VEGFC Gene Expression Is Associated with Tumor Progression and Disease-Free Survival in Cutaneous Squamous Cell Carcinoma
Abstract
:1. Introduction
2. Results
2.1. Clinicopathological Features of CSCC and Disease Progression
2.2. Angiogenic and Lymphangiogenic Gene Expression Profile in Patients with CSCC
2.3. Prognostic Information Derived from the Gene Expression Profile in the Primary Tumor
3. Discussion
4. Material and Methods
4.1. Patients and Study Samples
4.2. RNA Isolation for Gene Expression Assays
4.3. Target Gene Expression by qPCR
4.4. Immunofluorescence Staining
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gosman, L.M.; Țăpoi, D.A.; Costache, M. Cutaneous Melanoma: A Review of Multifactorial Pathogenesis, Immunohistochemistry, and Emerging Biomarkers for Early Detection and Management. Int. J. Mol. Sci. 2023, 24, 15881. [Google Scholar] [CrossRef] [PubMed]
- Cives, M.; Mannavola, F.; Lospalluti, L.; Sergi, M.C.; Cazzato, G.; Filoni, E.; Cavallo, F.; Giudice, G.; Stucci, L.S.; Porta, C.; et al. Non-Melanoma Skin Cancers: Biological and Clinical Features. Int. J. Mol. Sci. 2020, 21, 5394. [Google Scholar] [CrossRef] [PubMed]
- Gruber, P.; Zito, P.M. Skin Cancer. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2021. [Google Scholar]
- Varra, V.; Woody, N.M.; Reddy, C.; Joshi, N.P.; Geiger, J.; Adelstein, D.J.; Burkey, B.B.; Scharpf, J.; Prendes, B.; Lamarre, E.D.; et al. Suboptimal Outcomes in Cutaneous Squamous Cell Cancer of the Head and Neck with Nodal Metastases. Anticancer. Res. 2018, 38, 5825–5830. [Google Scholar] [CrossRef] [PubMed]
- Schmults, C.D.; Karia, P.S.; Carter, J.B.; Han, J.; Qureshi, A.A. Factors predictive of recurrence and death from cutaneous squamous cell carcinoma: A 10-year, single-institution cohort study. JAMA Dermatol. 2013, 149, 541–547. [Google Scholar] [CrossRef] [PubMed]
- Que, S.K.T.; Zwald, F.O.; Schmults, C.D. Cutaneous squamous cell carcinoma: Incidence, risk factors, diagnosis, and staging. J. Am. Acad. Dermatol. 2018, 78, 237–247. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, A.R.; Brewer, J.D.; Bordeaux, J.S.; Baum, C.L. Staging for cutaneous squamous cell carcinoma as a predictor of sentinel lymph node biopsy results: Meta-analysis of American Joint Committee on Cancer criteria and a proposed alternative system. JAMA Dermatol. 2014, 150, 19–24. [Google Scholar] [CrossRef] [PubMed]
- Schmults, C.D.; Blitzblau, R.; Aasi, S.Z.; Alam, M.; Andersen, J.S.; Baumann, B.C.; Bordeaux, J.; Chen, P.-L.; Chin, R.; Contreras, C.M.; et al. NCCN Guidelines® Insights: Squamous Cell Skin Cancer, Version 1.2022. J. Natl. Compr. Cancer Netw. 2021, 19, 1382–1394. [Google Scholar] [CrossRef] [PubMed]
- Brougham, N.D.; Tan, S.T. The incidence and risk factors of metastasis for cutaneous squamous cell carcinoma—Implications on the T-classification system. J. Surg. Oncol. 2014, 110, 876–882. [Google Scholar] [CrossRef]
- Karia, P.S.; Han, J.; Schmults, C.D. Cutaneous squamous cell carcinoma: Estimated incidence of disease, nodal metastasis, and deaths from disease in the United States, 2012. J. Am. Acad. Dermatol. 2013, 68, 957–966. [Google Scholar] [CrossRef]
- Arneth, B. Tumor Microenvironment. Medicina 2019, 56, 15. [Google Scholar] [CrossRef]
- Streit, M.; Detmar, M. Angiogenesis, lymphangiogenesis, and melanoma metastasis. Oncogene 2003, 22, 3172–3179. [Google Scholar] [CrossRef] [PubMed]
- Florence, M.E.B.; Massuda, J.Y.; Bröcker, E.-B.; Metze, K.; Cintra, M.L.; de Souza, E.M. Angiogenesis in the progression of cutaneous squamous cell carcinoma: An immunohistochemical study of endothelial markers. Clinics 2011, 66, 465–468. [Google Scholar] [CrossRef] [PubMed]
- Moussai, D.; Mitsui, H.; Pettersen, J.S.; Pierson, K.C.; Shah, K.R.; Suárez-Fariñas, M.; Cardinale, I.R.; Bluth, M.J.; Krueger, J.G.; Carucci, J.A. The human cutaneous squamous cell carcinoma microenvironment is characterized by increased lymphatic density and enhanced expression of macrophage-derived VEGF-C. J. Investig. Dermatol. 2011, 131, 229–236. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, K.; Ema, M. Roles of VEGF-A signalling in development, regeneration, and tumours. J. Biochem. 2014, 156, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Carmeliet, P.; Jain, R.K. Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases. Nat. Rev. Drug Discov. 2011, 10, 417–427. [Google Scholar] [CrossRef] [PubMed]
- Bowden, J.; Brennan, P.A.; Umar, T.; Cronin, A. Expression of vascular endothelial growth factor in basal cell carcinoma and cutaneous squamous cell carcinoma of the head and neck. J. Cutan. Pathol. 2002, 29, 585–589. [Google Scholar] [CrossRef] [PubMed]
- Jafari, S.M.S.; Wiedmer, C.; Cazzaniga, S.; Frangež, Ž.; Shafighi, M.; Beltraminelli, H.; Weber, B.; Simon, H.-U.; Hunger, R.E. Correlation of Vascular Endothelial Growth Factor subtypes and their receptors with melanoma progression: A next-generation Tissue Microarray (ngTMA) automated analysis. PLoS ONE 2018, 13, e0207019. [Google Scholar] [CrossRef]
- Toberer, F.; Haenssle, H.; Laimer, M.; Heinzel-Gutenbrunner, M.; Enk, A.; Hartschuh, W.; Helmbold, P.; Kutzner, H. Vascular Endothelial Growth Factor Receptor-3 Expression Predicts Sentinel Node Status in Primary Cutaneous Melanoma. Acta Dermato-Venereol. 2020, 100, adv00235. [Google Scholar] [CrossRef]
- Xin, S.; Wei, G. Correlation of vascular endothelial growth factor with survival and pathological characteristics of patients with osteosarcoma: A systematic review and meta-analysis. Eur. J. Cancer Care 2022, 31, e13629. [Google Scholar] [CrossRef]
- Chen, J.; Tang, D.; Wang, S.; Li, Q.-G.; Zhang, J.-R.; Li, P.; Lu, Q.; Niu, G.; Gao, J.; Ye, N.-Y.; et al. High expressions of galectin-1 and VEGF are associated with poor prognosis in gastric cancer patients. Tumor Biol. 2013, 35, 2513–2519. [Google Scholar] [CrossRef]
- Detmar, M.; Velasco, P.; Richard, L.; Claffey, K.P.; Streit, M.; Riccardi, L.; Skobe, M.; Brown, L.F. Expression of vascular endothelial growth factor induces an invasive phenotype in human squamous cell carcinomas. Am. J. Pathol. 2000, 156, 159–167. [Google Scholar] [CrossRef] [PubMed]
- Pradeep, C.R.; Sunila, E.S.; Kuttan, G. Expression of vascular endothelial growth factor (VEGF) and VEGF receptors in tumor angiogenesis and malignancies. Integr. Cancer Ther. 2005, 4, 315–321. [Google Scholar] [CrossRef] [PubMed]
- Almangush, A.; Heikkinen, I.; A Mäkitie, A.; Coletta, R.D.; Läärä, E.; Leivo, I.; Salo, T. Prognostic biomarkers for oral tongue squamous cell carcinoma: A systematic review and meta-analysis. Br. J. Cancer 2017, 117, 856–866. [Google Scholar] [CrossRef] [PubMed]
- Banerji, S.; Ni, J.; Wang, S.X.; Clasper, S.; Su, J.; Tammi, R.; Jones, M.; Jackson, D.G. LYVE-1, a new homologue of the CD44 glycoprotein, is a lymph-specific receptor for hyaluronan. J. Cell Biol. 1999, 144, 789–801. [Google Scholar] [CrossRef] [PubMed]
- Sahni, D.; Robson, A.; Orchard, G.; Szydlo, R.; Evans, A.V.; Russell-Jones, R. The use of LYVE-1 antibody for detecting lymphatic involvement in patients with malignant melanoma of known sentinel node status. J. Clin. Pathol. 2005, 58, 715–721. [Google Scholar] [CrossRef] [PubMed]
- Arimoto, S.; Hasegawa, T.; Takeda, D.; Saito, I.; Amano, R.; Akashi, M.; Komori, T. Lymphangiogenesis and Lymph Node Metastasis in Oral Squamous Cell Carcinoma. Anticancer. Res. 2018, 38, 6157–6162. [Google Scholar] [CrossRef] [PubMed]
- Hong, Y.-K.; Harvey, N.; Noh, Y.-H.; Schacht, V.; Hirakawa, S.; Detmar, M.; Oliver, G. Prox1 is a master control gene in the program specifying lymphatic endothelial cell fate. Dev. Dyn. 2002, 225, 351–357. [Google Scholar] [CrossRef] [PubMed]
- Lecompte, S.; Pasquetti, G.; Hermant, X.; Grenier-Boley, B.; Gonzalez-Gross, M.; De Henauw, S.; Molnar, D.; Stehle, P.; Béghin, L.; Moreno, L.A.; et al. Genetic and molecular insights into the role of PROX1 in glucose metabolism. Diabetes 2013, 62, 1738–1745. [Google Scholar] [CrossRef]
- Yokobori, T.; Bao, P.; Fukuchi, M.; Altan, B.; Ozawa, D.; Rokudai, S.; Bai, T.; Kumakura, Y.; Honjo, H.; Hara, K.; et al. Nuclear PROX1 is Associated with Hypoxia-Inducible Factor 1α Expression and Cancer Progression in Esophageal Squamous Cell Carcinoma. Ann. Surg. Oncol. 2015, 22, S1566–S1573. [Google Scholar] [CrossRef]
- Tobler, N.E.; Detmar, M. Tumor and lymph node lymphangiogenesis--impact on cancer metastasis. J. Leukoc. Biol. 2006, 80, 691–696. [Google Scholar] [CrossRef]
- Kretschmer, M.; Rüdiger, D.; Zahler, S. Mechanical Aspects of Angiogenesis. Cancers 2021, 13, 4987. [Google Scholar] [CrossRef] [PubMed]
- Emmett, M.S.; Dewing, D.; Pritchard-Jones, R.O. Angiogenesis and melanoma—From basic science to clinical trials. Am. J. Cancer Res. 2011, 1, 852–868. [Google Scholar] [PubMed]
- Hirakawa, S.; Brown, L.F.; Kodama, S.; Paavonen, K.; Alitalo, K.; Detmar, M. VEGF-C-induced lymphangiogenesis in sentinel lymph nodes promotes tumor metastasis to distant sites. Blood 2006, 109, 1010–1017. [Google Scholar] [CrossRef] [PubMed]
- Amin, M.B.; Greene, F.L.; Edge, S.B.; Compton, C.C.; Gershenwald, J.E.; Brookland, R.K.; Meyer, L.; Gress, D.M.; Byrd, D.R.; Winchester, D.P. The Eighth Edition AJCC Cancer Staging Manual: Continuing to build a bridge from a population-based to a more “personalized” approach to cancer staging. CA Cancer J. Clin. 2017, 67, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Cañueto, J.; Román-Curto, C. Novel Additions to the AJCC’s New Staging Systems for Skin Cancer. Los nuevos sistemas de estadificación del AJCC incorporan novedades en el cáncer cutáneo. Actas Dermosifiliogr. 2017, 108, 818–826. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Kang, R.; Tang, D. Cellular and molecular mechanisms of perineural invasion of pancreatic ductal adenocarcinoma. Cancer Commun. 2021, 41, 642–660. [Google Scholar] [CrossRef]
- Deng, J.; You, Q.; Gao, Y.; Yu, Q.; Zhao, P.; Zheng, Y.; Fang, W.; Xu, N.; Teng, L. Prognostic value of perineural invasion in gastric cancer: A systematic review and meta-analysis. PLoS ONE 2014, 9, e88907. [Google Scholar] [CrossRef]
- Desai, N.; Divatia, M.K.; Jadhav, A.; Wagh, A. Aggressive Cutaneous Squamous Cell Carcinoma of the Head and Neck: A Review. Curr. Oncol. 2023, 30, 6634–6647. [Google Scholar] [CrossRef]
- Burton, K.A.; Ashack, K.A.; Khachemoune, A. Cutaneous Squamous Cell Carcinoma: A Review of High-Risk and Metastatic Disease. Am. J. Clin. Dermatol. 2016, 17, 491–508. [Google Scholar] [CrossRef]
- Kodama, M.; Kitadai, Y.; Tanaka, M.; Kuwai, T.; Tanaka, S.; Oue, N.; Yasui, W.; Chayama, K. Vascular endothelial growth factor C stimulates progression of human gastric cancer via both autocrine and paracrine mechanisms. Clin. Cancer Res. 2008, 14, 7205–7214. [Google Scholar] [CrossRef]
- Decio, A.; Taraboletti, G.; Patton, V.; Alzani, R.; Perego, P.; Fruscio, R.; Jürgensmeier, J.M.; Giavazzi, R.; Belotti, D. Vascular endothelial growth factor c promotes ovarian carcinoma progression through paracrine and autocrine mechanisms. Am. J. Pathol. 2014, 184, 1050–1061. [Google Scholar] [CrossRef] [PubMed]
- Kinoshita, J.; Kitamura, K.; Kabashima, A.; Saeki, H.; Tanaka, S.; Sugimachi, K. Clinical significance of vascular endothelial growth factor-C (VEGF-C) in breast cancer. Breast Cancer Res. Treat. 2001, 66, 159–164. [Google Scholar] [CrossRef] [PubMed]
- O-Charoenrat, P.; Rhys-Evans, P.; Eccles, S.A. Expression of vascular endothelial growth factor family members in head and neck squamous cell carcinoma correlates with lymph node metastasis. Cancer 2001, 92, 556–568. [Google Scholar] [CrossRef]
- Špirić, Z.; Eri, Ž.; Erić, M. Lymphatic vessel density and VEGF-C expression as independent predictors of melanoma metastases. J. Plast. Reconstr. Aesthetic Surg. 2017, 70, 1653–1659. [Google Scholar] [CrossRef] [PubMed]
- Silverman, D.A.; Martinez, V.K.; Dougherty, P.M.; Myers, J.N.; Calin, G.A.; Amit, M. Cancer-Associated Neurogenesis and Nerve-Cancer Cross-talk. Cancer Res. 2020, 81, 1431–1440. [Google Scholar] [CrossRef] [PubMed]
- dos Santos Almeida, A.; Oliveira, D.T.; Pereira, M.C.; Faustino, S.E.S.; Nonogaki, S.; Carvalho, A.L.; Kowalski, L.P. Podoplanin and VEGF-C immunoexpression in oral squamous cell carcinomas: Prognostic significance. Anticancer Res. 2013, 33, 3969–3976. [Google Scholar] [PubMed]
- Campoli, M.; Brodland, D.G.; Zitelli, J. A prospective evaluation of the clinical, histologic, and therapeutic variables associated with incidental perineural invasion in cutaneous squamous cell carcinoma. J. Am. Acad. Dermatol. 2014, 70, 630–636. [Google Scholar] [CrossRef]
- García-Pérez, O.; Melgar-Vilaplana, L.; Sifaoui, I.; García-Bello, M.; Córdoba-Lanús, E.; Fernández-de-Misa, R. Expression of angiogenic and lymphangiogenic genes in primary cutaneous melanoma: Relationship with angiolymphatic invasion and disease-free survival. Melanoma Res. 2023, 33, 375–387. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- García-Pérez, O.; Melgar-Vilaplana, L.; Córdoba-Lanús, E.; Fernández-de-Misa, R. Gene expression studies in formalin-fixed paraffin-embedded samples of cutaneous cancer: The need for reference genes. Curr. Issues Mol. Biol. 2021, 43, 2167–2176. [Google Scholar] [CrossRef]
CSCC Cases N = 49 | No Disease Progression (n = 33) | Disease Progression (n = 16) | p-Value | |
---|---|---|---|---|
Age (y) ± | 75 (67–81.5) | 72 (66–77) | 82 (72–87) | 0.007 * (‡) |
Gender n (%) | ||||
Female | 21 (42.9) | 14 (42.4) | 7 (43.8) | 1.000 (ϕ) |
Male | 28 (57.1) | 19 (57.6) | 9 (56.2) | |
Localization n (%) | ||||
Head/Neck | 32 (65.3) | 18 (54.5) | 14 (87.5) | 0.240 (ϕ) |
Trunk | 2 (4.1) | 2 (6.1) | 0 (0.0) | |
Upper limbs | 6 (12.2) | 4 (12.1) | 2 (12.5) | |
Lower limbs | 4 (8.2) | 4 (12.1) | 0 (0.0) | |
Thickness (mm) ± | 5.0 (3.0–7.25) | 3.0 (2.0–5.0) | 7.0 (6.0–11.0) | 0.006 * (‡) |
Diameter (mm) ± | 1.5 (1.0–5.5) | 1.10 (0.80–2.20) | 2.70 (1.50–12.0) | 0.007 * (‡) |
Clark level n (%) | ||||
I–III | 9 (18.4) | 9 (27.3) | 0 (0.0) | 0.004 * (ϕ) |
IV–V | 19 (38.8) | 8 (24.2) | 11 (68.8) | |
Perineural invasion n (%) | ||||
Absence | 41 (83.7) | 31 (93.3) | 10 (62.5) | 0.010 * (ϕ) |
Presence | 8 (16.3) | 2 (6.1) | 6 (37.5) | |
Differentiation n (%) | ||||
Moderate-Poor | 17 (34.7) | 7 (21.2) | 10 (62.5) | 0.166 (ϕ) |
High | 16 (32.7) | 11 (33.3) | 5 (31.3) |
Variable | OR (CI 95%) | p-Value |
---|---|---|
Age (y) | ||
≤75 y vs. >75 y | 3.850 (1.078–13.751) | 0.038 * |
Thickness (mm) | ||
≤6 mm vs. >6 mm | 9.333 (1.447–60.213) | 0.019 * |
Diameter (mm) | ||
<20 mm vs. ≥20 mm | 2.154 (0.272–17.025) | 0.467 |
Clark level | ||
II–II vs. IV–V | 2.224 (1.082–4.571) | 0.030 * |
Perineural invasion | ||
Absent vs. Present | 9.300 (1.613–53.618) | 0.013 * |
CSCC n (%) | VEGFA (SEM) | p-Value | VEGFR2 (SEM) | p-Value | VEGFC (SEM) | p-Value | VEGFR3 (SEM) | p-Value | LYVE1 (SEM) | p-Value | PROX1 (SEM) | p-Value | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Age at diagnosis | |||||||||||||
≤75 (y) | 26 (53.0) | 1.47 (±0.19) | 0.674 | 1.92 (±0.61) | 0.186 | 0.28 (±0.06) | 0.280 | 1.83 (±0.55) | 0.043 * | 3.52 (±1.13) | 0.056 | 1.47 (±0.62) | 0.132 |
>75 (y) | 23 (47.0) | 1.72 (±0.41) | 1.28 (±0.71) | 0.65 (±1.15) | 1.00 (±0.74) | 0.91 (±0.46) | 0.37 (±0.23) | ||||||
Gender | |||||||||||||
Female | 21 (42.8) | 1.37 (±0.26) | 0.585 | 0.90 (±0.34) | 0.471 | 0.47 (±0.14) | 0.902 | 2.01 (±0.95) | 0.964 | 3.21 (±1.13) | 0.257 | 1.52 (±0.72) | 0.121 |
Male | 28 (57.2) | 1.75 (0.32) | 2.16 (±0.76) | 0.45 (±0.10) | 1.01 (±0.35) | 1.61 (±0.77) | 0.53 (±0.29) | ||||||
Disease-Free Survival | |||||||||||||
≤75 (m) | 26 (53.0) | 1.62 (±0.21) | 0.179 | 1.55 (±0.60) | 0.992 | 0.54 (±0.12) | 0.206 | 1.33 (±0.70) | 0.301 | 2.07 (±0.83) | 0.574 | 0.74 (±0.32) | 1.000 |
>75 (m) | 23 (47.0) | 1.55 (±0.40) | 1.70 (±0.72) | 0.36 (±0.10) | 1.56 (±0.56) | 2.55 (±1.05) | 1.20 (±0.66) | ||||||
Localization | |||||||||||||
Head/Neck | 32 (65.3) | 1.75 (±0.30) | 0.405 | 1.77 (±0.57) | 0.473 | 0.55 (±0.11) | 0.133 | 1.07 (±0.43) | 0.682 | 2.36 (±0.76) | 0.794 | 1.33 (±0.52) | 0.413 |
Trunk | 2 (4.1) | 1.31 (±1.31) | 0.0 (±0.0) | 0.0 (±0.0) | 0.33 (±0.33) | 0.0 (±0.0) | 0.0 (±0.0) | ||||||
Superior limb | 6 (12.2) | 1.12 (±0.30) | 0.39 (±0.35) | 0.43 (0.24) | 4.25 (±2.73) | 0.85 (±0.45) | 0.73 (±0.54) | ||||||
Lower limb | 4 (8.2) | 0.69 (±0.24) | 0.70 (±0.69) | 0.04 (±0.04) | 0.84 (±0.65) | 3.10 (±3.02) | 0.0 (±0.0 | ||||||
Unknown | 5 (10.2) | 1.93 (±0.54) | 3.54 (±2.54) | 0.43 (±0.23) | 1.40 (±0.97) | 3.93 (±3.81) | 0.0 (±0.0) | ||||||
Thickness ± | |||||||||||||
≤4 (mm) | 11 (42.3) | 1.81 (±0.37) | 1.000 | 2.18 (±0.71) | 0.109 | 0.31 (±0.13) | 0.237 | 1.61 (±0.64) | 0.069 | 1.56 (±1.49) | 0.646 | 1.51 (±1.17) | 0.760 |
>4 (mm) | 15 (57.7) | 1.73 (±0.36) | 1.50 (1.05) | 0.60 (±0.15) | 0.42 (±0.20) | 1.80 (±0.75) | 0.30 (±0.24) | ||||||
Diameter + | |||||||||||||
≤1.5 (cm) | 24 (53.3) | 1.84 (±0.39) | 0.632 | 2.11 (±0.71) | 0.068 | 0.40 (±0.09) | 0.963 | 1.47 (±0.54) | 0.681 | 2.85 (±1.00) | 0.411 | 1.32 (±0.64) | 0.786 |
>1.5 (cm) | 21 (46.7) | 1.32 (±0.23) | 0.71 (±0.33) | 0.46 (±0.13) | 1.53 (±0.86) | 1.18 (±0.54) | 0.71 (±0.36) | ||||||
Clark index | |||||||||||||
I–III | 9 (18.4) | 2.01 (±0.51) | 0.676 | 4.50 (±2.09) | 0.099 | 0.33 (±0.16) | 0.117 | 0.51 (±0.26) | 0.567 | 2.42 (±2.11) | 0.929 | 0.55 (±0.44) | 0.374 |
IV–V | 19 (38.8) | 1.65 (±0.28) | 0.67 (±0.20) | 0.67 (±0.15) | 0.94 (±0.45) | 1.49 (±0.66) | 0.23 (±0.19) | ||||||
Unknown | 21 (42.8) | 1.35 (±0.38) | 1.25 (±0.43) | 0.32 (±0.10) | 2.29 (±0.95) | 2.98 (±1.11) | 1.79 (±0.75) | ||||||
Perineural invasion | |||||||||||||
No invasion | 41 (83.6) | 1.54 (±0.25) | 0.234 | 1.84 (±0.54) | 0.781 | 0.37 (±0.07) | 0.030 * | 1.65 (±0.53) | 0.604 | 2.38 (±0.76) | 0.740 | 1.03 (±0.41) | 1.000 |
Invasion | 8 (16.4) | 1.82 (±0.33) | 0.52 (±0.25) | 0.89 (±0.29) | 0.38 (±0.25) | 1.85 (±1.10) | 0.57 (±0.44) | ||||||
Differentiation | |||||||||||||
Moderate/Poor | 17 (34.8) | 1.55 (±0.26) | 0.234 | 0.48 (±0.28) | 0.162 | 0.70 (±0.16) | 0.192 | 2.19 (±1.11) | 0.875 | 1.88 (±0.92) | 0.631 | 1.28 (±0.58) | 0.371 |
High | 16 (32.6) | 1.78 (±0.26) | 1.29 (±0.46) | 0.49 (±0.14) | 0.83 (±0.35) | 2.08 (±1.12) | 1.24 (±0.85) | ||||||
Unknown | 16 (32.6) | 1.44 (±0.56) | 3.16 (±1.24) | 0.17 (0.07) | 1.26 (0.65) | 2.96 (±1.40) | 1.79 (±0.75) |
Gene | Cox Regression ± | Log Rank Kaplan–Meier p-Value | |
---|---|---|---|
HR (95% CI) | p-Value | ||
VEGFA Diameter Perineural invasion | 1.011 (0.703–1.454) 1.037 (0.988–1.088) 3.187 (1.038–9.388) | 0.954 0.142 0.036 * | 0.975 |
VEGFR2 | 0.879 (0.631–1.223) | 0.443 | 0.158 |
Diameter | 1.031 (0.982–1.083) | 0.219 | |
Perineural invasion | 2.951 (0.998–8.728) | 0.050 * | |
VEGFC | 2.675 (1.089–6.570) | 0.032 * | 0.027 * |
Diameter | 1.044 (0.996–1.095) | 0.072 | |
Perineural invasion | 2.814 (0.948–8.350) | 0.062 | |
VEGFR3 | 1.037 (0.861–1.250) | 0.698 | 0.264 |
Diameter | 1.037 (0.988–1.087) | 0.140 | |
Perineural invasion | 3.366 (1.099–10.307) | 0.034 * | |
LYVE1 | 0.923 (0.762–1.117) | 0.410 | 0.184 |
Diameter | 1.034 (0.958–1.084) | 0.178 | |
Perineural invasion | 3.095 (1.053–9.099) | 0.040 * | |
PROX1 | 0.895 (0.644–1.243) | 0.508 | 0.981 |
Diameter | 1.040 (0.989–1.094) | 0.129 | |
Perineural invasion | 3.017 (1.019–8.934) | 0.046 * |
Gene | Title | Accession No. | Amplicon Size (bp #) | TaqMan Assay |
---|---|---|---|---|
VEGFA | Vascular endothelial growth factor A | NM_001171622 | 59 | Hs00900055_m1 |
VEGFR2 | Vascular endothelial growth factor receptor 2 | NM_002253 | 72 | Hs00911690_m1 |
VEGFC | Vascular endothelial growth factor C | NM_005429 | 66 | Hs01099203_m1 |
VEGFR3 | Vascular endothelial growth factor receptor 3 | NM_002020 | 55 | Hs01047683_g1 |
LYVE1 | Lymphatic vessel endothelial hyaluronan receptor 1 | NM_006691 | 68 | Hs00272659_m1 |
PROX1 | Prospero homeobox 1 | NM_001270616 | 74 | Hs00896294_m1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Pérez, O.; Melgar-Vilaplana, L.; Sifaoui, I.; Śmietańska, A.; Córdoba-Lanús, E.; Fernández-de-Misa, R. VEGFC Gene Expression Is Associated with Tumor Progression and Disease-Free Survival in Cutaneous Squamous Cell Carcinoma. Int. J. Mol. Sci. 2024, 25, 379. https://doi.org/10.3390/ijms25010379
García-Pérez O, Melgar-Vilaplana L, Sifaoui I, Śmietańska A, Córdoba-Lanús E, Fernández-de-Misa R. VEGFC Gene Expression Is Associated with Tumor Progression and Disease-Free Survival in Cutaneous Squamous Cell Carcinoma. International Journal of Molecular Sciences. 2024; 25(1):379. https://doi.org/10.3390/ijms25010379
Chicago/Turabian StyleGarcía-Pérez, Omar, Leticia Melgar-Vilaplana, Inés Sifaoui, Aleksandra Śmietańska, Elizabeth Córdoba-Lanús, and Ricardo Fernández-de-Misa. 2024. "VEGFC Gene Expression Is Associated with Tumor Progression and Disease-Free Survival in Cutaneous Squamous Cell Carcinoma" International Journal of Molecular Sciences 25, no. 1: 379. https://doi.org/10.3390/ijms25010379
APA StyleGarcía-Pérez, O., Melgar-Vilaplana, L., Sifaoui, I., Śmietańska, A., Córdoba-Lanús, E., & Fernández-de-Misa, R. (2024). VEGFC Gene Expression Is Associated with Tumor Progression and Disease-Free Survival in Cutaneous Squamous Cell Carcinoma. International Journal of Molecular Sciences, 25(1), 379. https://doi.org/10.3390/ijms25010379