Reproductive Immunology and Pregnancy 2.0
Funding
Data Availability Statement
Conflicts of Interest
References
- Szukiewicz, D. Reproductive Immunology and Pregnancy 3.0. Int. J. Mol. Sci. 2023, 24, 16606. [Google Scholar] [CrossRef]
- Shibata, S.; Endo, S.; Nagai, L.A.E.; HKobayashi, E.; Oike, A.; Kobayashi, N.; Kitamura, A.; Hori, T.; Nashimoto, Y.; Nakato, R.; et al. Modeling embryo-endometrial interface recapitulating human embryo implantation. Sci. Adv. 2024, 10, eadi4819. [Google Scholar] [CrossRef] [PubMed]
- Umapathy, A.; Chamley, L.W.; James, J.L. Reconciling the distinct roles of angiogenic/anti-angiogenic factors in the placenta and maternal circulation of normal and pathological pregnancies. Angiogenesis 2020, 23, 105–117. [Google Scholar] [CrossRef] [PubMed]
- Ravikumar, G.; Mukhopadhyay, A.; Mani, C.; Kocchar, P.; Crasta, J.; Thomas, T.; Dwarkanath, P.; Thomas, A.; Kurpad, A.V.; Sridhar, T.S. Placental expression of angiogenesis-related genes and their receptors in IUGR pregnancies: Correlation with fetoplacental and maternal parameters. J. Matern. Fetal Neonatal. Med. 2020, 33, 3954–3961. [Google Scholar] [CrossRef]
- Gröger, V.; Cynis, H. Human Endogenous Retroviruses and Their Putative Role in the Development of Autoimmune Disorders Such as Multiple Sclerosis. Front. Microbiol. 2018, 9, 265. [Google Scholar] [CrossRef] [PubMed]
- Bergallo, M.; Marozio, L.; Botta, G.; Tancredi, A.; Daprà, V.; Galliano, I.; Montanari, P.; Coscia, A.; Benedetto, C.; Tovo, P.A. Human Endogenous Retroviruses Are Preferentially Expressed in Mononuclear Cells From Cord Blood Than From Maternal Blood and in the Fetal Part of Placenta. Front. Pediatr. 2020, 8, 244. [Google Scholar] [CrossRef]
- Huang, Q.; Chen, H.; Li, J.; Oliver, M.; Ma, X.; Byck, D.; Gao, Y.; Jiang, S.W. Epigenetic and non-epigenetic regulation of syncytin-1 expression in human placenta and cancer tissues. Cell Signal. 2014, 26, 648–656. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.N.; Ye, Y.; Zhou, D.; Guo, Z.W.; Xiong, Z.; Gong, X.X.; Jiang, S.W.; Chen, H. The Role of Syncytin in Placental Angiogenesis and Fetal Growth. Front. Cell Dev. Biol. 2022, 10, 852561. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Shi, Y.; Bian, Q.; Zhang, N.; Wang, M.; Wang, J.; Li, X.; Lai, L.; Zhao, Z.; Yu, H. Molecular mechanisms of syncytin-1 in tumors and placental development related diseases. Discov. Oncol. 2023, 14, 104. [Google Scholar] [CrossRef]
- Qiao, S.; Wang, F.; Chen, H.; Jiang, S.W. Inducible knockout of Syncytin-A gene leads to an extensive placental vasculature deficiency, implications for preeclampsia. Clin. Chim. Acta 2017, 474, 137–146. [Google Scholar] [CrossRef]
- Waddell, B.J.; Wharfe, M.D.; Crew, R.C.; Mark, P.J. A rhythmic placenta? Circadian variation, clock genes and placental function. Placenta 2012, 33, 533–539. [Google Scholar] [CrossRef]
- Yang, G.; Chen, L.; Grant, G.R.; Paschos, G.; Song, W.L.; Musiek, E.S.; Lee, V.; McLoughlin, S.C.; Grosser, T.; Cotsarelis, G.; et al. Timing of expression of the core clock gene Bmal1 influences its effects on aging and survival. Sci. Transl. Med. 2016, 8, 324ra16. [Google Scholar] [CrossRef]
- Lv, S.; Wang, N.; Ma, J.; Li, W.P.; Chen, Z.J.; Zhang, C. Impaired decidualization caused by downregulation of circadian clock gene BMAL1 contributes to human recurrent miscarriage. Biol. Reprod. 2019, 101, 138–147. [Google Scholar] [CrossRef] [PubMed]
- Ono, M.; Toyoda, N.; Kagami, K.; Hosono, T.; Matsumoto, T.; Horike, S.I.; Yamazaki, R.; Nakamura, M.; Mizumoto, Y.; Fujiwara, T.; et al. Uterine Deletion of Bmal1 Impairs Placental Vascularization and Induces Intrauterine Fetal Death in Mice. Int. J. Mol. Sci. 2022, 23, 7637. [Google Scholar] [CrossRef] [PubMed]
- Diallo, A.B.; Coiffard, B.; Desbriere, R.; Katsogiannou, M.; Donato, X.; Bretelle, F.; Mezouar, S.; Mege, J.L. Disruption of the Expression of the Placental Clock and Melatonin Genes in Preeclampsia. Int. J. Mol. Sci. 2023, 24, 2363. [Google Scholar] [CrossRef]
- Sciarra, F.; Franceschini, E.; Campolo, F.; Gianfrilli, D.; Pallotti, F.; Paoli, D.; Isidori, A.M.; Venneri, M.A. Disruption of Circadian Rhythms: A Crucial Factor in the Etiology of Infertility. Int. J. Mol. Sci. 2020, 21, 3943. [Google Scholar] [CrossRef]
- Arjona, A.; Sarkar, D.K. Evidence supporting a circadian control of natural killer cell function. Brain Behav. Immun. 2006, 20, 469–476. [Google Scholar] [CrossRef]
- Wei, X.; Yang, X. The central role of natural killer cells in preeclampsia. Front. Immunol. 2023, 14, 1009867. [Google Scholar] [CrossRef]
- Aneman, I.; Pienaar, D.; Suvakov, S.; Simic, T.P.; Garovic, V.D.; McClements, L. Mechanisms of Key Innate Immune Cells in Early- and Late-Onset Preeclampsia. Front. Immunol. 2020, 11, 1864. [Google Scholar] [CrossRef]
- Boulanger, H.; Bounan, S.; Mahdhi, A.; Drouin, D.; Ahriz-Saksi, S.; Guimiot, F.; Rouas-Freiss, N. Immunologic aspects of preeclampsia. AJOG Glob. Rep. 2024, 4, 100321. [Google Scholar] [CrossRef]
- Du, M.; Wang, W.; Huang, L.; Guan, X.; Lin, W.; Yao, J.; Li, L. Natural killer cells in the pathogenesis of preeclampsia: A double-edged sword. J. Matern. Fetal Neonatal. Med. 2022, 35, 1028–1035. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Meng, T. Killer-cell immunoglobulin-like receptor/human leukocyte antigen-C combination and ‘great obstetrical syndromes’ (Review). Exp. Ther. Med. 2021, 22, 1178. [Google Scholar] [CrossRef] [PubMed]
- Blais, M.E.; Dong, T.; Rowland-Jones, S. HLA-C as a mediator of natural killer and T-cell activation: Spectator or key player? Immunology 2011, 133, 1–7. [Google Scholar] [CrossRef]
- Saito, S. Reconsideration of the Role of Regulatory T Cells during Pregnancy: Differential Characteristics of Regulatory T Cells between the Maternal-Fetal Interface and Peripheral Sites and between Early and Late Pregnancy. Med. Princ. Pract. 2022, 31, 403–414. [Google Scholar] [CrossRef]
- Ou, Q.; Power, R.; Griffin, M.D. Revisiting regulatory T cells as modulators of innate immune response and inflammatory diseases. Front. Immunol. 2023, 14, 1287465. [Google Scholar] [CrossRef]
- Yan, Y.N.; Zhang, J.; Yang, N.; Chen, C.; Li, W. T Cell Subsets and the Expression of Related MicroRNAs in Patients with Recurrent Early Pregnancy Loss. Mediat. Inflamm. 2023, 2023, 8215567. [Google Scholar] [CrossRef] [PubMed]
- Sizova, O.; John, L.S.; Ma, Q.; Molldrem, J.J. Multi-faceted role of LRP1 in the immune system. Front. Immunol. 2023, 14, 1166189. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Rossi, R.; De Groot, A.S.; Scott, D.W. Regulatory T cell epitopes (Tregitopes) in IgG induce tolerance in vivo and lack immunogenicity per se. J. Leukoc. Biol. 2013, 94, 377–383. [Google Scholar] [CrossRef]
- Cousens, L.; Najafian, N.; Martin, W.D.; De Groot, A.S. Tregitope: Immunomodulation powerhouse. Hum. Immunol. 2014, 75, 1139–1146. [Google Scholar] [CrossRef]
- Konstantinou, G.N. T-Cell Epitope Prediction. Methods Mol. Biol. 2017, 1592, 211–222. [Google Scholar] [CrossRef]
- Ning, J.; Zhang, M.; Cui, D.; Yang, H. The pathologic changes of human placental macrophages in women with hyperglycemia in pregnancy. Placenta 2022, 130, 60–66. [Google Scholar] [CrossRef] [PubMed]
- Mezouar, S.; Katsogiannou, M.; Ben Amara, A.; Bretelle, F.; Mege, J.L. Placental macrophages: Origin, heterogeneity, function and role in pregnancy-associated infections. Placenta 2021, 103, 94–103. [Google Scholar] [CrossRef] [PubMed]
- Lasch, M.; Sudan, K.; Paul, C.; Schulz, C.; Kolben, T.; Dorp, J.V.; Eren, S.; Beyer, S.; Siniscalchi, L.; Mahner, S.; et al. Isolation of Decidual Macrophages and Hofbauer Cells from Term Placenta-Comparison of the Expression of CD163 and CD80. Int. J. Mol. Sci. 2022, 23, 6113. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szukiewicz, D. Reproductive Immunology and Pregnancy 2.0. Int. J. Mol. Sci. 2024, 25, 5132. https://doi.org/10.3390/ijms25105132
Szukiewicz D. Reproductive Immunology and Pregnancy 2.0. International Journal of Molecular Sciences. 2024; 25(10):5132. https://doi.org/10.3390/ijms25105132
Chicago/Turabian StyleSzukiewicz, Dariusz. 2024. "Reproductive Immunology and Pregnancy 2.0" International Journal of Molecular Sciences 25, no. 10: 5132. https://doi.org/10.3390/ijms25105132
APA StyleSzukiewicz, D. (2024). Reproductive Immunology and Pregnancy 2.0. International Journal of Molecular Sciences, 25(10), 5132. https://doi.org/10.3390/ijms25105132