Diagnostic and Prognostic Value of Plasma GFAP in Sporadic Creutzfeldt–Jakob Disease in the Clinical Setting of Rapidly Progressive Dementia
Abstract
:1. Introduction
2. Results
2.1. Demographic Variables and CSF Biomarkers Value Distribution in the Diagnostic Groups
2.2. Correlations between Plasma and CSF GFAP and Other Biomarkers
2.3. Distribution of Plasma and CSF GFAP Levels in the sCJD Cohort According to Clinicopathological Subtypes
2.4. Distribution of Plasma GFAP Levels in the sCJD Cohort According to A/T Status
2.5. Diagnostic Performance of Plasma GFAP in the Differential Diagnosis between sCJD and np-RPD
2.6. Prognostic Value and Distribution according to Disease Stages of Plasma GFAP in sCJD
3. Discussion
4. Materials and Methods
4.1. Patients’ Selection
4.2. CSF Biomarker Analysis
4.3. Plasma Biomarker Analysis
4.4. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baiardi, S.; Rossi, M.; Capellari, S.; Parchi, P. Recent Advances in the Histo-Molecular Pathology of Human Prion Disease: Histo-Molecular Pathology of Human Prion Disease. Brain Pathol. 2019, 29, 278–300. [Google Scholar] [CrossRef] [PubMed]
- Parchi, P.; Giese, A.; Capellari, S.; Brown, P.; Schulz-Schaeffer, W.; Windl, O.; Zerr, I.; Budka, H.; Kopp, N.; Piccardo, P.; et al. Classification of Sporadic Creutzfeldt-Jakob Disease Based on Molecular and Phenotypic Analysis of 300 Subjects. Ann. Neurol. 1999, 46, 224–233. [Google Scholar] [CrossRef] [PubMed]
- Atarashi, R.; Satoh, K.; Sano, K.; Fuse, T.; Yamaguchi, N.; Ishibashi, D.; Matsubara, T.; Nakagaki, T.; Yamanaka, H.; Shirabe, S.; et al. Ultrasensitive Human Prion Detection in Cerebrospinal Fluid by Real-Time Quaking-Induced Conversion. Nat. Med. 2011, 17, 175–178. [Google Scholar] [CrossRef]
- McGuire, L.I.; Peden, A.H.; Orrú, C.D.; Wilham, J.M.; Appleford, N.E.; Mallinson, G.; Andrews, M.; Head, M.W.; Caughey, B.; Will, R.G.; et al. Real-Time Quaking-Induced Conversion Analysis of Cerebrospinal Fluid in Sporadic Creutzfeldt-Jakob Disease. Ann. Neurol. 2012, 72, 278–285. [Google Scholar] [CrossRef] [PubMed]
- Groveman, B.R.; Orrú, C.D.; Hughson, A.G.; Bongianni, M.; Fiorini, M.; Imperiale, D.; Ladogana, A.; Pocchiari, M.; Zanusso, G.; Caughey, B. Extended and Direct Evaluation of RT-QuIC Assays for Creutzfeldt-Jakob Disease Diagnosis. Ann. Clin. Transl. Neurol. 2017, 4, 139–144. [Google Scholar] [CrossRef] [PubMed]
- Franceschini, A.; Baiardi, S.; Hughson, A.G.; McKenzie, N.; Moda, F.; Rossi, M.; Capellari, S.; Green, A.; Giaccone, G.; Caughey, B.; et al. High Diagnostic Value of Second Generation CSF RT-QuIC across the Wide Spectrum of CJD Prions. Sci. Rep. 2017, 7, 10655. [Google Scholar] [CrossRef] [PubMed]
- Candelise, N.; Baiardi, S.; Franceschini, A.; Rossi, M.; Parchi, P. Towards an Improved Early Diagnosis of Neurodegenerative Diseases: The Emerging Role of in Vitro Conversion Assays for Protein Amyloids. Acta Neuropathol. Commun. 2020, 8, 117. [Google Scholar] [CrossRef] [PubMed]
- Hermann, P.; Appleby, B.; Brandel, J.-P.; Caughey, B.; Collins, S.; Geschwind, M.D.; Green, A.; Haïk, S.; Kovacs, G.G.; Ladogana, A.; et al. Biomarkers and Diagnostic Guidelines for Sporadic Creutzfeldt-Jakob Disease. Lancet Neurol. 2021, 20, 235–246. [Google Scholar] [CrossRef] [PubMed]
- Thompson, A.G.B.; Mead, S.H. Review: Fluid Biomarkers in the Human Prion Diseases. Mol. Cell. Neurosci. 2019, 97, 81–92. [Google Scholar] [CrossRef]
- Mastrangelo, A.; Mammana, A.; Baiardi, S.; Tiple, D.; Colaizzo, E.; Rossi, M.; Vaianella, L.; Polischi, B.; Equestre, M.; Poleggi, A.; et al. Evaluation of the Impact of CSF Prion RT-QuIC and Amended Criteria on the Clinical Diagnosis of Creutzfeldt-Jakob Disease: A 10-Year Study in Italy. J. Neurol. Neurosurg. Psychiatry 2022, 94, 121–129. [Google Scholar] [CrossRef] [PubMed]
- Bentivenga, G.M.; Baiardi, S.; Mastrangelo, A.; Zenesini, C.; Mammana, A.; Polischi, B.; Capellari, S.; Parchi, P. Diagnostic and Prognostic Value of Cerebrospinal Fluid SNAP-25 and Neurogranin in Creutzfeldt-Jakob Disease in a Clinical Setting Cohort of Rapidly Progressive Dementias. Alzheimer’s Res. Ther. 2023, 15, 150. [Google Scholar] [CrossRef] [PubMed]
- Staffaroni, A.M.; Kramer, A.O.; Casey, M.; Kang, H.; Rojas, J.C.; Orrú, C.D.; Caughey, B.; Allen, I.E.; Kramer, J.H.; Rosen, H.J.; et al. Association of Blood and Cerebrospinal Fluid Tau Level and Other Biomarkers with Survival Time in Sporadic Creutzfeldt-Jakob Disease. JAMA Neurol. 2019, 76, 969–977. [Google Scholar] [CrossRef] [PubMed]
- Baiardi, S.; Capellari, S.; Bartoletti Stella, A.; Parchi, P. Unusual Clinical Presentations Challenging the Early Clinical Diagnosis of Creutzfeldt-Jakob Disease. J. Alzheimer’s Dis. 2018, 64, 1051–1065. [Google Scholar] [CrossRef] [PubMed]
- Jesse, S.; Steinacker, P.; Cepek, L.; von Arnim, C.; Tumani, H.; Lehnert, S.; Kretzmar, H.; Baier, M.; Otto, M. Glial Fibrillary Acidic Protein and Protein S-100B: Different Concentration Pattern of Glial Proteins in Cerebrospinal Fluid of Patients with Alzheimer’s Disease and Creutzfeldt-Jakob Disease. J. Alzheimer’s Dis. 2009, 5, P505–P506. [Google Scholar] [CrossRef]
- Abu-Rumeileh, S.; Steinacker, P.; Polischi, B.; Mammana, A.; Bartoletti-Stella, A.; Oeckl, P.; Baiardi, S.; Zenesini, C.; Huss, A.; Cortelli, P.; et al. CSF Biomarkers of Neuroinflammation in Distinct Forms and Subtypes of Neurodegenerative Dementia. Alzheimer’s Res. Ther. 2020, 12, 2. [Google Scholar] [CrossRef] [PubMed]
- Carroll, J.A.; Chesebro, B. Neuroinflammation, Microglia, and Cell-Association during Prion Disease. Viruses 2019, 11, 65. [Google Scholar] [CrossRef] [PubMed]
- Franceschini, A.; Strammiello, R.; Capellari, S.; Giese, A.; Parchi, P. Regional Pattern of Microgliosis in Sporadic Creutzfeldt-Jakob Disease in Relation to Phenotypic Variants and Disease Progression. Neuropathol. Appl. Neurobiol. 2018, 44, 574–589. [Google Scholar] [CrossRef] [PubMed]
- Abu-Rumeileh, S.; Baiardi, S.; Ladogana, A.; Zenesini, C.; Bartoletti-Stella, A.; Poleggi, A.; Mammana, A.; Polischi, B.; Pocchiari, M.; Capellari, S.; et al. Comparison between Plasma and Cerebrospinal Fluid Biomarkers for the Early Diagnosis and Association with Survival in Prion Disease. J. Neurol. Neurosurg. Psychiatry 2020, 91, 1181–1188. [Google Scholar] [CrossRef] [PubMed]
- Thompson, A.J.; Banwell, B.L.; Barkhof, F.; Carroll, W.M.; Coetzee, T.; Comi, G.; Correale, J.; Fazekas, F.; Filippi, M.; Freedman, M.S.; et al. Diagnosis of Multiple Sclerosis: 2017 Revisions of the McDonald Criteria. Lancet Neurol. 2018, 17, 162–173. [Google Scholar] [CrossRef] [PubMed]
- Zerr, I.; Villar-Piqué, A.; Hermann, P.; Schmitz, M.; Varges, D.; Ferrer, I.; Riggert, J.; Zetterberg, H.; Blennow, K.; Llorens, F. Diagnostic and Prognostic Value of Plasma Neurofilament Light and Total-Tau in Sporadic Creutzfeldt-Jakob Disease. Alzheimer’s Res. Ther. 2021, 13, 86. [Google Scholar] [CrossRef] [PubMed]
- Abu-Rumeileh, S.; Halbgebauer, S.; Bentivenga, G.M.; Barba, L.; Baiardi, S.; Mastrangelo, A.; Oeckl, P.; Steinacker, P.; Mammana, A.; Capellari, S.; et al. High Diagnostic Performance of Plasma and Cerebrospinal Fluid Beta-Synuclein for Sporadic Creutzfeldt–Jakob Disease. Ann. Clin. Transl. Neurol. 2023, 10, 1904–1909. [Google Scholar] [CrossRef] [PubMed]
- Abdelhak, A.; Foschi, M.; Abu-Rumeileh, S.; Yue, J.K.; D’Anna, L.; Huss, A.; Oeckl, P.; Ludolph, A.C.; Kuhle, J.; Petzold, A.; et al. Blood GFAP as an Emerging Biomarker in Brain and Spinal Cord Disorders. Nat. Rev. Neurol. 2022, 18, 158–172. [Google Scholar] [CrossRef] [PubMed]
- Lattanzio, F.; Abu-Rumeileh, S.; Franceschini, A.; Kai, H.; Amore, G.; Poggiolini, I.; Rossi, M.; Baiardi, S.; McGuire, L.; Ladogana, A.; et al. Prion-Specific and Surrogate CSF Biomarkers in Creutzfeldt-Jakob Disease: Diagnostic Accuracy in Relation to Molecular Subtypes and Analysis of Neuropathological Correlates of p-Tau and Aβ42 Levels. Acta Neuropathol. 2017, 133, 559–578. [Google Scholar] [CrossRef] [PubMed]
- Parchi, P.; de Boni, L.; Saverioni, D.; Cohen, M.L.; Ferrer, I.; Gambetti, P.; Gelpi, E.; Giaccone, G.; Hauw, J.-J.; Höftberger, R.; et al. Consensus Classification of Human Prion Disease Histotypes Allows Reliable Identification of Molecular Subtypes: An Inter-Rater Study among Surveillance Centres in Europe and USA. Acta Neuropathol. 2012, 124, 517–529. [Google Scholar] [CrossRef] [PubMed]
- Parchi, P.; Strammiello, R.; Notari, S.; Giese, A.; Langeveld, J.P.M.; Ladogana, A.; Zerr, I.; Roncaroli, F.; Cras, P.; Ghetti, B.; et al. Incidence and Spectrum of Sporadic Creutzfeldt–Jakob Disease Variants with Mixed Phenotype and Co-Occurrence of PrPSc Types: An Updated Classification. Acta Neuropathol. 2009, 118, 659–671. [Google Scholar] [CrossRef] [PubMed]
- Mastrangelo, A.; Baiardi, S.; Zenesini, C.; Poleggi, A.; Mammana, A.; Polischi, B.; Ladogana, A.; Capellari, S.; Parchi, P. Diagnostic and Prognostic Performance of CSF α-synuclein in Prion Disease in the Context of Rapidly Progressive Dementia. Alzheimer’s Dement. 2021, 13, e12214. [Google Scholar] [CrossRef]
- Baiardi, S.; Magherini, A.; Capellari, S.; Redaelli, V.; Ladogana, A.; Rossi, M.; Tagliavini, F.; Pocchiari, M.; Giaccone, G.; Parchi, P. Towards an Early Clinical Diagnosis of Sporadic CJD VV2 (Ataxic Type). J. Neurol. Neurosurg. Psychiatry 2017, 88, 764–772. [Google Scholar] [CrossRef] [PubMed]
- Hermann, P.; Zerr, I. Rapidly Progressive Dementias—Aetiologies, Diagnosis and Management. Nat. Rev. Neurol. 2022, 18, 363–376. [Google Scholar] [CrossRef] [PubMed]
- Jack, C.R.; Bennett, D.A.; Blennow, K.; Carrillo, M.C.; Dunn, B.; Haeberlein, S.B.; Holtzman, D.M.; Jagust, W.; Jessen, F.; Karlawish, J.; et al. NIA-AA Research Framework: Toward a Biological Definition of Alzheimer’s Disease. Alzheimer’s Dement. 2018, 14, 535–562. [Google Scholar] [CrossRef] [PubMed]
- McKeith, I.G.; Boeve, B.F.; Dickson, D.W.; Halliday, G.; Taylor, J.-P.; Weintraub, D.; Aarsland, D.; Galvin, J.; Attems, J.; Ballard, C.G.; et al. Diagnosis and Management of Dementia with Lewy Bodies: Fourth Consensus Report of the DLB Consortium. Neurology 2017, 89, 88–100. [Google Scholar] [CrossRef] [PubMed]
- Rascovsky, K.; Hodges, J.R.; Knopman, D.; Mendez, M.F.; Kramer, J.H.; Neuhaus, J.; van Swieten, J.C.; Seelaar, H.; Dopper, E.G.P.; Onyike, C.U.; et al. Sensitivity of Revised Diagnostic Criteria for the Behavioural Variant of Frontotemporal Dementia. Brain 2011, 134, 2456–2477. [Google Scholar] [CrossRef] [PubMed]
- Bentivenga, G.M.; Mammana, A.; Baiardi, S.; Rossi, M.; Ticca, A.; Magliocchetti, F.; Mastrangelo, A.; Poleggi, A.; Ladogana, A.; Capellari, S.; et al. Performance of a Seed Amplification Assay for Misfolded Alpha-Synuclein in Cerebrospinal Fluid and Brain Tissue in Relation to Lewy Body Disease Stage and Pathology Burden. Acta Neuropathol 2024, 147, 18. [Google Scholar] [CrossRef] [PubMed]
- Baiardi, S.; Quadalti, C.; Mammana, A.; Dellavalle, S.; Zenesini, C.; Sambati, L.; Pantieri, R.; Polischi, B.; Romano, L.; Suffritti, M.; et al. Diagnostic Value of Plasma P-Tau181, NfL, and GFAP in a Clinical Setting Cohort of Prevalent Neurodegenerative Dementias. Alzheimer’s Res. Ther. 2022, 14, 153. [Google Scholar] [CrossRef]
- Abu-Rumeileh, S.; Baiardi, S.; Polischi, B.; Mammana, A.; Franceschini, A.; Green, A.; Capellari, S.; Parchi, P. Diagnostic Value of Surrogate CSF Biomarkers for Creutzfeldt–Jakob Disease in the Era of RT-QuIC. J. Neurol. 2019, 266, 3136–3143. [Google Scholar] [CrossRef] [PubMed]
- Abu-Rumeileh, S.; Capellari, S.; Stanzani-Maserati, M.; Polischi, B.; Martinelli, P.; Caroppo, P.; Ladogana, A.; Parchi, P. The CSF Neurofilament Light Signature in Rapidly Progressive Neurodegenerative Dementias. Alzheimer’s Res. Ther. 2018, 10, 3. [Google Scholar] [CrossRef] [PubMed]
sCJD (n = 132) | np-RPD (n = 94) | HC (n = 54) | p Value | |
---|---|---|---|---|
Age at sampling 1 (years) | 67.9 ± 9.7 | 73.0 ± 10.9 | 62.2 ± 4.9 | <0.0001 |
F, n (%) | 71 (53.8) | 47 (50) | 20 (37) | 0.1100 |
pl-GFAP 1 (pg/mL) | 815 (492–1370) | 366 (212–684) | 126 (95–157) | <0.0001 |
pl-NfL 1 (pg/mL) | 116 (63–206) | 79 (32–192) | - | <0.0001 |
pl-tau 1 (pg/mL) | 9 (4–24) | 3 (2–5) | - | <0.0001 |
CSF 14-3-3 1 (AU/mL) | 67,900 (30,200–132,500) | 10,900 (6491–22,250) | - | <0.0001 |
CSF t-tau 1 (pg/mL) | 6520 (2512–11,575) | 610 (405–1327) | - | <0.0001 |
CSF NfL 1 (pg/mL) | 7500 (3947–12,300) | 2968 (1229–12,313) | - | <0.0001 |
CSF GFAP 1,2 (pg/mL) | 14,039 (8787–25,320) | - | - | - |
CSF p-tau 1 (pg/mL) | 61 (38–86) | 62 (34–89) | - | 0.9564 |
CSF Aβ42/Aβ40 ratio 1 | 0.82 (0.72–0.95) | 0.62 (0.44–0.90) | - | 0.0175 |
Diagnostic Group | N | pl-GFAP (pg/mL) | N | CSF GFAP (pg/mL) |
---|---|---|---|---|
MM(V)1 1 | 63 | 753 (541–1227) | 35 | 14,691 (6964–21,955) |
VV2 1 | 35 | 1143 (609–2080) | 11 | 30,935 (17,516–48,452) |
MV2K 1 | 26 | 454 (281–853) | 21 | 10,164 (8787–13,805) |
MM(V)2C 1 | 5 | 1120 (1013–1438) | - | - |
MM2T 1 | 1 | 701 | - | - |
VV1 1 | 2 | 430, 193 | - | - |
CJD vs. np-RPD | Atypical CJD 1 vs. np-RPD | |||||||
AUC (95% CI) | Sens. (%) | Spec. (%) | Cutoff (pg/mL) | AUC (95% CI) | Sens. (%) | Spec. (%) | Cutoff (pg/mL) | |
CSF t-tau | 0.918 (0.880–0.956) | 86.2 | 88.2 | 1757 | 0.781 (0.693–0.868) | 88.2 | 64.8 | 782 |
CSF 14-3-3 | 0.875 (0.827–0.924) | 93.7 | 69.8 | 16,500 | 0.700 (0.600–0.799) | 75.7 | 69.8 | 16,500 |
CSF NfL | 0.663 (0.583–0.742) | 87.7 | 20.2 | 20,500 | 0.599 (0.499–0.698) | 97.0 | 20.2 | 20,500 |
pl-GFAP | 0.760 (0.697–0.823) | 73.4 | 67.0 | 521 | 0.614 (0.500–0.728) | 29.4 | 91.4 | 968 |
pl-tau | 0.805 (0.746–0.863) | 74.5 | 70.4 | 4 | 0.702 (0.585–0.819) | 37.5 | 97.5 | 12 |
pl-NfL | 0.596 (0.515–0.677) | 95.4 | 13.0 | 595 | 0.514 (0.411–0.617) | 100 | 14.1 | 404 |
CJD vs. rp-ND | CJD vs. rp-nonND | |||||||
AUC (95% CI) | Sens. (%) | Spec. (%) | Cutoff (pg/mL) | AUC (95% CI) | Sens. (%) | Spec. (%) | Cutoff (pg/mL) | |
CSF t-tau | 0.948 (0.905–0.992) | 86.2 | 97.8 | 1757 | 0.889 (0.837–0.941) | 86.2 | 79.1 | 1739 |
CSF 14-3-3 | 0.942 (0.909–0.975) | 86.8 | 88.8 | 20,700 | 0.813 (0.736–0.890) | 93.7 | 60.4 | 16,500 |
CSF NfL | 0.803 (0.714–0.891) | 90.8 | 67.3 | 2093 | 0.528 (0.416–0.641) | 87.7 | 29.1 | 22,000 |
pl-GFAP | 0.762 (0.688–0.837) | 64.3 | 78.2 | 633 | 0.758 (0.673–0.843) | 80.3 | 64.5 | 439 |
pl-tau | 0.836 (0.773–0.898) | 74.5 | 76.7 | 4 | 0.775 (0.702–0.848) | 45.7 | 95.5 | 10 |
pl-NfL | 0.709 (0.609–0.809) | 87.1 | 53.3 | 49 | 0.488 (0.377–0.599) | 90.1 | 27.6 | 340 |
Survival Time | Univariate Cox Regression | Multivariate Cox Regression 1 | |||
---|---|---|---|---|---|
Median ± IQR (Months) | HR (95% CI) | p Value | HR (95% CI) | p Value | |
Whole CJD cohort (N = 121) | |||||
Continuous value | 1.7 (0.5–3.9) | 1.27 (1.00–1.63) | 0.050 | 1.16 (0.86–1.57) | 0.301 |
Low tertile | 2.0 (1.0–4.5) | Ref | Ref | Ref | Ref |
Mid tertile | 1.8 (1.0–4.0) | 0.90 (0.57–1.42) | 0.660 | 0.74 (0.47–1.19) | 0.225 |
High tertile | 1.3 (0.5–2.7) | 1.36 (0.88–2.12) | 0.164 | 1.21 (0.74–1.98) | 0.427 |
MM(V)1 + VV2 sCJD (N = 92) | |||||
Continuous value | 1.1 (0.5–2.0) | 0.98 (0.68–1.40) | 0.925 | 0.89 (0.59–1.36) | 0.618 |
Low tertile | 1.0 (0.6–2.0) | Ref | Ref | Ref | Ref |
Mid tertile | 1.5 (0.9–3.0) | 0.63 (0.36–1.09) | 0.102 | 0.57 (0.33–1.00) | 0.053 |
High tertile | 1.0 (0.5–2.0) | 0.96 (0.57–1.60) | 0.882 | 0.93 (0.52–1.64) | 0.809 |
Atypical sCJD 2 (N = 29) | |||||
Continuous value | 8.0 (4.9–12.0) | 1.01 (0.62–1.64) | 0.962 | 1.07 (0.57–2.03) | 0.817 |
Low tertile | 9.4 (6.0–11.0) | Ref | Ref | Ref | Ref |
Mid tertile | 7.0 (3.5–16.0) | 0.40 (0.14–1.17) | 0.097 | 0.39 (0.12–1.30) | 0.128 |
High tertile | 7.0 (3.0–11.0) | 0.89 (0.34–2.34) | 0.822 | 0.95 (0.27–3.32) | 0.939 |
np-RPD | Pathological (n = 15) | Clinical (n = 79) |
---|---|---|
rp-nonND | 10 | 38 |
Inflammatory | 5 | 18 |
Toxic-Metabolic | 1 | 10 |
Neoplastic | 1 | 2 |
Vascular | 3 | 8 |
rp-ND | 5 | 41 |
AD | 4 | 25 |
AD + LBD | 1 | 10 |
DLB | - | 3 |
FTD | - | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bentivenga, G.M.; Baiardi, S.; Mastrangelo, A.; Zenesini, C.; Mammana, A.; Rossi, M.; Polischi, B.; Capellari, S.; Parchi, P. Diagnostic and Prognostic Value of Plasma GFAP in Sporadic Creutzfeldt–Jakob Disease in the Clinical Setting of Rapidly Progressive Dementia. Int. J. Mol. Sci. 2024, 25, 5106. https://doi.org/10.3390/ijms25105106
Bentivenga GM, Baiardi S, Mastrangelo A, Zenesini C, Mammana A, Rossi M, Polischi B, Capellari S, Parchi P. Diagnostic and Prognostic Value of Plasma GFAP in Sporadic Creutzfeldt–Jakob Disease in the Clinical Setting of Rapidly Progressive Dementia. International Journal of Molecular Sciences. 2024; 25(10):5106. https://doi.org/10.3390/ijms25105106
Chicago/Turabian StyleBentivenga, Giuseppe Mario, Simone Baiardi, Andrea Mastrangelo, Corrado Zenesini, Angela Mammana, Marcello Rossi, Barbara Polischi, Sabina Capellari, and Piero Parchi. 2024. "Diagnostic and Prognostic Value of Plasma GFAP in Sporadic Creutzfeldt–Jakob Disease in the Clinical Setting of Rapidly Progressive Dementia" International Journal of Molecular Sciences 25, no. 10: 5106. https://doi.org/10.3390/ijms25105106