The Transcription Factor StuA Regulates the Glyoxylate Cycle in the Dermatophyte Trichophyton rubrum under Carbon Starvation
Abstract
:1. Introduction
2. Results
2.1. Reannotation of Isocitrate Lyase as a Single Gene (OR643895)
2.2. The ΔstuA Mutant Reduces the Transcription of Isocitrate Lyase and Malate Synthase Genes
2.3. Alternative Splicing Assay
2.4. The Enzymatic Activities of Isocitrate Lyase and Malate Synthase during Fungal Growth in a Medium Supplemented with Glucose or Keratin
3. Discussion
3.1. The Expression of Glyoxylate Cycle Genes Depends on StuA during Fungal Growth in Keratin
3.2. Isocitrate Lyase and Malate Synthase Genes Are Upregulated during Co-Culture with Human Keratinocytes, but the Absence of StuA Impairs Their Expression
3.3. Post-Transcriptional Regulation of TERG_01271 by Alternative Splicing
3.4. Isocitrate Lyase and Malate Synthase Activities Are Independently Regulated during T. rubrum Culture in Glucose or Keratin
4. Materials and Methods
4.1. Fungal Strains and Culture Conditions
4.2. Co-Culture of Fungal Strains and Human Keratinocytes
4.3. RNA Extraction and cDNA Synthesis
4.4. Genomic DNA and cDNA Sequencing of Isocitrate Lyase
4.5. Alternative Splicing Analyses
4.6. RT-qPCR Analyses
4.7. Enzymatic Activity Assays
4.8. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chew, S.Y.; Lung Than, L.T. Glucose Metabolism and Use of Alternative Carbon Sources in Medically-Important Fungi. In Encyclopedia of Mycology; Elsevier: Amsterdam, The Netherlands, 2021; pp. 220–229. [Google Scholar]
- Fleck, C.B.; Schöbel, F.; Brock, M. Nutrient Acquisition by Pathogenic Fungi: Nutrient Availability, Pathway Regulation, and Differences in Substrate Utilization. Int. J. Med. Microbiol. 2011, 301, 400–407. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Herrera, E.; Moreno-Coutiño, G.; Fuentes-Venado, C.E.; Hernández-Castro, R.; Arenas, R.; Pinto-Almazán, R.; Rodríguez-Cerdeira, C. Main Phenotypic Virulence Factors Identified in Trichophyton rubrum. J. Biol. Regul. Homeost. Agents 2023, 37, 2345–2356. [Google Scholar] [CrossRef]
- Moskaluk, A.E.; VandeWoude, S. Current Topics in Dermatophyte Classification and Clinical Diagnosis. Pathogens 2022, 11, 957. [Google Scholar] [CrossRef] [PubMed]
- Sardana, K.; Gupta, A.; Mathachan, S. Immunopathogenesis of Dermatophytoses and Factors Leading to Recalcitrant Infections. Indian. Dermatol. Online J. 2021, 12, 389. [Google Scholar] [CrossRef] [PubMed]
- Martins, M.P.; Rossi, A.; Sanches, P.R.; Bortolossi, J.C.; Martinez-Rossi, N.M. Comprehensive Analysis of the Dermatophyte Trichophyton rubrum Transcriptional Profile Reveals Dynamic Metabolic Modulation. Biochem. J. 2020, 477, 873–885. [Google Scholar] [CrossRef] [PubMed]
- Kaufman, G.; Benjamin, A.H.; Duek, L.; Ullman, Y.; Berdicevsky, I. Infection Stages of the Dermatophyte Pathogen Trichophyton: Microscopic Characterization and Proteolytic Enzymes. Med. Mycol. 2007, 2, 149–155. [Google Scholar] [CrossRef]
- Romani, L. Immunity to Fungal Infections. Nat. Rev. Immunol. 2011, 11, 275–288. [Google Scholar] [CrossRef]
- Cruz, A.H.S.; Santos, R.S.; Martins, M.P.; Peres, N.T.A.; Trevisan, G.L.; Mendes, N.S.; Martinez-Rossi, N.M.; Rossi, A. Relevance of Nutrient-Sensing in the Pathogenesis of Trichophyton rubrum and Trichophyton interdigitale. Front. Fungal Biol. 2022, 3, 858968. [Google Scholar] [CrossRef]
- Clark, D.P.; Cronan, J.E. Two-Carbon Compounds and Fatty Acids as Carbon Sources. EcoSal Plus 2005, 1, 343. [Google Scholar] [CrossRef]
- Chew, S.Y.; Chee, W.J.Y.; Than, L.T.L. The Glyoxylate Cycle and Alternative Carbon Metabolism as Metabolic Adaptation Strategies of Candida glabrata: Perspectives from Candida albicans and Saccharomyces cerevisiae. J. Biomed. Sci. 2019, 26, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Dunn, M.F.; Ramírez-Trujillo, J.A.; Herná Ndez-Lucas, I. Major Roles of Isocitrate Lyase and Malate Synthase in Bacterial and Fungal Pathogenesis. Microbiology 2009, 155, 3166–3175. [Google Scholar] [CrossRef] [PubMed]
- Martins-Santana, L.; Petrucelli, M.F.; Sanches, P.R.; Martinez-Rossi, N.M.; Rossi, A. Peptidase Regulation in Trichophyton rubrum is Mediated by the Synergism Between Alternative Splicing and StuA-Dependent Transcriptional Mechanisms. Front. Microbiol. 2022, 13, 930398. [Google Scholar] [CrossRef]
- Shelest, E. Transcription Factors in Fungi. FEMS Microbiol. Lett. 2008, 286, 145–151. [Google Scholar] [CrossRef] [PubMed]
- Weidemüller, P.; Kholmatov, M.; Petsalaki, E.; Zaugg, J.B. Transcription Factors: Bridge between Cell Signaling and Gene Regulation. Proteomics 2021, 21, 2000034. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Su, H.; Zhou, J.; Feng, H.; Zhang, K.Q.; Yang, J. The APSES Family Proteins in Fungi: Characterizations, Evolution and Functions. Fungal Genet. Biol. 2014, 81, 271–280. [Google Scholar] [CrossRef] [PubMed]
- Connolly, L.A.; Riccombeni, A.; Grózer, Z.; Holland, L.M.; Lynch, D.B.; Andes, D.R.; Gácser, A.; Butler, G. The APSES Transcription Factor Efg1 Is a Global Regulator That Controls Morphogenesis and Biofilm Formation in Candida parapsilosis. Mol. Microbiol. 2013, 90, 36–53. [Google Scholar] [CrossRef]
- Yang, W.; Wu, H.; Wang, Z.; Sun, Q.; Qiao, L.; Huang, B. The APSES Gene MrStuA Regulates Sporulation in Metarhizium robertsii. Front. Microbiol. 2018, 9, 1208. [Google Scholar] [CrossRef]
- Sheppard, D.C.; Doedt, T.; Chiang, L.Y.; Kim, H.S.; Chen, D.; Nierman, W.C.; Filler, S.G. The Aspergillus fumigatus StuA Protein Governs the Up-Regulation of a Discrete Transcriptional Program during the Acquisition of Developmental Competence. Mol. Biol. Cell 2005, 16, 5866–5879. [Google Scholar] [CrossRef]
- Twumasi-Boateng, K.; Yu, Y.; Chen, D.; Gravelat, F.N.; Nierman, W.C.; Sheppard, D.C. Transcriptional Profiling Identifies a Role for BrlA in the Response to Nitrogen Depletion and for StuA in the Regulation of Secondary Metabolite Clusters in Aspergillus fumigatus. Eukaryot. Cell 2009, 8, 104–115. [Google Scholar] [CrossRef]
- Kröber, A.; Etzrodt, S.; Bach, M.; Monod, M.; Kniemeyer, O.; Staib, P.; Brakhage, A.A. The Transcriptional Regulators SteA and StuA Contribute to Keratin Degradation and Sexual Reproduction of the Dermatophyte Arthroderma benhamiae. Curr. Genet. 2017, 63, 103–116. [Google Scholar] [CrossRef] [PubMed]
- Lang, E.A.S.; Bitencourt, T.A.; Peres, N.T.A.; Lopes, L.; Silva, L.G.; Cazzaniga, R.A.; Rossi, A.; Martinez-Rossi, N.M. The StuA Gene Controls Development, Adaptation, Stress Tolerance, and Virulence of the Dermatophyte Trichophyton rubrum. Microbiol. Res. 2020, 241, 126592. [Google Scholar] [CrossRef] [PubMed]
- Bitencourt, T.A.; Neves-da-Rocha, J.; Martins, M.P.; Sanches, P.R.; Lang, E.A.S.; Bortolossi, J.C.; Rossi, A.; Martinez-Rossi, N.M. StuA-Regulated Processes in the Dermatophyte Trichophyton rubrum: Transcription Profile, Cell-Cell Adhesion, and Immunomodulation. Front. Cell Infect. Microbiol. 2021, 11, 643659. [Google Scholar] [CrossRef] [PubMed]
- Mishra, S.; Rastogi, S.K.; Singh, S.; Panwar, S.L.; Shrivash, M.K.; Misra, K. Controlling Pathogenesis in Candida albicans by Targeting Efg1 and Glyoxylate Pathway through Naturally Occurring Polyphenols. Mol. Biol. Rep. 2019, 46, 5805–5820. [Google Scholar] [CrossRef] [PubMed]
- Osherov, N.; Mathew, J.; Romans, A.; May, G.S. Identification of Conidial-Enriched Transcripts in Aspergillus nidulans using Suppression Subtractive Hybridization. Acad. Press 2002, 37, 197–204. [Google Scholar] [CrossRef] [PubMed]
- IpCho, S.V.S.; Tan, K.C.; Koh, G.; Gummer, J.; Oliver, R.P.; Trengove, R.D.; Solomon, P.S. The Transcription Factor Stua Regulates Central Carbon Metabolism, Mycotoxin Production, and Effector Gene Expression in the Wheat Pathogen Stagonospora nodorum. Eukaryot. Cell 2010, 9, 1100–1108. [Google Scholar] [CrossRef] [PubMed]
- Blencowe, B.J. Alternative Splicing: New Insights from Global Analyses. Cell 2006, 126, 37–47. [Google Scholar] [CrossRef] [PubMed]
- Black, D.L. Mechanisms of Alternative Pre-Messenger RNA Splicing. Annu. Rev. Biochem. 2003, 72, 291–336. [Google Scholar] [CrossRef]
- Ast, G. How Did Alternative Splicing Evolve? Nat. Rev. Genet. 2004, 5, 773–782. [Google Scholar] [CrossRef]
- Muzafar, S.; Sharma, R.D.; Chauhan, N.; Prasad, R. Intron Distribution and Emerging Role of Alternative Splicing in Fungi. FEMS Microbiol. Lett. 2021, 368, fnab135. [Google Scholar] [CrossRef]
- Fang, S.; Hou, X.; Qiu, K.; He, R.; Feng, X.; Liang, X. The Occurrence and Function of Alternative Splicing in Fungi. Fungal Biol. Rev. 2020, 34, 178–188. [Google Scholar] [CrossRef]
- Lopes, M.E.R.; Bitencourt, T.A.; Sanches, P.R.; Martins, M.P.; Oliveira, V.M.; Rossi, A.; Martinez-Rossi, N.M. Alternative Splicing in Trichophyton rubrum Occurs in Efflux Pump Transcripts in Response to Antifungal Drugs. J. Fungi 2022, 8, 878. [Google Scholar] [CrossRef] [PubMed]
- Grützmann, K.; Szafranski, K.; Pohl, M.; Voigt, K.; Petzold, A.; Schuster, S. Fungal Alternative Splicing is Associated with Multicellular Complexity and Virulence: A Genome-Wide Multi-Species Study. DNA Res. 2014, 21, 27–39. [Google Scholar] [CrossRef] [PubMed]
- Galvão-Rocha, F.M.; Rocha, C.H.L.; Martins, M.P.; Sanches, P.R.; Bitencourt, T.A.; Sachs, M.S.; Martinez-Rossi, N.M.; Rossi, A. The Antidepressant Sertraline Affects Cell Signaling and Metabolism in Trichophyton rubrum. J. Fungi 2023, 9, 275. [Google Scholar] [CrossRef] [PubMed]
- Mendes, N.S.; Bitencourt, T.A.; Sanches, P.R.; Silva-Rocha, R.; Martinez-Rossi, N.M.; Rossi, A. Transcriptome-Wide Survey of Gene Expression Changes and Alternative Splicing in Trichophyton rubrum in Response to Undecanoic Acid. Sci. Rep. 2018, 8, 2520. [Google Scholar] [CrossRef]
- Petrucelli, M.F.; Peronni, K.; Sanches, P.R.; Komoto, T.T.; Matsuda, J.B.; da Silva Junior, W.A.; Beleboni, R.O.; Martinez-Rossi, N.M.; Marins, M.; Fachin, A.L. Dual RNA-Seq Analysis of Trichophyton rubrum and HaCat Keratinocyte Co-Culture Highlights Important Genes for Fungal-Host Interaction. Genes 2018, 9, 362. [Google Scholar] [CrossRef]
- Cantelli, B.A.M.; Bitencourt, T.A.; Komoto, T.T.; Beleboni, R.O.; Marins, M.; Fachin, A.L. Caffeic Acid and Licochalcone A Interfere with the Glyoxylate Cycle of Trichophyton rubrum. Biomed. Pharmacother. 2017, 96, 1389–1394. [Google Scholar] [CrossRef]
- Komoto, T.T.; Bitencourt, A.; Silva, G.; Oliveira Beleboni, R.; Marins, M.; Fachin, A.L. Gene Expression Response of Trichophyton rubrum during Coculture on Keratinocytes Exposed to Antifungal Agents. Evid. Based Complement. Altern. Med. 2015, 2015, 180535. [Google Scholar] [CrossRef]
- Lorenz, M.C.; Fink, G.R. The Glyoxylate Cycle Is Required for Fungal Virulence. Nature 2001, 412, 83–86. [Google Scholar] [CrossRef]
- Fan, W.; Kraus, P.R.; Boily, M.-J.; Heitman, J. Cryptococcus neoformans Gene Expression during Murine Macrophage Infection. Eukariotic Cell 2005, 4, 1420–1433. [Google Scholar] [CrossRef]
- Ebel, F.; Schwienbacher, M.; Beyer, J.; Heesemann, J.; Brakhage, A.A.; Brock, M. Analysis of the Regulation, Expression, and Localisation of the Isocitrate Lyase from Aspergillus fumigatus, a Potential Target for Antifungal Drug Development. Fungal Genet. Biol. 2006, 43, 476–489. [Google Scholar] [CrossRef] [PubMed]
- Derengowski, L.S.; Tavares, A.H.; Silva, S.; Procópio, L.S.; Felipe, M.S.S.; Silva-Pereira, I. Upregulation of Glyoxylate Cycle Genes upon Paracoccidioides brasiliensis Internalization by Murine Macrophages and in Vitro Nutritional Stress Condition. Med. Mycol. 2008, 46, 125–134. [Google Scholar] [CrossRef] [PubMed]
- Ramazi, S.; Zahiri, J. Post-Translational Modifications in Proteins: Resources, Tools and Prediction Methods. Database 2021, 2021, baab012. [Google Scholar] [CrossRef] [PubMed]
- López-Boado, Y.S.; Herrero, P.; Fernández, T.; Fernández, R.; Moreno, F. Glucose-Stimulated Phosphorylation of Yeast Isocitrate Lyase in Vivo. J. Gen. Microbiol. 1988, 134, 2499–2505. [Google Scholar] [CrossRef] [PubMed]
- Da Silva Cruz, A.H.; Brock, M.; Zambuzzi-Carvalho, P.F.; Santos-Silva, L.K.; Troian, R.F.; Gões, A.M.; De Almeida Soares, C.M.; Pereira, M. Phosphorylation is the Major Mechanism Regulating Isocitrate Lyase Activity in Paracoccidioides brasiliensis Yeast Cells. FEBS J. 2011, 278, 2318–2332. [Google Scholar] [CrossRef] [PubMed]
- Cove, D.J. The Induction and Repression of Nitrate Reductase in the Fungus Aspergillus nidulans. Biochim. Biophys. Acta 1966, 113, 51–56. [Google Scholar] [CrossRef] [PubMed]
- Stanke, M.; Morgenstern, B. AUGUSTUS: A Web Server for Gene Prediction in Eukaryotes That Allows User-Defined Constraints. Nucleic Acids Res. 2005, 33, W465–W467. [Google Scholar] [CrossRef]
- Dobin, A.; Davis, C.A.; Schlesinger, F.; Drenkow, J.; Zaleski, C.; Jha, S.; Batut, P.; Chaisson, M.; Gingeras, T.R. STAR: Ultrafast Universal RNA-Seq Aligner. Bioinformatics 2013, 29, 15. [Google Scholar] [CrossRef]
- Mancini, E.; Rabinovich, A.; Iserte, J.; Yanovsky, M.; Chernomoretz, A. ASpli: Integrative Analysis of Splicing Landscapes through RNA-Seq Assays. Bioinformatics 2021, 37, 2609–2616. [Google Scholar] [CrossRef]
- Love, M.I.; Huber, W.; Anders, S. Moderated Estimation of Fold Change and Dispersion for RNA-Seq Data with DESeq2. Genome Biol. 2014, 15, 1–21. [Google Scholar] [CrossRef]
- Gasteiger, E.; Gattiker, A.; Hoogland, C.; Ivanyi, I.; Appel, R.D.; Bairoch, A. ExPASy: The Proteomics Server for in-Depth Protein Knowledge and Analysis. Nucleic Acids Res. 2003, 31, 3784–3788. [Google Scholar] [CrossRef] [PubMed]
- Kersey, P.J.; Lawson, D.; Birney, E.; Derwent, P.S.; Haimel, M.; Herrero, J.; Keenan, S.; Kerhornou, A.; Koscielny, G.; Kä Hä Ri, A.; et al. Ensembl Genomes: Extending Ensembl across the Taxonomic Space. Nucleic Acids Res. 2010, 38, D563–D569. [Google Scholar] [CrossRef] [PubMed]
- Hunter, S.; Apweiler, R.; Attwood, T.K.; Bairoch, A.; Bateman, A.; Binns, D.; Bork, P.; Das, U.; Daugherty, L.; Duquenne, L.; et al. InterPro: The Integrative Protein Signature Database. Nucleic Acids Res. 2009, 37, 211–215. [Google Scholar] [CrossRef] [PubMed]
- Mi, H.; Ebert, D.; Muruganujan, A.; Mills, C.; Albou, L.P.; Mushayamaha, T.; Thomas, P.D. PANTHER Version 16: A Revised Family Classification, Tree-Based Classification Tool, Enhancer Regions and Extensive API. Nucleic Acids Res. 2021, 49, D394–D403. [Google Scholar] [CrossRef] [PubMed]
- Mi, H.; Muruganujan, A.; Huang, X.; Ebert, D.; Mills, C.; Guo, X.; Thomas, P.D. Protocol Update for Large-Scale Genome and Gene Function Analysis with the PANTHER Classification System (v.14.0). Nat. Protoc. 2019, 14, 703–721. [Google Scholar] [CrossRef]
- Liu, W.; Xie, Y.; Ma, J.; Luo, X.; Nie, P.; Zuo, Z.; Lahrmann, U.; Zhao, Q.; Zheng, Y.; Zhao, Y.; et al. IBS: An Illustrator for the Presentation and Visualization of Biological Sequences. Bioinformatics 2015, 31, 3359–3361. [Google Scholar] [CrossRef]
- Jacobson, L.S.; McIntyre, L.; Mykusz, J. Assessment of Real-Time PCR Cycle Threshold Values in Microsporum canis Culture-Positive and Culture-Negative Cats in an Animal Shelter: A Field Study. J. Feline Med. Surg. 2018, 20, 108–113. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2-ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Silverstein, R.M. The Determination of Human Plasminogen Using Nα-CBZ-l-Lysine p-Nitrophenyl Ester as Substrate. Anal. Biochem. 1975, 65, 500–556. [Google Scholar] [CrossRef]
- Chell, R.M.; Sundaram, T.K.; Wilkinsont, A.E. Isolation and Characterization of Isocitrate Lyase from a Thermophilic Bacillus sp. Biochem. J. 1978, 173, 165–177. [Google Scholar] [CrossRef]
- Swift, M.L. GraphPad Prism, Data Analysis, and Scientific Graphing. J. Chem. Inf. Comput. Sci. 1997, 2, 411–412. [Google Scholar] [CrossRef]
Glucose | ||||||
Time | Strain | Gene | Gene Product | Read Counts * | Fold Change ¥ | Enzymatic Activity (U/mg) |
24 h | WT | TERG_01271 | Isocitrate lyase | 431.98 ± 26 | 1 ± 0.0002 | 1.198 ± 0.02 |
OR643895 | 278.18 ± 36 | 0.952 ± 0.060 | ||||
ΔstuA | TERG_01271 | Isocitratetter e lyase | 593.87 ± 69 | 5.120 ± 0.69 | 1.817 ± 0.08 | |
OR643895 | 147.71 ± 36 | 0.72 ± 0.07 | ||||
WT | TERG_01281 | Malate synthase | 1229.57 ± 846 | 1 ± 0.060 | 0.765 ± 0.12 | |
ΔstuA | TERG_01281 | Malate synthase | 1204.53 ± 297 | 0.787 ± 0.040 | 0.598 ± 0.060 | |
48 h | WT | TERG_01271 | Isocitrate lyase | 667.73 ± 302 | 1 ± 0.0002 | 2.996 ± 0.13 |
OR643895 | 266.15 ± 57 | 1 ± 0.0003 | ||||
ΔstuA | TERG_01271 | Isocitrate lyase | 496.28 ± 47 | 1.090 ± 0.265 | 1.548 ± 0.35 | |
OR643895 | 167.06 ± 36 | 0.47 ± 0.05 | ||||
WT | TERG_01281 | Malate synthase | 5201.18 ± 2131 | 1 ± 0.010 | 3.618 ± 0.42 | |
ΔstuA | TERG_01281 | Malate synthase | 720.99 ± 134 | 0.241 ± 0.010 | 3.632 ± 0.27 | |
96 h | WT | TERG_01271 | Isocitrate lyase | 622.49 ± 53 | - | 1.167 ± 0.03 |
OR643895 | 327.91 ± 28 | - | ||||
ΔstuA | TERG_01271 | Isocitrate lyase | 753.29 ±130 | - | 1.296 ± 0.05 | |
OR643895 | 442.52 ± 25 | - | ||||
WT | TERG_01281 | Malate synthase | 2608.72 ± 289 | - | 7.294 ± 0.75 | |
ΔstuA | TERG_01281 | Malate synthase | 1009.51 ± 154 | - | 1.544 ± 0.32 | |
Keratin | ||||||
Time | Strain | Gene | Gene Product | Read Counts * | Fold Change ¥ | Enzymatic Activity (U/mg) |
24 h | WT | TERG_01271 | Isocitrate lyase | 1524.74 ± 79 | 10 ± 0.003 | 1.004 ± 0.14 |
OR643895 | 313.06 ± 133 | 10 ± 0.003 | ||||
ΔstuA | TERG_01271 | Isocitrate lyase | 642.73 ± 77 | 6.590 ± 0.045 | 3.528 ± 0.12 | |
OR643895 | 196.89 ± 50 | 4.64 ±0.03 | ||||
WT | TERG_01281 | Malate synthase | 1284.05 ± 392 | 1 ± 0.00007 | 1.397 ± 0.10 | |
ΔstuA | TERG_01281 | Malate synthase | 683.97 ± 511 | 0.132 ± 0.020 | 4.676 ± 0.37 | |
48 h | WT | TERG_01271 | Isocitrate lyase | 1710.62 ± 207 | 10 ± 0.005 | 3.146 ± 0.37 |
OR643895 | 1332.79 ± 897 | 10 ± 0.002 | ||||
ΔstuA | TERG_01271 | Isocitrate lyase | 546.82 ± 8 | 2.720 ± 0.042 | 0.480 ± 0.02 | |
OR643895 | 251.66 ± 65 | 7.98 ± 0.07 | ||||
WT | TERG_01281 | Malate synthase | 3456.70 ± 2539 | 5 ± 0.00005 | 5.691± 0.4 | |
ΔstuA | TERG_01281 | Malate synthase | 490.55 ± 100 | 0.380 ± 0.003 | 5.618 ± 1.0 | |
96 h | WT | TERG_01271 | Isocitrate lyase | 888.29 ±20 | - | 1.647 ± 0.05 |
OR643895 | 1436.67 ± 532 | - | ||||
ΔstuA | TERG_01271 | Isocitrate lyase | 365.86 ± 138 | - | 1.218 ± 0.17 | |
OR643895 | 313.63 ± 68 | - | ||||
WT | TERG_01281 | Malate synthase | 2018.73 ± 815 | - | 7.824 ± 0.04 | |
ΔstuA | TERG_0128 | Malate synthase | 622.34 ± 60 | - | 6.843 ± 0.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petrucelli, M.F.; Martins-Santana, L.; Sanches, P.R.; Oliveira, V.M.; Rossi, A.; Martinez-Rossi, N.M. The Transcription Factor StuA Regulates the Glyoxylate Cycle in the Dermatophyte Trichophyton rubrum under Carbon Starvation. Int. J. Mol. Sci. 2024, 25, 405. https://doi.org/10.3390/ijms25010405
Petrucelli MF, Martins-Santana L, Sanches PR, Oliveira VM, Rossi A, Martinez-Rossi NM. The Transcription Factor StuA Regulates the Glyoxylate Cycle in the Dermatophyte Trichophyton rubrum under Carbon Starvation. International Journal of Molecular Sciences. 2024; 25(1):405. https://doi.org/10.3390/ijms25010405
Chicago/Turabian StylePetrucelli, Monise Fazolin, Leonardo Martins-Santana, Pablo R. Sanches, Vanderci M. Oliveira, Antonio Rossi, and Nilce M. Martinez-Rossi. 2024. "The Transcription Factor StuA Regulates the Glyoxylate Cycle in the Dermatophyte Trichophyton rubrum under Carbon Starvation" International Journal of Molecular Sciences 25, no. 1: 405. https://doi.org/10.3390/ijms25010405
APA StylePetrucelli, M. F., Martins-Santana, L., Sanches, P. R., Oliveira, V. M., Rossi, A., & Martinez-Rossi, N. M. (2024). The Transcription Factor StuA Regulates the Glyoxylate Cycle in the Dermatophyte Trichophyton rubrum under Carbon Starvation. International Journal of Molecular Sciences, 25(1), 405. https://doi.org/10.3390/ijms25010405