Genome-Wide Association Study Meta-Analysis Elucidates Genetic Structure and Identifies Candidate Genes of Teat Number Traits in Pigs
Abstract
:1. Introduction
2. Results
2.1. Descriptive Statistics of Teat Number Traits and Genetic Background
2.2. Single-Population GWAS Identifies Genetic Loci Associated with the Single Population
2.3. Single-Breed Meta-GWAS Analysis
2.4. Cross-Breed Meta-GWAS Analysis
2.5. Post-GWAS Analysis
3. Discussion
3.1. Meta-GWAS Results
3.2. Genetic Parameters of Teat Number Traits
3.3. Candidate Gene
4. Materials and Methods
4.1. Ethics Approval and Consent to Participate
4.2. Phenotypes
4.3. Genotype Data
4.4. Estimation of Genetic Parameters
4.5. Single-Population GWAS
4.6. Meta-GWAS Analysis
- (1)
- A single-breed meta-GWAS analysis combined with same-breed GWAS summary results; nine populations were divided into three breeds for a meta-GWAS analysis.
- (2)
- A cross-breed meta-GWAS analysis.
4.7. Functional Annotation of Candidate Genes
4.8. Co-Localization Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Y.; Ding, X.; Tan, Z.; Xing, K.; Yang, T.; Wang, Y.; Sun, D.; Wang, C. Genome-Wide Association Study for Reproductive Traits in a Large White Pig Population. Anim. Genet. 2018, 49, 127–131. [Google Scholar] [CrossRef]
- Knol, E.F.; van der Spek, D.; Zak, L.J. Genetic Aspects of Piglet Survival and Related Traits: A Review. J. Anim. Sci. 2022, 100, skac190. [Google Scholar] [CrossRef]
- Chalkias, H.; Jonas, E.; Andersson, L.S.; Jacobson, M.; de Koning, D.J.; Lundeheim, N.; Lindgren, G. Identification of Novel Candidate Genes for the Inverted Teat Defect in Sows Using a Genome-Wide Marker Panel. J. Appl. Genet. 2017, 58, 249–259. [Google Scholar] [CrossRef]
- Yang, Y.; Gan, M.; Yang, X.; Zhu, P.; Luo, Y.; Liu, B.; Zhu, K.; Cheng, W.; Chen, L.; Zhao, Y.; et al. Estimation of Genetic Parameters of Pig Reproductive Traits. Front. Vet Sci. 2023, 10, 1172287. [Google Scholar] [CrossRef]
- Lopes, M.S.; Bovenhuis, H.; Hidalgo, A.M.; van Arendonk, J.A.M.; Knol, E.F.; Bastiaansen, J.W.M. Genomic Selection for Crossbred Performance Accounting for Breed-Specific Effects. Genet. Sel. Evol. GSE 2017, 49, 51. [Google Scholar] [CrossRef]
- Li, X.; Ye, J.; Han, X.; Qiao, R.; Li, X.; Lv, G.; Wang, K. Whole-Genome Sequencing Identifies Potential Candidate Genes for Reproductive Traits in Pigs. Genomics 2020, 112, 199–206. [Google Scholar] [CrossRef]
- Lee, J.-B.; Jung, E.-J.; Park, H.-B.; Jin, S.; Seo, D.-W.; Ko, M.-S.; Cho, I.-C.; Lee, J.-H.; Lim, H.-T. Genome-Wide Association Analysis to Identify SNP Markers Affecting Teat Numbers in an F2 Intercross Population between Landrace and Korean Native Pigs. Mol. Biol. Rep. 2014, 41, 7167–7173. [Google Scholar] [CrossRef]
- Rohrer, G.A.; Nonneman, D.J. Genetic Analysis of Teat Number in Pigs Reveals Some Developmental Pathways Independent of Vertebra Number and Several Loci Which Only Affect a Specific Side. Genet. Sel. Evol. GSE 2017, 49, 4. [Google Scholar] [CrossRef]
- Tang, J.; Zhang, Z.; Yang, B.; Guo, Y.; Ai, H.; Long, Y.; Su, Y.; Cui, L.; Zhou, L.; Wang, X.; et al. Identification of Loci Affecting Teat Number by Genome-Wide Association Studies on Three Pig Populations. Asian Australas J. Anim. 2017, 30, 1–7. [Google Scholar] [CrossRef]
- Dall’Olio, S.; Ribani, A.; Moscatelli, G.; Zambonelli, P.; Gallo, M.; Nanni Costa, L.; Fontanesi, L. Teat Number Parameters in Italian Large White Pigs: Phenotypic Analysis and Association with Vertnin (VRTN) Gene Allele Variants. Livest. Sci. 2018, 210, 68–72. [Google Scholar] [CrossRef]
- Uzzaman, M.R.; Park, J.-E.; Lee, K.-T.; Cho, E.-S.; Choi, B.-H.; Kim, T.-H. Whole-Genome Association and Genome Partitioning Revealed Variants and Explained Heritability for Total Number of Teats in a Yorkshire Pig Population. Asian Australas J. Anim. 2018, 31, 473–479. [Google Scholar] [CrossRef]
- Zhuang, Z.; Ding, R.; Peng, L.; Wu, J.; Ye, Y.; Zhou, S.; Wang, X.; Quan, J.; Zheng, E.; Cai, G.; et al. Genome-Wide Association Analyses Identify Known and Novel Loci for Teat Number in Duroc Pigs Using Single-Locus and Multi-Locus Models. BMC Genom. 2020, 21, 344. [Google Scholar] [CrossRef]
- Hong, Y.; Ye, J.; Dong, L.; Li, Y.; Yan, L.; Cai, G.; Liu, D.; Tan, C.; Wu, Z. Genome-Wide Association Study for Body Length, Body Height, and Total Teat Number in Large White Pigs. Front. Genet. 2021, 12, 650370. [Google Scholar] [CrossRef]
- Li, Y.; Pu, L.; Shi, L.; Gao, H.; Zhang, P.; Wang, L.; Zhao, F. Revealing New Candidate Genes for Teat Number Relevant Traits in Duroc Pigs Using Genome-Wide Association Studies. Animals 2021, 11, 806. [Google Scholar] [CrossRef]
- Yang, R.; Guo, X.; Zhu, D.; Tan, C.; Bian, C.; Ren, J.; Huang, Z.; Zhao, Y.; Cai, G.; Liu, D.; et al. Accelerated Deciphering of the Genetic Architecture of Agricultural Economic Traits in Pigs Using a Low-Coverage Whole-Genome Sequencing Strategy. GigaScience 2021, 10, giab048. [Google Scholar] [CrossRef]
- Nosková, A.; Mehrotra, A.; Kadri, N.K.; Lloret-Villas, A.; Neuenschwander, S.; Hofer, A.; Pausch, H. Comparison of Two Multi-Trait Association Testing Methods and Sequence-Based Fine Mapping of Six Additive QTL in Swiss Large White Pigs. BMC Genom. 2023, 24, 192. [Google Scholar] [CrossRef]
- Tan, C.; Wu, Z.; Ren, J.; Huang, Z.; Liu, D.; He, X.; Prakapenka, D.; Zhang, R.; Li, N.; Da, Y.; et al. Genome-Wide Association Study and Accuracy of Genomic Prediction for Teat Number in Duroc Pigs Using Genotyping-by-Sequencing. Genet. Sel. Evol. GSE 2017, 49, 35. [Google Scholar] [CrossRef]
- Zeng, H.; Zhong, Z.; Xu, Z.; Teng, J.; Wei, C.; Chen, Z.; Zhang, W.; Ding, X.; Li, J.; Zhang, Z. Meta-Analysis of Genome-Wide Association Studies Uncovers Shared Candidate Genes across Breeds for Pig Fatness Trait. BMC Genom. 2022, 23, 1–11. [Google Scholar] [CrossRef]
- van den Berg, I.; Xiang, R.; Jenko, J.; Pausch, H.; Boussaha, M.; Schrooten, C.; Tribout, T.; Gjuvsland, A.B.; Boichard, D.; Nordbø, Ø.; et al. Meta-Analysis for Milk Fat and Protein Percentage Using Imputed Sequence Variant Genotypes in 94,321 Cattle from Eight Cattle Breeds. Genet. Sel. Evol. 2020, 52, 37. [Google Scholar] [CrossRef]
- Higgins, M.G.; Fitzsimons, C.; McClure, M.C.; McKenna, C.; Conroy, S.; Kenny, D.A.; McGee, M.; Waters, S.M.; Morris, D.W. GWAS and eQTL Analysis Identifies a SNP Associated with Both Residual Feed Intake and GFRA2 Expression in Beef Cattle. Sci. Rep. 2018, 8, 14301. [Google Scholar] [CrossRef]
- Lopes, M.S.; Bastiaansen, J.W.M.; Harlizius, B.; Knol, E.F.; Bovenhuis, H. A Genome-Wide Association Study Reveals Dominance Effects on Number of Teats in Pigs. PLoS ONE 2014, 9, e105867. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Teng, J.; Diao, S.; Xu, Z.; Ye, S.; Qiu, D.; Zhang, Z.; Pan, Y.; Li, J.; Zhang, Q.; et al. Insights into the Architecture of Human-Induced Polygenic Selection in Duroc Pigs. J. Anim. Sci. Biotechnol. 2022, 13, 99. [Google Scholar] [CrossRef] [PubMed]
- Hagan, J.K.; Etim, N.N. The Effects of Breed, Season and Parity on the Reproductive Performance of Pigs Reared under Hot and Humid Environments. Trop. Anim. Health Prod. 2019, 51, 411–418. [Google Scholar] [CrossRef] [PubMed]
- Chang, X.; Xiao, Y.; Cheng, L.; Gu, X.; Yang, L.; Chamba, Y.; Zhang, J.; Geng, F. Quantitative Proteomic Analysis of Yorkshire Pig Liver Reveals Its Response to High Altitude. J. Agric. Food Chem. 2023, 71, 7618–7629. [Google Scholar] [CrossRef] [PubMed]
- Korte, A.; Farlow, A. The Advantages and Limitations of Trait Analysis with GWAS: A Review. Plant Methods 2013, 9, 29. [Google Scholar] [CrossRef] [PubMed]
- Simianer, H.; Büttgen, L.; Ganesan, A.; Ha, N.T.; Pook, T. A Unifying Concept of Animal Breeding Programmes. J. Anim. Breed. Genet. Z. Fur Tierz. Und Zucht. 2021, 138, 137–150. [Google Scholar] [CrossRef] [PubMed]
- Esfandyari, H.; Bijma, P.; Henryon, M.; Christensen, O.F.; Sørensen, A.C. Genomic Prediction of Crossbred Performance Based on Purebred Landrace and Yorkshire Data Using a Dominance Model. Genet. Sel. Evol. GSE 2016, 48, 40. [Google Scholar] [CrossRef]
- Zhao, Y.; Pu, Y.; Liang, B.; Bai, T.; Liu, Y.; Jiang, L.; Ma, Y. A Study Using Single-Locus and Multi-Locus Genome-Wide Association Study to Identify Genes Associated with Teat Number in Hu Sheep. Anim. Genet. 2022, 53, 203–211. [Google Scholar] [CrossRef]
- Fang, F.; Li, J.; Guo, M.; Mei, Q.; Yu, M.; Liu, H.; Legarra, A.; Xiang, T. Genomic Evaluation and Genome-Wide Association Studies for Total Number of Teats in a Combined American and Danish Yorkshire Pig Populations Selected in China. J. Anim. Sci. 2022, 100, skac174. [Google Scholar] [CrossRef]
- Hu, Z.-L.; Park, C.A.; Reecy, J.M. Bringing the Animal QTLdb and CorrDB into the Future: Meeting New Challenges and Providing Updated Services. Nucleic Acids Res. 2022, 50, D956–D961. [Google Scholar] [CrossRef]
- Wang, M.; Xu, S. Statistical Power in Genome-Wide Association Studies and Quantitative Trait Locus Mapping. Heredity 2019, 123, 287–306. [Google Scholar] [CrossRef] [PubMed]
- Zeng, H.; Zhang, W.; Lin, Q.; Gao, Y.; Teng, J.; Xu, Z.; Cai, X.; Zhong, Z.; Wu, J.; Liu, Y.; et al. PigBiobank: A Valuable Resource for Understanding Genetic and Biological Mechanisms of Diverse Complex Traits in Pigs. Nucleic Acids Res. 2023, gkad1080. [Google Scholar] [CrossRef] [PubMed]
- Duijvesteijn, N.; Veltmaat, J.M.; Knol, E.F.; Harlizius, B. High-Resolution Association Mapping of Number of Teats in Pigs Reveals Regions Controlling Vertebral Development. BMC Genom. 2014, 15, 542. [Google Scholar] [CrossRef] [PubMed]
- Verardo, L.L.; Silva, F.F.; Lopes, M.S.; Madsen, O.; Bastiaansen, J.W.M.; Knol, E.F.; Kelly, M.; Varona, L.; Lopes, P.S.; Guimarães, S.E.F. Revealing New Candidate Genes for Reproductive Traits in Pigs: Combining Bayesian GWAS and Functional Pathways. Genet. Sel. Evol. GSE 2016, 48, 9. [Google Scholar] [CrossRef] [PubMed]
- van Son, M.; Lopes, M.S.; Martell, H.J.; Derks, M.F.L.; Gangsei, L.E.; Kongsro, J.; Wass, M.N.; Grindflek, E.H.; Harlizius, B. A QTL for Number of Teats Shows Breed Specific Effects on Number of Vertebrae in Pigs: Bridging the Gap Between Molecular and Quantitative Genetics. Front. Genet. 2019, 10, 272. [Google Scholar] [CrossRef] [PubMed]
- Xue, Y.; Liu, S.; Li, W.; Mao, R.; Zhuo, Y.; Xing, W.; Liu, J.; Wang, C.; Zhou, L.; Lei, M.; et al. Genome-Wide Association Study Reveals Additive and Non-Additive Effects on Growth Traits in Duroc Pigs. Genes 2022, 13, 1454. [Google Scholar] [CrossRef] [PubMed]
- Possible Introgression of the VRTN Mutation Increasing Vertebral Number, Carcass Length and Teat Number from Chinese Pigs into European Pigs|Scientific Reports. Available online: https://www.nature.com/articles/srep19240 (accessed on 14 April 2023).
- Fan, Y.; Xing, Y.; Zhang, Z.; Ai, H.; Ouyang, Z.; Ouyang, J.; Yang, M.; Li, P.; Chen, Y.; Gao, J.; et al. A Further Look at Porcine Chromosome 7 Reveals VRTN Variants Associated with Vertebral Number in Chinese and Western Pigs. PLoS ONE 2013, 8, e62534. [Google Scholar] [CrossRef]
- Verardo, L.L.; Silva, F.F.; Varona, L.; Resende, M.D.V.; Bastiaansen, J.W.M.; Lopes, P.S.; Guimarães, S.E.F. Bayesian GWAS and Network Analysis Revealed New Candidate Genes for Number of Teats in Pigs. J. Appl. Genet. 2015, 56, 123–132. [Google Scholar] [CrossRef]
- Boitard, S.; Liaubet, L.; Paris, C.; Fève, K.; Dehais, P.; Bouquet, A.; Riquet, J.; Mercat, M.-J. Whole-Genome Sequencing of Cryopreserved Resources from French Large White Pigs at Two Distinct Sampling Times Reveals Strong Signatures of Convergent and Divergent Selection between the Dam and Sire Lines. Genet. Sel. Evol. GSE 2023, 55, 13. [Google Scholar] [CrossRef]
- Brow, D.A.; Guthrie, C. Spliceosomal RNA U6 Is Remarkably Conserved from Yeast to Mammals. Nature 1988, 334, 213–218. [Google Scholar] [CrossRef]
- Park, H.-B.; Han, S.-H.; Lee, J.-B.; Cho, I.-C. Rapid Communication: High-Resolution Quantitative Trait Loci Analysis Identifies LTBP2 Encoding Latent Transforming Growth Factor Beta Binding Protein 2 Associated with Thoracic Vertebrae Number in a Large F2 Intercross between Landrace and Korean Native Pigs. J. Anim. Sci. 2017, 95, 1957–1962. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.-C.; Yue, J.-W.; Pu, L.; Wang, L.-G.; Liu, X.; Liang, J.; Yan, H.; Zhao, K.-B.; Li, N.; Shi, H.-B.; et al. Genome-Wide Study Refines the Quantitative Trait Locus for Number of Ribs in a Large White × Minzhu Intercross Pig Population and Reveals a New Candidate Gene. Mol. Genet. Genom. MGG 2016, 291, 1885–1890. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Ran, X.; Niu, X.; Huang, S.; Li, S.; Wang, J. Whole-Genome Sequence Analysis Reveals Selection Signatures for Important Economic Traits in Xiang Pigs. Sci. Rep. 2022, 12, 11823. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.C.; Chow, C.C.; Tellier, L.C.; Vattikuti, S.; Purcell, S.M.; Lee, J.J. Second-Generation PLINK: Rising to the Challenge of Larger and Richer Datasets. GigaScience 2015, 4, 7. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Lee, S.H.; Goddard, M.E.; Visscher, P.M. GCTA: A Tool for Genome-Wide Complex Trait Analysis. Am. J. Hum. Genet. 2011, 88, 76–82. [Google Scholar] [CrossRef]
- Jiang, L.; Zheng, Z.; Qi, T.; Kemper, K.E.; Wray, N.R.; Visscher, P.M.; Yang, J. A Resource-Efficient Tool for Mixed Model Association Analysis of Large-Scale Data. Nat. Genet. 2019, 51, 1749–1755. [Google Scholar] [CrossRef] [PubMed]
- Willer, C.J.; Li, Y.; Abecasis, G.R. METAL: Fast and Efficient Meta-Analysis of Genomewide Association Scans. Bioinformatics 2010, 26, 2190–2191. [Google Scholar] [CrossRef] [PubMed]
- Gene Ontology Consortium. The Gene Ontology Resource: Enriching a GOld Mine. Nucleic Acids Res. 2021, 49, D325–D334. [Google Scholar] [CrossRef]
- Kanehisa, M.; Goto, S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 2000, 28, 27–30. [Google Scholar] [CrossRef]
- Giorgi, F.M.; Ceraolo, C.; Mercatelli, D. The R Language: An Engine for Bioinformatics and Data Science. Life 2022, 12, 648. [Google Scholar] [CrossRef]
- Wallace, C. A More Accurate Method for Colocalisation Analysis Allowing for Multiple Causal Variants. PLoS Genet. 2021, 17, e1009440. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, T.; Wan, P.; Lin, Q.; Wei, C.; Guo, K.; Li, X.; Lu, Y.; Zhang, Z.; Li, J. Genome-Wide Association Study Meta-Analysis Elucidates Genetic Structure and Identifies Candidate Genes of Teat Number Traits in Pigs. Int. J. Mol. Sci. 2024, 25, 451. https://doi.org/10.3390/ijms25010451
Li T, Wan P, Lin Q, Wei C, Guo K, Li X, Lu Y, Zhang Z, Li J. Genome-Wide Association Study Meta-Analysis Elucidates Genetic Structure and Identifies Candidate Genes of Teat Number Traits in Pigs. International Journal of Molecular Sciences. 2024; 25(1):451. https://doi.org/10.3390/ijms25010451
Chicago/Turabian StyleLi, Tingting, Pengchong Wan, Qing Lin, Chen Wei, Kaixuan Guo, Xiaojing Li, Yujin Lu, Zhe Zhang, and Jiaqi Li. 2024. "Genome-Wide Association Study Meta-Analysis Elucidates Genetic Structure and Identifies Candidate Genes of Teat Number Traits in Pigs" International Journal of Molecular Sciences 25, no. 1: 451. https://doi.org/10.3390/ijms25010451
APA StyleLi, T., Wan, P., Lin, Q., Wei, C., Guo, K., Li, X., Lu, Y., Zhang, Z., & Li, J. (2024). Genome-Wide Association Study Meta-Analysis Elucidates Genetic Structure and Identifies Candidate Genes of Teat Number Traits in Pigs. International Journal of Molecular Sciences, 25(1), 451. https://doi.org/10.3390/ijms25010451