Gut Microbiome Composition and Dynamics in Hospitalized COVID-19 Patients and Patients with Post-Acute COVID-19 Syndrome
Abstract
:1. Introduction
2. Results
2.1. COVID-19-Characteristic Gut Microbiome Composition
2.2. Alterations in the Taxonomic Profile of Gut Microbiome in Hospitalized COVID-19 Patients during the Disease Progression
2.3. Early Alterations in the Gut Microbiome Composition of Patients Experiencing Long-Term Complications
3. Discussion
4. Methods
4.1. Study Design and Sample Collection
4.2. Sample Processing and Next-Generation Sequencing
4.3. Data Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cortés, J.; Aguiar, P.M.V.; Ferrinho, P. COVID-19-Related Adolescent Mortality and Morbidity in Nineteen European Countries. Eur. J. Pediatr. 2023, 182, 3997–4005. [Google Scholar] [CrossRef] [PubMed]
- Woodrow, M.; Carey, C.; Ziauddeen, N.; Thomas, R.; Akrami, A.; Lutje, V.; Greenwood, D.C.; Alwan, N.A. Systematic Review of the Prevalence of Long COVID. Open Forum Infect. Dis. 2023, 10, ofad233. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Jiang, X.; Zhang, Z.; Huang, S.; Zhang, Z.; Fang, Z.; Gu, Z.; Gao, L.; Shi, H.; Mai, L.; et al. Gastrointestinal symptoms of 95 cases with SARS-CoV-2 infection. Gut 2020, 69, 997–1001. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Madhavan, M.V.; Sehgal, K.; Nair, N.; Mahajan, S.; Sehrawat, T.S.; Bikdeli, B.; Ahluwalia, N.; Ausiello, J.C.; Wan, E.Y.; et al. Extrapulmonary manifestations of COVID-19. Nat. Med. 2020, 26, 1017–1032. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Xue, X.; Zhang, S. Microbiome and COVID-19: Long-Term and Complex Influencing Factors. Front. Microbiol. 2022, 13, 963488. [Google Scholar] [CrossRef]
- Song, J.; Wu, Y.; Yin, X.; Ma, H.; Zhang, J. The Causal Links between Gut Microbiome and COVID-19: A Mendelian Randomization Study. J. Med. Virol. 2023, 95, e28784. [Google Scholar] [CrossRef] [PubMed]
- Righi, E.; Lambertenghi, L.; Gorska, A.; Sciammarella, C.; Ivaldi, F.; Mirandola, M.; Sartor, A.; Tacconelli, E. Impact of COVID-19 and Antibiotic Treatments on Gut Microbiome: A Role for Enterococcus spp. Biomedicines 2022, 10, 2786. [Google Scholar] [CrossRef] [PubMed]
- Krasaewes, K.; Chaiwarith, R.; Chattipakorn, N.; Chattipakorn, S.C. Profiles of Gut Microbiome Associated with Clinical Outcomes in Patients with Different Stages of SARS-CoV-2 Infection. Life Sci. 2023, 332, 122136. [Google Scholar] [CrossRef]
- Talukdar, D.; Bandopadhyay, P.; Ray, Y.; Paul, S.R.; Sarif, J.; D’rozario, R.; Lahiri, A.; Das, S.; Bhowmick, D.; Chatterjee, S.; et al. Association of Gut Microbial Dysbiosis with Disease Severity, Response to Therapy and Disease Outcomes in Indian Patients with COVID-19. Gut Pathog. 2023, 15, 22. [Google Scholar] [CrossRef]
- Nobre, J.G.; Delgadinho, M.; Silva, C.; Mendes, J.; Mateus, V.; Ribeiro, E.; Costa, D.A.; Lopes, M.; Pedroso, A.I.; Trigueiros, F.; et al. Gut Microbiome Profile of COVID-19 Patients: Prognosis and Risk Stratification (MicroCOVID-19 Study). Front. Microbiol. 2022, 13, 1035422. [Google Scholar] [CrossRef]
- Maddah, R.; Goodarzi, V.; Asadi-Yousefabad, S.L.; Abbasluo, M.; Shariati, P.; Shafiei Kafraj, A. Evaluation of the Gut Microbiome Associated with COVID-19. Inform. Med. Unlocked 2023, 38, 101239. [Google Scholar] [CrossRef] [PubMed]
- Hazan, S.; Stollman, N.; Bozkurt, H.S.; Dave, S.; Papoutsis, A.J.; Daniels, J.; Barrows, B.D.; Quigley, E.M.; Borody, T.J. Lost Microbes of COVID-19: Bifidobacterium, Faecalibacterium Depletion and Decreased Microbiome Diversity Associated with SARS-CoV-2 Infection Severity. BMJ Open Gastroenterol. 2022, 9, e000871. [Google Scholar] [CrossRef] [PubMed]
- Tang, L.; Gu, S.; Gong, Y.; Li, B.; Lu, H.; Li, Q.; Zhang, R.; Gao, X.; Wu, Z.; Zhang, J.; et al. Clinical Significance of the Correlation between Changes in the Major Intestinal Bacteria Species and COVID-19 Severity. Engineering 2020, 6, 1178–1184. [Google Scholar] [CrossRef] [PubMed]
- Lymberopoulos, E.; Gentili, G.I.; Budhdeo, S.; Sharma, N. COVID-19 Severity Is Associated with Population-Level Gut Microbiome Variations. Front. Cell. Infect. Microbiol. 2022, 12, 963338. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Mak, J.W.Y.; Su, Q.; Yeoh, Y.K.; Lui, G.C.-Y.; Ng, S.S.S.; Zhang, F.; Li, A.Y.L.; Lu, W.; Hui, D.S.-C.; et al. Gut Microbiome Dynamics in a Prospective Cohort of Patients with Post-Acute COVID-19 Syndrome. Gut 2022, 71, 544–552. [Google Scholar] [CrossRef] [PubMed]
- Vestad, B.; Ueland, T.; Lerum, T.V.; Dahl, T.B.; Holm, K.; Barratt-Due, A.; Kåsine, T.; Dyrhol-Riise, A.M.; Stiksrud, B.; Tonby, K.; et al. Respiratory Dysfunction Three Months after Severe COVID-19 Is Associated with Gut Microbiome Alterations. J. Intern. Med. 2022, 291, 801–812. [Google Scholar] [CrossRef]
- de Almeida, V.M.; Engel, D.F.; Ricci, M.F.; Cruz, C.S.; Lopes, S.; Alves, D.A.; Auriol, M.D.; Magalhães, J.; Machado, E.C.; Rocha, V.M.; et al. Gut Microbiome from Patients with COVID-19 Cause Alterations in Mice That Resemble Post-COVID Symptoms. Gut Microbes 2023, 15, 2249146. [Google Scholar] [CrossRef]
- Farsi, Y.; Tahvildari, A.; Arbabi, M.; Vazife, F.; Sechi, L.A.; Bonjar, A.H.S.; Jamshidi, P.; Nasiri, M.J.; Mirsaeidi, M. Diagnostic, Prognostic, and Therapeutic Roles of Gut Microbiome in COVID-19: A Comprehensive Systematic Review. Front. Cell. Infect. Microbiol. 2022, 12, 804644. [Google Scholar] [CrossRef]
- Yeoh, Y.K.; Zuo, T.; Lui, G.C.-Y.; Zhang, F.; Liu, Q.; Li, A.Y.; Chung, A.C.; Cheung, C.P.; Tso, E.Y.; Fung, K.S.; et al. Gut Microbiome Composition Reflects Disease Severity and Dysfunctional Immune Responses in Patients with COVID-19. Gut 2021, 70, 698–706. [Google Scholar] [CrossRef]
- Wu, Y.; Cheng, X.; Jiang, G.; Tang, H.; Ming, S.; Tang, L.; Lu, J.; Guo, C.; Shan, H.; Huang, X. Altered Oral and Gut Microbiome and Its Association with SARS-CoV-2 Viral Load in COVID-19 Patients during Hospitalization. NPJ Biofilms Microbiomes 2021, 7, 61. [Google Scholar] [CrossRef]
- Wu, C.; Xu, Q.; Cao, Z.; Pan, D.; Zhu, Y.; Wang, S.; Liu, D.; Song, Z.; Jiang, W.; Ruan, Y.; et al. The Volatile and Heterogeneous Gut Microbiome Shifts of COVID-19 Patients over the Course of a Probiotics-assisted Therapy. Clin. Transl. Med. 2021, 11, e643. [Google Scholar] [CrossRef] [PubMed]
- Zuo, T.; Wu, X.; Wen, W.; Lan, P. Gut Microbiome Alterations in COVID-19. Genom. Proteom. Bioinform. 2021, 19, 679–688. [Google Scholar] [CrossRef]
- Gaibani, P.; D’Amico, F.; Bartoletti, M.; Lombardo, D.; Rampelli, S.; Fornaro, G.; Coladonato, S.; Siniscalchi, A.; Re, M.C.; Viale, P.; et al. The Gut Microbiome of Critically Ill Patients With COVID-19. Front. Cell. Infect. Microbiol. 2021, 11, 670424. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Lau, R.I.; Liu, Q.; Su, Q.; Chan, F.K.L.; Ng, S.C. Gut microbiota in COVID-19: Key microbial changes, potential mechanisms, and clinical applications. Nat. Rev. Gastroenterol. Hepatol. 2022, 20, 323–337. [Google Scholar] [CrossRef] [PubMed]
- Zuo, T.; Zhang, F.; Lui, G.C.Y.; Yeoh, Y.K.; Li, A.Y.L.; Zhan, H.; Wan, Y.; Chung, A.C.K.; Cheung, C.P.; Chen, N.; et al. Alterations in Gut Microbiome of Patients With COVID-19 during Time of Hospitalization. Gastroenterology 2020, 159, 944–955.e8. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Vitetta, L. The Role of Butyrate in Attenuating Pathobiont-Induced Hyperinflammation. Immune Netw. 2020, 20, e15. [Google Scholar] [CrossRef]
- Hodgkinson, K.; El Abbar, F.; Dobranowski, P.; Manoogian, J.; Butcher, J.; Figeys, D.; Mack, D.; Stintzi, A. Butyrate’s Role in Human Health and the Current Progress towards Its Clinical Application to Treat Gastrointestinal Disease. Clin. Nutr. 2023, 42, 61–75. [Google Scholar] [CrossRef]
- Paparo, L.; Maglio, M.A.; Cortese, M.; Bruno, C.; Capasso, M.; Punzo, E.; Ferrucci, V.; Lasorsa, V.A.; Viscardi, M.; Fusco, G.; et al. A new butyrate releaser exerts a protective action against SARS-CoV-2 infection in the human intestine. Molecules 2022, 27, 862. [Google Scholar] [CrossRef]
- Howell, M.C.; Green, R.; McGill, A.R.; Dutta, R.; Mohapatra, S.; Mohapatra, S.S. SARS-CoV-2-induced gut microbiome dysbiosis: Implications for colorectal cancer. Cancers 2021, 13, 2676. [Google Scholar] [CrossRef]
- Zhou, T.; Wu, J.; Zeng, Y.; Li, J.; Yan, J.; Meng, W.; Han, H.; Feng, F.; He, J.; Zhao, S.; et al. SARS-CoV-2 triggered oxidative stress and abnormal energy metabolism in gut microbiota. MedComm 2022, 3, e112. [Google Scholar] [CrossRef]
- Lukovac, S.; Belzer, C.; Pellis, L.; Keijser, B.J.; de Vos, W.M.; Montijn, R.C.; Roeselers, G. Differential modulation by Akkermansia muciniphila and Faecalibacterium prausnitzii of host peripheral lipid metabolism and histone acetylation in mouse gut organoids. mBio 2014, 5, e01438-14. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.; Zhou, Y.; Hu, Y.; Wang, J.; Li, H.; Lin, Y.; Wang, D.; Xian, J.; Zhao, S.; Ma, J.; et al. Metatranscriptomic Analysis Revealed Prevotella as a Potential Biomarker of Oropharyngeal Microbiomes in SARS-CoV-2 Infection. Front. Cell. Infect. Microbiol. 2023, 13, 1161763. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Weng, S.; Xia, C.; Ren, Y.; Liu, Z.; Xu, Y.; Yang, X.; Wu, R.; Peng, L.; Sun, L.; et al. Gastrointestinal Symptoms of Long COVID-19 Related to the Ectopic Colonization of Specific Bacteria That Move between the Upper and Lower Alimentary Tract and Alterations in Serum Metabolites. BMC Med. 2023, 21, 264. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.A.; Khan, Z. COVID-2019-Associated Overexpressed Prevotella Proteins Mediated Host–Pathogen Interactions and Their Role in Coronavirus Outbreak. Bioinformatics 2020, 36, 4065–4069. [Google Scholar] [CrossRef]
- Soltani, S.; Faramarzi, S.; Zandi, M.; Shahbahrami, R.; Jafarpour, A.; Akhavan Rezayat, S.; Pakzad, I.; Abdi, F.; Malekifar, P.; Pakzad, R. Bacterial Coinfection among Coronavirus Disease 2019 Patient Groups: An Updated Systematic Review and Meta-Analysis. New Microbes New Infect. 2021, 43, 100910. [Google Scholar] [CrossRef]
- Zang, C.; Zhang, Y.; Xu, J.; Bian, J.; Morozyuk, D.; Schenck, E.J.; Khullar, D.; Nordvig, A.S.; Shenkman, E.A.; Rothman, R.L.; et al. Data-Driven Analysis to Understand Long COVID Using Electronic Health Records from the RECOVER Initiative. Nat. Commun. 2023, 14, 1948. [Google Scholar] [CrossRef]
- Rovite, V.; Wolff-Sagi, Y.; Zaharenko, L.; Nikitina-Zake, L.; Grens, E.; Klovins, J. Genome Database of the Latvian Population (LGDB): Design, Goals, and Primary Results. J. Epidemiol. 2018, 28, 353–360. [Google Scholar] [CrossRef]
Characteristic | Healthy Individuals (n = 110) | Patients (n = 146) | p-Value |
---|---|---|---|
Males/females, n (%) | 33 (30)/77 (70) | 86 (58.90)/60 (41.10) | |
Age (years), mean ± SD | 36.61 ± 9.43 | 53.31 ± 15.88 | <0.001 |
BMI (kg/m2), mean ± SD | 23.20 ± 2.56 | 27.89 ± 6.12 | <0.001 |
Use of antibiotics, n (%) | 0 (0) | 83 (56.85) | |
Use of antivirals (Remdesivir), n (%) | 0 (0) | 25 (17.12) | |
Ambulatory/hospitalized, n (%) | N/A | 57 (39.04)/89 (60.96) | |
Long COVID/recovered, n (%) | N/A | 78 (53.42)/44 (30.14) | |
No information on long-term complications, n (%) | N/A | 15 (10.27) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brīvība, M.; Silamiķele, L.; Birzniece, L.; Ansone, L.; Megnis, K.; Silamiķelis, I.; Pelcmane, L.; Borisova, D.; Rozenberga, M.; Jagare, L.; et al. Gut Microbiome Composition and Dynamics in Hospitalized COVID-19 Patients and Patients with Post-Acute COVID-19 Syndrome. Int. J. Mol. Sci. 2024, 25, 567. https://doi.org/10.3390/ijms25010567
Brīvība M, Silamiķele L, Birzniece L, Ansone L, Megnis K, Silamiķelis I, Pelcmane L, Borisova D, Rozenberga M, Jagare L, et al. Gut Microbiome Composition and Dynamics in Hospitalized COVID-19 Patients and Patients with Post-Acute COVID-19 Syndrome. International Journal of Molecular Sciences. 2024; 25(1):567. https://doi.org/10.3390/ijms25010567
Chicago/Turabian StyleBrīvība, Monta, Laila Silamiķele, Līga Birzniece, Laura Ansone, Kaspars Megnis, Ivars Silamiķelis, Līva Pelcmane, Daniella Borisova, Maija Rozenberga, Lauma Jagare, and et al. 2024. "Gut Microbiome Composition and Dynamics in Hospitalized COVID-19 Patients and Patients with Post-Acute COVID-19 Syndrome" International Journal of Molecular Sciences 25, no. 1: 567. https://doi.org/10.3390/ijms25010567
APA StyleBrīvība, M., Silamiķele, L., Birzniece, L., Ansone, L., Megnis, K., Silamiķelis, I., Pelcmane, L., Borisova, D., Rozenberga, M., Jagare, L., Elbere, I., & Kloviņš, J. (2024). Gut Microbiome Composition and Dynamics in Hospitalized COVID-19 Patients and Patients with Post-Acute COVID-19 Syndrome. International Journal of Molecular Sciences, 25(1), 567. https://doi.org/10.3390/ijms25010567