed]
- Birks, E.J.; Yacoub, M.H. The role of nitric oxide and cytokines in heart failure. Coron. Artery Dis. 1997, 8, 389–402. [Google Scholar] [CrossRef] [PubMed]
- Fagan, K.A.; Tyler, R.C.; Sato, K.; Fouty, B.W.; Morris, K.G.; Huang, P.L.; McMurtry, I.F.; Rodman, D.M. Relative contributions of endothelial, inducible, and neuronal NOS to tone in the murine pulmonary circulation. Am. J. Physiol. 1999, 277, L472–L478. [Google Scholar] [CrossRef] [PubMed]
- Lázár, Z.; Mészáros, M.; Bikov, A. The Nitric Oxide Pathway in Pulmonary Arterial Hypertension: Pathomechanism, Biomarkers and Drug Targets. Curr. Med. Chem. 2020, 27, 7168–7188. [Google Scholar] [CrossRef]
- Schermuly, R.T.; Ghofrani, H.A.; Wilkins, M.R.; Grimminger, F. Mechanisms of disease: Pulmonary arterial hypertension. Nat. Rev. Cardiol. 2011, 8, 443–455. [Google Scholar] [CrossRef]
- Mata-Greenwood, E.; Liao, W.X.; Zheng, J.; Chen, D.B. Differential activation of multiple signalling pathways dictates eNOS upregulation by FGF2 but not VEGF in placental artery endothelial cells. Placenta 2008, 29, 708–717. [Google Scholar] [CrossRef]
- Iwabayashi, M.; Taniyama, Y.; Sanada, F.; Azuma, J.; Iekushi, K.; Kusunoki, H.; Chatterjee, A.; Okayama, K.; Rakugi, H.; Morishita, R. Role of serotonin in angiogenesis: Induction of angiogenesis by sarpogrelate via endothelial 5-HT1B/Akt/eNOS pathway in diabetic mice. Atherosclerosis 2012, 220, 337–342. [Google Scholar] [CrossRef]
- Ye, Q.; Chen, S.; Gardner, D.G. Endothelin inhibits NPR-A and stimulates eNOS gene expression in rat IMCD cells. Hypertension 2003, 41, 675–681. [Google Scholar] [CrossRef]
- Abrams, D.; Schulze-Neick, I.; Magee, A.G. Sildenafil as a selective pulmonary vasodilator in childhood primary pulmonary hypertension. Heart 2000, 84, E4. [Google Scholar] [CrossRef]
- Sastry, B.K.; Narasimhan, C.; Reddy, N.K.; Anand, B.; Prakash, G.S.; Raju, P.R.; Kumar, D.N. A study of clinical efficacy of sildenafil in patients with primary pulmonary hypertension. Indian Heart J. 2002, 54, 410–414. [Google Scholar] [PubMed]
- Sastry, B.K.; Narasimhan, C.; Reddy, N.K.; Raju, B.S. Clinical efficacy of sildenafil in primary pulmonary hypertension: A randomized, placebo-controlled, double-blind, crossover study. J. Am. Coll. Cardiol. 2004, 43, 1149–1153. [Google Scholar] [CrossRef] [PubMed]
- Kothari, S.S.; Duggal, B. Chronic oral sildenafil therapy in severe pulmonary artery hypertension. Indian Heart J. 2002, 54, 404–409. [Google Scholar] [PubMed]
- Galiè, N.; Ghofrani, H.A.; Torbicki, A.; Barst, R.J.; Rubin, L.J.; Badesch, D.; Fleming, T.; Parpia, T.; Burgess, G.; Branzi, A.; et al. Sildenafil citrate therapy for pulmonary arterial hypertension. N. Engl. J. Med. 2005, 353, 2148–2157. [Google Scholar] [CrossRef] [PubMed]
- Simonneau, G.; Rubin, L.J.; Galiè, N.; Barst, R.J.; Fleming, T.R.; Frost, A.E.; Engel, P.J.; Kramer, M.R.; Burgess, G.; Collings, L.; et al. Addition of sildenafil to long-term intravenous epoprostenol therapy in patients with pulmonary arterial hypertension: A randomized trial. Ann. Intern. Med. 2008, 149, 521–530. [Google Scholar] [CrossRef]
- Galiè, N.; Brundage, B.H.; Ghofrani, H.A.; Oudiz, R.J.; Simonneau, G.; Safdar, Z.; Shapiro, S.; White, R.J.; Chan, M.; Beardsworth, A.; et al. Tadalafil therapy for pulmonary arterial hypertension. Circulation 2009, 119, 2894–2903. [Google Scholar] [CrossRef]
- Jing, Z.C.; Yu, Z.X.; Shen, J.Y.; Wu, B.X.; Xu, K.F.; Zhu, X.Y.; Pan, L.; Zhang, Z.L.; Liu, X.Q.; Zhang, Y.S.; et al. Vardenafil in pulmonary arterial hypertension: A randomized, double-blind, placebo-controlled study. Am. J. Respir. Crit. Care Med. 2011, 183, 1723–1729. [Google Scholar] [CrossRef]
- Stasch, J.P.; Evgenov, O.V. Soluble guanylate cyclase stimulators in pulmonary hypertension. Handb. Exp. Pharmacol. 2013, 218, 279–313. [Google Scholar] [CrossRef]
- Ghofrani, H.A.; Voswinckel, R.; Reichenberger, F.; Grimminger, F.; Seeger, W. Emerging therapies for the treatment of pulmonary arterial hypertension. Herz 2005, 30, 296–302. [Google Scholar] [CrossRef]
- Benza, R.L.; Langleben, D.; Hemnes, A.R.; Vonk Noordegraaf, A.; Rosenkranz, S.; Thenappan, T.; Hassoun, P.M.; Preston, I.R.; Ghio, S.; Badagliacca, R.; et al. Riociguat and the right ventricle in pulmonary arterial hypertension and chronic thromboembolic pulmonary hypertension. Eur. Respir. Rev. 2022, 31, 220061. [Google Scholar] [CrossRef] [PubMed]
- Grimminger, F.; Weimann, G.; Frey, R.; Voswinckel, R.; Thamm, M.; Bölkow, D.; Weissmann, N.; Mück, W.; Unger, S.; Wensing, G.; et al. First acute haemodynamic study of soluble guanylate cyclase stimulator riociguat in pulmonary hypertension. Eur. Respir. J. 2009, 33, 785–792. [Google Scholar] [CrossRef] [PubMed]
- Ghofrani, H.A.; Hoeper, M.M.; Halank, M.; Meyer, F.J.; Staehler, G.; Behr, J.; Ewert, R.; Weimann, G.; Grimminger, F. Riociguat for chronic thromboembolic pulmonary hypertension and pulmonary arterial hypertension: A phase II study. Eur. Respir. J. 2010, 36, 792–799. [Google Scholar] [CrossRef] [PubMed]
- Ghofrani, H.A.; Galiè, N.; Grimminger, F.; Grünig, E.; Humbert, M.; Jing, Z.C.; Keogh, A.M.; Langleben, D.; Kilama, M.O.; Fritsch, A.; et al. Riociguat for the treatment of pulmonary arterial hypertension. N. Engl. J. Med. 2013, 369, 330–340. [Google Scholar] [CrossRef] [PubMed]
- Rubin, L.J.; Galiè, N.; Grimminger, F.; Grünig, E.; Humbert, M.; Jing, Z.C.; Keogh, A.; Langleben, D.; Fritsch, A.; Menezes, F.; et al. Riociguat for the treatment of pulmonary arterial hypertension: A long-term extension study (PATENT-2). Eur. Respir. J. 2015, 45, 1303–1313. [Google Scholar] [CrossRef] [PubMed]
- Ghofrani, H.A.; D’Armini, A.M.; Grimminger, F.; Hoeper, M.M.; Jansa, P.; Kim, N.H.; Mayer, E.; Simonneau, G.; Wilkins, M.R.; Fritsch, A.; et al. Riociguat for the treatment of chronic thromboembolic pulmonary hypertension. N. Engl. J. Med. 2013, 369, 319–329. [Google Scholar] [CrossRef] [PubMed]
- Simonneau, G.; D’Armini, A.M.; Ghofrani, H.A.; Grimminger, F.; Hoeper, M.M.; Jansa, P.; Kim, N.H.; Wang, C.; Wilkins, M.R.; Fritsch, A.; et al. Riociguat for the treatment of chronic thromboembolic pulmonary hypertension: A long-term extension study (CHEST-2). Eur. Respir. J. 2015, 45, 1293–1302. [Google Scholar] [CrossRef] [PubMed]
- Marra, A.M.; Halank, M.; Benjamin, N.; Bossone, E.; Cittadini, A.; Eichstaedt, C.A.; Egenlauf, B.; Harutyunova, S.; Fischer, C.; Gall, H.; et al. Right ventricular size and function under riociguat in pulmonary arterial hypertension and chronic thromboembolic pulmonary hypertension (the RIVER study). Respir. Res. 2018, 19, 258. [Google Scholar] [CrossRef]
- Murata, M.; Kawakami, T.; Kataoka, M.; Moriyama, H.; Hiraide, T.; Kimura, M.; Endo, J.; Kohno, T.; Itabashi, Y.; Fukuda, K. Clinical Significance of Guanylate Cyclase Stimulator, Riociguat, on Right Ventricular Functional Improvement in Patients with Pulmonary Hypertension. Cardiology 2021, 146, 130–136. [Google Scholar] [CrossRef]
- Murata, M.; Kawakami, T.; Kataoka, M.; Kohno, T.; Itabashi, Y.; Fukuda, K. Riociguat, a soluble guanylate cyclase stimulator, ameliorates right ventricular contraction in pulmonary arterial hypertension. Pulm. Circ. 2018, 8, 2045893217746111. [Google Scholar] [CrossRef]
- Galiè, N.; Müller, K.; Scalise, A.V.; Grünig, E. PATENT PLUS: A blinded, randomised and extension study of riociguat plus sildenafil in pulmonary arterial hypertension. Eur. Respir. J. 2015, 45, 1314–1322. [Google Scholar] [CrossRef] [PubMed]
- Hoeper, M.M.; Simonneau, G.; Corris, P.A.; Ghofrani, H.A.; Klinger, J.R.; Langleben, D.; Naeije, R.; Jansa, P.; Rosenkranz, S.; Scelsi, L.; et al. RESPITE: Switching to riociguat in pulmonary arterial hypertension patients with inadequate response to phosphodiesterase-5 inhibitors. Eur. Respir. J. 2017, 50, 602425. [Google Scholar] [CrossRef]
- Hoeper, M.M.; Al-Hiti, H.; Benza, R.L.; Chang, S.A.; Corris, P.A.; Gibbs, J.S.R.; Grünig, E.; Jansa, P.; Klinger, J.R.; Langleben, D.; et al. Switching to riociguat versus maintenance therapy with phosphodiesterase-5 inhibitors in patients with pulmonary arterial hypertension (REPLACE): A multicentre, open-label, randomised controlled trial. Lancet Respir. Med. 2021, 9, 573–584. [Google Scholar] [CrossRef] [PubMed]
- Condliffe, R.; Kiely, D.G.; Gibbs, J.S.; Corris, P.A.; Peacock, A.J.; Jenkins, D.P.; Hodgkins, D.; Goldsmith, K.; Hughes, R.J.; Sheares, K.; et al. Improved outcomes in medically and surgically treated chronic thromboembolic pulmonary hypertension. Am. J. Respir. Crit. Care Med. 2008, 177, 1122–1127. [Google Scholar] [CrossRef] [PubMed]
- Reesink, H.J.; Meijer, R.C.; Lutter, R.; Boomsma, F.; Jansen, H.M.; Kloek, J.J.; Bresser, P. Hemodynamic and clinical correlates of endothelin-1 in chronic thromboembolic pulmonary hypertension. Circ. J. 2006, 70, 1058–1063. [Google Scholar] [CrossRef]
- Hoeper, M.M.; Mayer, E.; Simonneau, G.; Rubin, L.J. Chronic thromboembolic pulmonary hypertension. Circulation 2006, 113, 2011–2020. [Google Scholar] [CrossRef]
- Marra, A.M.; Egenlauf, B.; Ehlken, N.; Fischer, C.; Eichstaedt, C.; Nagel, C.; Bossone, E.; Cittadini, A.; Halank, M.; Gall, H.; et al. Change of right heart size and function by long-term therapy with riociguat in patients with pulmonary arterial hypertension and chronic thromboembolic pulmonary hypertension. Int. J. Cardiol. 2015, 195, 19–26. [Google Scholar] [CrossRef]
- Eckenhoff, R.G.; Dougherty, J.H.; Messier, A.A.; Osborne, S.F.; Parker, J.W. Progression of and recovery from pulmonary oxygen toxicity in humans exposed to 5 ATA air. Aviat. Space Environ. Med. 1987, 58, 658–667. [Google Scholar]
- Bonderman, D.; Ghio, S.; Felix, S.B.; Ghofrani, H.A.; Michelakis, E.; Mitrovic, V.; Oudiz, R.J.; Boateng, F.; Scalise, A.V.; Roessig, L.; et al. Riociguat for patients with pulmonary hypertension caused by systolic left ventricular dysfunction: A phase IIb double-blind, randomized, placebo-controlled, dose-ranging hemodynamic study. Circulation 2013, 128, 502–511. [Google Scholar] [CrossRef]
- Dachs, T.M.; Duca, F.; Rettl, R.; Binder-Rodriguez, C.; Dalos, D.; Ligios, L.C.; Kammerlander, A.; Grünig, E.; Pretsch, I.; Steringer-Mascherbauer, R.; et al. Riociguat in pulmonary hypertension and heart failure with preserved ejection fraction: The haemoDYNAMIC trial. Eur. Heart J. 2022, 43, 3402–3413. [Google Scholar] [CrossRef]
- Armstrong, P.W.; Pieske, B.; Anstrom, K.J.; Ezekowitz, J.; Hernandez, A.F.; Butler, J.; Lam, C.S.P.; Ponikowski, P.; Voors, A.A.; Jia, G.; et al. Vericiguat in Patients with Heart Failure and Reduced Ejection Fraction. N. Engl. J. Med. 2020, 382, 1883–1893. [Google Scholar] [CrossRef] [PubMed]
Studies | Sample | Drug Used | Main Results |
---|---|---|---|
“First acute haemodynamic study of soluble guanylate cyclase stimulator riociguat in pulmonary hypertension” Grimminger et al., 2009 [52] | PAH n =19 | Riociguat 2.5 or 1 mg | Improving of pulmonary hemodynamic parameters and cardiac index in patients with PH |
“Riociguat for chronic thromboembolic pulmonary hypertension and pulmonary arterial hypertension: a phase II study” Grophani et al., 2010 [53] | PAH n = 33; CTEPH n = 42 | Riociguat 1.0–2.5 mg three times daily | Increasing of 6MWD in both CTEPH and PAH; reduction in pulmonary vascular resistance; asymptomatic hypotension (SBP <90 mmHg) normalized after dose reduction in two patients. Dyspepsia, headache, and hypotension |
“Riociguat for the treatment of pulmonary arterial hypertension” Grophani et al., 2013 [54] | PAH n = 443 | Riociguat 2.5 mg three times daily | Increasing of 6MWD (p < 0.001); significant improvements in pulmonary vascular resistance (p < 0.001); NT-proBNP levels (p < 0.001); WHO functional class (p = 0.003); time to clinical worsening (p = 0.005); and Borg dyspnea score (p = 0.002). Syncope in four patients |
“Riociguat for the treatment of chronic thromboembolic pulmonary hypertension: a long-term extension study (CHEST-2)” Ghofrani et al., 2013 [56] | PAH n = 261 | Riociguat 0.5–2.5 mg three times daily | Statistically significant (p < 0.001); reduction in pulmonary vascular resistance (p < 0.001); improvements in the NT-proBNP level (p < 0.001); WHO functional class (p = 0.003); right ventricular failure (3% of patients) and syncope (2% of patients) |
“Riociguat for the treatment of chronic thromboembolic pulmonary hypertension: a long-term extension study (CHEST-2)” Simmoneau et al., 2015 [57] | PAH n = 243 | Riociguat 2.5 mg three times daily for 12 weeks | Further improvement in the 6MWD after long-term riociguat administration |
“Riociguat for the treatment of pulmonary arterial hypertension: a long-term extension study (PATENT-2)” Rubin et al., 2015 [55] | PAH n = 324 | Riociguat 1.0–2.5 mg three times daily | Further improvement in the 6MWD after long-term riociguat administration of 2.5 mg t.i.d. |
“Right ventricular size and function under riociguat in pulmonary arterial hypertension and chronic thromboembolic pulmonary hypertension (the RIVER study)” Marra AM et al., 2018 [58] | PAH n = 32; CTEPH n = 39 | Riociguat 1.0–2.5 mg three times daily | Significant reduction in RA and RV area and RV thickness tricuspid regurgitation velocity; TAPSE improvement; RV thickness and RV fractional area change |
“Clinical Significance of Guanylate Cyclase Stimulator, Riociguat, on Right Ventricular Functional Improvement in Patients with Pulmonary Hypertension” Murata M et al., 2021 [59] “Riociguat and the right ventricle in pulmonary arterial hypertension and chronic thromboembolic pulmonary hypertension” Benza et al., 2022 [51,59] | PAH n =14; CTEPH n = 31 | Riociguat mean final daily dose of 7.2 ± 0.9 mg administered for a mean 234 days | Improving RV global longitudinal strain |
“Right ventricular size and function under riociguat in pulmonary arterial hypertension and chronic thromboembolic pulmonary hypertension (the RIVER study)” Marra AM, 2018 [58] “Riociguat and the right ventricle in pulmonary arterial hypertension and chronic thromboembolic pulmonary hypertension” Benza et al., 2022 [51] | PAH n = 32; CTEPH n = 39 | Riociguat 1.0–2.5 mg three times daily for 3–12 months | Improving RV systolic function |
“Riociguat, a soluble guanylate cyclase stimulator, ameliorates right ventricular contraction in pulmonary arterial hypertension” Murata et al., 2018 [60] “Riociguat and the right ventricle in pulmonary arterial hypertension and chronic thromboembolic pulmonary hypertension” Benza et al., 2022 [51] | PAH n = 7; CTEPH n = 20 | Riociguat mean dose of 7.3 ± 0.7 mg administered for a mean 220 days | Increased RV fractional area |
“PATENT PLUS: a blinded, randomised and extension study of riociguat plus sildenafil in pulmonary arterial hypertension” N. Galiè et al., 2015 [61] | PAH n = 12 | Sildenafil 20 mg t.i.d. and randomization to placebo or riociguat up to 2.5 mg three times daily for 12 weeks | Potentially unfavourable safety signals with sildenafil plus riociguat and no evidence of a positive benefit/risk ratio |
“RESPITE: switching to riociguat in pulmonary arterial hypertension patients with inadequate response to phosphodiesterase-5 inhibitors” Hoeper et al., 2017 [62] | PAH n = 51 | 1–3 day PDE5i treatment-free period before receiving riociguat adjusted up to 2.5 mg maximum three times daily for 24 weeks | Improvement in 6MWD; reduction in NT-proBNP; improvement in World Health Organization (WHO) functional class; 52% of patients experienced study-drug-related adverse events (none during the PDE5i treatment-free period). Six patients experienced clinical worsening, including death in two |
“Switching to riociguat versus maintenance therapy with phosphodiesterase-5 inhibitors in patients with pulmonary arterial hypertension (REPLACE): a multicentre, open-label, randomised controlled trial” Hoeper et al., 2021 [63] | PAH n = 211 | Oral PDF5-I (sildenafil ≥60 mg or tadafanil 20–40 mg) or switching to oral riociguat up to 2.5 mg three times daily | Improvements in at least two of three variables (6MWD, WHO functional class, and NT-pro BNP) was met in 41% of patients treated with riociguat and in 20% of patients treated with PDF5i |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
D’Agostino, A.; Lanzafame, L.G.; Buono, L.; Crisci, G.; D’Assante, R.; Leone, I.; De Vito, L.; Bossone, E.; Cittadini, A.; Marra, A.M. Modulating NO–GC Pathway in Pulmonary Arterial Hypertension. Int. J. Mol. Sci. 2024, 25, 36. https://doi.org/10.3390/ijms25010036
D’Agostino A, Lanzafame LG, Buono L, Crisci G, D’Assante R, Leone I, De Vito L, Bossone E, Cittadini A, Marra AM. Modulating NO–GC Pathway in Pulmonary Arterial Hypertension. International Journal of Molecular Sciences. 2024; 25(1):36. https://doi.org/10.3390/ijms25010036
Chicago/Turabian StyleD’Agostino, Anna, Lorena Gioia Lanzafame, Lorena Buono, Giulia Crisci, Roberta D’Assante, Ilaria Leone, Luigi De Vito, Eduardo Bossone, Antonio Cittadini, and Alberto Maria Marra. 2024. "Modulating NO–GC Pathway in Pulmonary Arterial Hypertension" International Journal of Molecular Sciences 25, no. 1: 36. https://doi.org/10.3390/ijms25010036
APA StyleD’Agostino, A., Lanzafame, L. G., Buono, L., Crisci, G., D’Assante, R., Leone, I., De Vito, L., Bossone, E., Cittadini, A., & Marra, A. M. (2024). Modulating NO–GC Pathway in Pulmonary Arterial Hypertension. International Journal of Molecular Sciences, 25(1), 36. https://doi.org/10.3390/ijms25010036