DNA-Binding Proteins and Passenger Proteins in Plasma DNA–Protein Complexes: Imprint of Parental Cells or Key Mediators of Carcinogenesis Processes?
Abstract
:1. Introduction
2. Results
2.1. Concentration of Plasma DNA and DNA from NPCs in the Plasma of HFs and BCPs
2.2. Analysis of DNA-Binding Proteins and Passenger Proteins in Blood NPC Content
2.3. Comparative Proteomic Analysis of Circulating NPCs in the Blood of HFs and BCPs
2.4. Role of DNA-Binding Proteins and Passenger Proteins of NPCs in Breast Cancer Dissemination
- -
- EMT inhibitory proteins are absent in NPCs; however, more EMT-stimulated passenger proteins were detected in cancer than in normal (5 vs. 1, Figure 5a);
- -
- No proteins regulating the development of vasculogenesis were found in the DNA-binding proteins of NPCs from BCP blood, whereas they were comparably represented in passenger proteins at normal and breast cancer (Figure 5b);
- -
- Proteins involved in the regulation of cell proliferation are more frequently detected, both in the composition of DNA-binding proteins and in the composition of passenger proteins of blood NPCs of BCPs, with more protein inhibitors of this process detected in the composition of NPC passenger proteins in HF blood (8 vs. 1, Figure 5c);
- -
- Proteins that inhibit cell migration are comparably represented in the NPCs of blood of HFs and BCPs, while more proteins stimulating this process were detected in the composition of passenger proteins in pathology (22 vs. 14, Figure 5d);
- -
- Invasion-inhibitory proteins are absent in NPCs; however, more of them were detected in cancer than normal patients (19 vs. 11, Figure 5e);
- -
- More proteins involved in the regulation of immune response were detected in the composition of NPC passenger proteins in the blood of BCPs than in HFs (14 vs. 8, Figure 5f).
2.5. NPC Proteins Reflect the Origin of Cell-Free DNA
2.6. NPC Proteins Are Not an Imprint of Parental Cells
3. Discussion
4. Materials and Methods
4.1. Patients
4.2. The Isolation of Histone-Containing NPC from Blood Plasma
4.3. Characterization of Nucleic and Protein Components of NPCs
4.4. Bioinformatics and Gene Ontology (GO) Analysis of NPC Proteins
4.5. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bronkhorst, A.J.; Ungerer, V.; Oberhofer, A.; Gabriel, S.; Polatoglou, E.; Randeu, H.; Uhlig, C.; Pfister, H.; Mayer, Z.; Holdenrieder, S. New perspectives on the importance of cell-free DNA biology. Diagnostics 2022, 12, 2147. [Google Scholar] [CrossRef]
- Gezer, U.; Bronkhorst, A.J.; Holdenrieder, S. The utility of repetitive cell-free DNA in cancer liquid biopsies. Diagnostics 2022, 12, 1363. [Google Scholar] [CrossRef]
- Duque, G.; Manterola, C.; Otzen, T.; Arias, C.; Galindo, B.; Mora, M.; Guerrero, E.; García, N. Clinical utility of liquid biopsy in breast cancer: A systematic review. Clin. Genet. 2022, 101, 285–295. [Google Scholar] [CrossRef] [PubMed]
- Stejskal, P.; Goodarzi, H.; Srovnal, J.; Hajdúch, M.; van ‘t Veer, L.J.; Magbanua, M.J.M. Circulating tumor nucleic acids: Biology, release mechanisms, and clinical relevance. Mol. Cancer 2023, 22, 15. [Google Scholar] [CrossRef] [PubMed]
- Emamalipour, M.; Seidi, K.; Zununi Vahed, S.; Jahanban-Esfahlan, A.; Jaymand, M.; Majdi, H.; Amoozgar, Z.; Chitkushev, L.T.; Javaheri, T.; Jahanban-Esfahlan, R.; et al. Horizontal gene transfer: From evolutionary flexibility to disease progression. Front. Cell Dev. Biol. 2020, 8, 229. [Google Scholar] [CrossRef] [PubMed]
- Peters, D.L.; Pretorius, P.J. Origin, translocation and destination of extracellular occurring DNA—A new paradigm in genetic behaviour. Clin. Chim. Acta 2011, 412, 806–811. [Google Scholar] [CrossRef] [PubMed]
- Kustanovich, A.; Schwartz, R.; Peretz, T.; Grinshpun, A. Life and death of circulating cell-free DNA. Cancer Biol. Ther. 2019, 20, 1057–1067. [Google Scholar] [CrossRef] [PubMed]
- Liaw, P.C.; Ito, T.; Iba, T.; Thachil, J.; Zeerleder, S. DAMP and DIC: The role of extracellular DNA and DNA-binding proteins in the pathogenesis of DIC. Blood Rev. 2016, 30, 257–261. [Google Scholar] [CrossRef] [PubMed]
- Juul-Madsen, K.; Troldborg, A.; Wittenborn, T.R.; Axelsen, M.G.; Zhao, H.; Klausen, L.H.; Luecke, S.; Paludan, S.R.; Stengaard-Pedersen, K.; Dong, M.; et al. Characterization of DNA-protein complexes by nanoparticle tracking analysis and their association with systemic lupus erythematosus. Proc. Natl. Acad. Sci. USA 2021, 118, e2106647118. [Google Scholar] [CrossRef]
- Pisetsky, D.S. Anti-DNA antibodies--quintessential biomarkers of SLE. Nat. Rev. Rheumatol. 2016, 12, 102–110. [Google Scholar] [CrossRef]
- Tsoneva, D.K.; Ivanov, M.N.; Conev, N.V.; Manev, R.; Stoyanov, D.S.; Vinciguerra, M. Circulating histones to detect and monitor the progression of cancer. Int. J. Mol. Sci. 2023, 24, 942. [Google Scholar] [CrossRef]
- Garrido, M.M.; Ribeiro, R.M.; Krüger, K.; Pinheiro, L.C.; Guimarães, J.T.; Holdenrieder, S. Relevance of circulating nucleosomes, HMGB1 and sRAGE for prostate cancer diagnosis. In Vivo 2021, 35, 2207–2212. [Google Scholar] [CrossRef] [PubMed]
- Shtumpf, M.; Jeong, S.; Bikova, M.; Mamayusupova, H.; Ruje, L.; Teif, V.B. Aging clock based on nucleosome reorganisation derived from cell-free DNA. Aging Cell 2024, e14100. [Google Scholar] [CrossRef]
- Tamkovich, S.; Laktionov, P. Cell-surface-bound circulating DNA in the blood: Biology and clinical application. IUBMB Life 2019, 71, 1201–1210. [Google Scholar] [CrossRef] [PubMed]
- Tamkovich, S.; Tupikin, A.; Kozyakov, A.; Laktionov, P. Size and methylation index of cell-free and cell-surface-bound DNA in blood of breast cancer patients in the contest of liquid biopsy. Int. J. Mol. Sci. 2022, 23, 8919. [Google Scholar] [CrossRef] [PubMed]
- Tutanov, O.; Shtam, T.; Grigor’eva, A.; Tupikin, A.; Tsentalovich, Y.; Tamkovich, S. Blood plasma exosomes contain circulating DNA in their crown. Diagnostics 2022, 12, 854. [Google Scholar] [CrossRef]
- Hefeneider, S.H.; Cornell, K.A.; Brown, L.E.; Bakke, A.C.; McCoy, S.L. Nucleosomes and DNA bind to specific cell-surface molecules on murine cells and induce cytokine production. Clin. Immunol. Immunopathol. 1992, 63, 245–251. [Google Scholar] [CrossRef]
- Koutouzov, S.; Cabrespines, A.; Amoura, Z.; Chabre, H.; Lotton, C. Binding of nucleosomes to a cell surface receptor: Redistribution and endocytosis in the presence of lupus antibodies. Eur. J. Immunol. 1996, 26, 472–486. [Google Scholar] [CrossRef]
- Cherepanova, A.V.; Bushuev, A.V.; Duzhak, T.G.; Zaporozhchenko, I.A.; Vlassov, V.V. Ku protein as the main cellular target of cell-surface-bound circulating DNA. Expert Opin. Biol. Ther. 2012, 12, S35–S41. [Google Scholar] [CrossRef]
- Siess, D.C.; Vedder, C.T.; Merkens, L.S.; Tanaka, T.; Freed, A.C. A human gene coding for a membrane-associated nucleic acid-binding protein. J. Biol. Chem. 2000, 275, 33655–33662. [Google Scholar] [CrossRef]
- Deligezer, U.; Yaman, F.; Erten, N.; Dalay, N. Frequent copresence of methylated DNA and fragmented nucleosomal DNA in plasma of lymphoma patients. Clin. Chim. Acta 2003, 335, 89–94. [Google Scholar] [CrossRef]
- Sherwood, K.; Weimer, E.T. Characteristics, properties, and potential applications of circulating cell-free DNA in clinical diagnostics: A focus on transplantation. J. Immunol. Methods 2018, 463, 27–38. [Google Scholar] [CrossRef] [PubMed]
- Grabuschnig, S.; Bronkhorst, A.J.; Holdenrieder, S.; Rosales Rodriguez, I.; Schliep, K.P.; Schwendenwein, D.; Ungerer, V.; Sensen, C.W. Putative Origins of Cell-Free DNA in Humans: A Review of Active and Passive Nucleic Acid Release Mechanisms. Int. J. Mol. Sci. 2020, 21, 8062. [Google Scholar] [CrossRef]
- Macher, H.C.; García-Fernández, N.; Adsuar-Gómez, A.; Porras-López, M.; González-Calle, A.; Noval-Padillo, J.; Guerrero, J.M.; Molinero, P.; Borrego-Domínguez, J.M.; Herruzo-Avilés, Á.; et al. Donor-specific circulating cell free DNA as a noninvasive biomarker of graft injury in heart transplantation. Clin. Chim. Acta 2019, 495, 590–597. [Google Scholar] [CrossRef] [PubMed]
- Aucamp, J.; Bronkhorst, A.J.; Peters, D.L.; Van Dyk, H.C.; Van der Westhuizen, F.H.; Pretorius, P.J. Kinetic analysis, size profiling, and bioenergetic association of DNA released by selected cell lines in vitro. Cell. Mol. Life Sci. 2017, 74, 2689–2707. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Chen, H.; Long, Y.; Li, P.; Gu, Y. The main sources of circulating cell-free DNA: Apoptosis, necrosis and active secretion. Crit. Rev. Oncol. Hematol. 2021, 157, 103166. [Google Scholar] [CrossRef]
- Aucamp, J.; Bronkhorst, A.J.; Badenhorst, C.P.S.; Pretorius, P.J. The diverse origins of circulating cell-free DNA in the human body: A critical re-evaluation of the literature. Biol. Rev. Camb. Philos. Soc. 2018, 93, 1649–1683. [Google Scholar] [CrossRef]
- Zuo, Y.; Yalavarthi, S.; Shi, H.; Gockman, K.; Zuo, M.; Madison, J.A.; Blair, C.N.; Weber, A.; Barnes, B.J.; Egeblad, M.; et al. Neutrophil extracellular traps in COVID-19. JCI Insight 2020, 9, 1494. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Domínguez, I.J.; Manzo-Merino, J.; Taja-Chayeb, L.; Dueñas-González, A.; Pérez-Cárdenas, E.; Trejo-Becerril, C. The role of extracellular DNA (exDNA) in cellular processes. Cancer Biol. Ther. 2021, 22, 267–278. [Google Scholar] [CrossRef]
- Tutanov, O.; Tamkovich, S. The influence of proteins on fate and biological role of circulating DNA. Int. J. Mol. Sci. 2022, 23, 7224. [Google Scholar] [CrossRef]
- Lin, Z.; Neiswender, J.; Fang, B.; Ma, X.; Zhang, J.; Hu, X. Value of circulating cell-free DNA analysis as a diagnostic tool for breast cancer: A meta-analysis. Oncotarget 2017, 8, 26625–26636. [Google Scholar] [CrossRef]
- Tutanov, O.; Shefer, A.; Tsentalovich, Y.; Tamkovich, S. Comparative analysis of molecular functions and biological role of proteins from cell-free DNA-protein complexes circulating in plasma of healthy females and breast cancer patients. Int. J. Mol. Sci. 2023, 24, 7279. [Google Scholar] [CrossRef] [PubMed]
- Panagopoulou, M.; Esteller, M.; Chatzaki, E. Circulating cell-free DNA in breast cancer: Searching for hidden information towards precision medicine. Cancers 2021, 13, 728. [Google Scholar] [CrossRef] [PubMed]
- Alanis–Lobato, G.; Andrade–Navarro, M.A.; Schaefer, M.H. HIPPIE v2.0: Enhancing meaningfulness and reliability of protein–protein interaction networks. Nucleic Acids Res. 2017, 45, D408–D414. [Google Scholar] [CrossRef]
- Mariconti, M.; Dechamboux, L.; Heckmann, M.; Gros, J.; Morel, M.; Escriou, V.; Baigl, D.; Hoffmann, C.; Rudiuk, S. Intracellular delivery of functional proteins with DNA-protein nanogels-lipids complex. J. Am. Chem. Soc. 2024, 146, 5118–5127. [Google Scholar] [CrossRef] [PubMed]
- Bryzgunova, O.E.; Tamkovich, S.N.; Cherepanova, A.V.; Yarmoshchuk, S.V.; Permyakova, V.I.; Anykeeva, O.Y.; Laktionov, P.P. Redistribution of free- and cell-surface-bound DNA in blood of benign and malignant prostate tumor patients. Acta Naturae. 2015, 7, 115–118. [Google Scholar] [CrossRef]
- Azad, T.D.; Ran, K.R.; Liu, J.; Vattipally, V.N.; Khela, H.; Leite, E.; Materi, J.D.; Davidar, A.D.; Bettegowda, C.; Theodore, N. A future blood test for acute traumatic spinal cord injury. Biomarkers 2023, 28, 703–713. [Google Scholar] [CrossRef]
- Świecka, M.; Maślińska, M. Liquid biopsy and its emerging role in rheumatology. Crit. Rev. Immunol. 2022, 42, 13–19. [Google Scholar] [CrossRef]
- Bronkhorst, A.J.; Wentzel, J.F.; Aucamp, J.; van Dyk, E.; du Plessis, L.H.; Pretorius, P.J. An enquiry concerning the characteristics of cell-free DNA released by cultured cancer cells. Adv. Exp. Med. Biol. 2016, 924, 19–24. [Google Scholar] [CrossRef]
- Choi, J.J.; Reich, C.F., 3rd; Pisetsky, D.S. Release of DNA from dead and dying lymphocyte and monocyte cell lines in vitro. Scand. J. Immunol. 2004, 60, 159–166. [Google Scholar] [CrossRef]
- Tamkovich, S.N.; Kirushina, N.A.; Voytsitskiy, V.E.; Tkachuk, V.A.; Laktionov, P.P. Features of circulating DNA fragmentation in blood of healthy females and breast cancer patients. Adv. Exp. Med. Biol. 2016, 924, 47–51. [Google Scholar] [CrossRef]
- Shefer, A.; Tutanov, O.; Belenikin, M.; Tsentalovich, Y.P.; Tamkovich, S. Blood plasma circulating DNA-protein complexes: Involvement in carcinogenesis and prospects for liquid biopsy of breast cancer. J. Pers. Med. 2023, 13, 1691. [Google Scholar] [CrossRef] [PubMed]
- Hammond, M.E.; Hayes, D.F.; Dowsett, M.; Allred, D.C.; Hagerty, K.L.; Badve, S.; Fitzgibbons, P.L.; Francis, G.; Goldstein, N.S.; Hayes, M.; et al. American Society of Clinical Oncology/College of American Pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer (unabridged version). Arch. Pathol. Lab. Med. 2010, 134, e48–e72. [Google Scholar] [CrossRef] [PubMed]
- Binns, D.; Dimmer, E.; Huntley, R.; Barrell, D.; O’Donovan, C.; Apweiler, R. QuickGO: A web-based tool for Gene Ontology searching. Bioinformatics 2009, 25, 3045–3046. [Google Scholar] [CrossRef]
- Jones, P.; Binns, D.; Chang, H. InterProScan 5: Genome-scale protein function classification. Bioinformatics 2014, 30, 1236–1240. [Google Scholar] [CrossRef] [PubMed]
- Finn, R.D.; Attwood, T.K.; Babbitt, P.C. InterPro in 2017—Beyond protein family and domain annotations. Nucleic Acids Res. 2017, 45, D190–D199. [Google Scholar] [CrossRef]
DNA-Binding Domains | Proteins of NPCs (Gene Name) | ||
---|---|---|---|
Universal Proteins | Unique Proteins of HFs | Unique Proteins of BCPs | |
Zinc finger C2H2-type | UBP22 | KLF10 SLC2A4RG ZNF479 | EGR4 GAS2L3 PLAGL2 RNF222 ZNF461 ZNF75A ZNF75CP ZNF75D |
RNA recognition motif | U2AF1 | ESRP1 MTHFSD SNRNP35 SREK1 SRSF5 ZRSR2P1/ZRSR1 | ENOX2 MYEF2 REXO5 |
Homeobox domain | HOXC5 | HOXA13 HOXB4 HOXC8 | CDX2 HOXB9 POU5F1B UNCX |
Zinc finger, CCCH-type | U2AF1 | MKRN2 TRMT1 ZRSR2P1/ZRSR1 | |
Basic-leucine zipper (bZIP) | CREM JUND | CHST7 JUN | |
Jun-like transcription factor | JUND | JUN | |
Krueppel-associated box (KRAB) | ZNF479 | POGK ZNF461 ZNF75A ZNF75CP ZNF75D | |
Basic helix–loop–helix (bHLH) domain | MSGN1 NEUROD4 | HAND1 NEUROD1 | |
Zinc finger, PHD-type | AIRE FBXL19 | PHF1 SP110 | |
HSR domain | AIRE | SP110 | |
Nucleic acid-binding, OB-fold | MCM3 | NABP2 | |
SAND domain | AIRE | SP110 | |
Histone H2a/H2b/H3 | H2AJ/H2AFJ | ||
(Armadillo-type fold) MIF4G-like domain superfamily | EIF5 | ||
Anticodon-binding domain | TARSL2 | ||
DNA/RNA-binding repeats in PUR-alpha/beta/gamma | PURA | ||
F-box domain | FBXL19 | ||
G-patch domain | GPATCH4 | ||
High mobility group box domain | HMGB4 | ||
Interferon regulatory factor DNA-binding domain | IRF2 | ||
MCM domain | MCM3 | ||
Neuronal helix–loop–helix transcription factor | NEUROD4 | ||
PIN domain | FCF1 | ||
TATA box-binding protein-associated factor RNA polymerase I subunit A-like | TAF1A | ||
TGS domain | TARSL2 | ||
Transcription initiation factor TFIID subunit 12 domain | TAF12 | ||
Translation initiation factor IF2/IF5, zinc-binding | EIF5 | ||
Zinc finger, CXXC-type | FBXL19 | ||
Zinc finger, RING-type | MKRN2 | ||
Nascent polypeptide-associated complex NAC domain | NACA | ||
Brinker DNA-binding domain | POGK | ||
Bromodomain | SP110 | ||
POU domain | POU5F1B | ||
HSPH1, nucleotide-binding domain | HSPH1 | ||
HTH CenpB-type DNA-binding domain | POGK | ||
THAP-type zinc finger | THAP7 | ||
(Armadillo-type fold) Uncharacterised domain NUC173 | RRP12 | ||
Zinc finger C4-type | LMCD1 TRIM68 |
NPCs in the Blood of HFs | NPCs in the Blood of BCPs | ||
---|---|---|---|
U2AF1–SMD1 | 7307–6632 | JUN–GOGA2–STRN3 | 3725–2801–29966 |
UBP22–MDM4 | 23326–4194 | U2AF1–SMD1 | 7307–6632 |
FCF1–MAOX | 51077–4199 | PLAL2–CTSR1–VINEX | 5326–117144–10174 |
U1SBP–RAB6A | 11066–5870 | GAS2L3–BIRC5 | 283431–332 |
U1SBP–SERPH | 11066–871 | B2R5B3–RM35 | 3014–51318 |
B2R5B3–HAT1 | 3014–8520 | B2R5B3–RANG | 3014–5905 |
SRSF5–M3K14–DNJB6 | 6430–9020 –10049 | B2R5B3–BIRC5 | 3014–332 |
SRSF5–RM47–RUSD4 | 6430–57129–84881 | H2BC21–UBP12 | 8349–219333 |
H2BC21–RHG30 | 8349–257106 | H32–BIRC5 | 126961–332 |
H2BC21–PRR12 | 8349–57479 | H4–NOL9 | 8370–79707 |
H4–GLYC | 8370–6470 | H4–SMD1 | 8370–6632 |
H4–HAT1 | 8370–8520 | H4–CL043 | 8370–64897 |
H4–SMD1 | 8370–6632 | H4–NAIF1 | 8370–203245 |
H4–IN80E | 8370–283899 | H4–SPAT5 | 8370–166378 |
H4–PRR12 | 8370–57479 | H4–IN80E | 8370–283899 |
H4–LMNB2 | 8370–84823 | H4–RL5–M3K14 | 8370–6125–9020 |
H4–LC7L2 | 8370–51631 | H4–RL5–NECD | 8370–6125–4692 |
H4–FKB11 | 8370–51303 | H4–NECD–RL5–M3K14 | 8370–4692–6125–9020 |
H4–INT9 | 8370–55756 | H4–RANG | 8370–5905 |
ALBU–MDM4 | 213–4194 | H4–CSN2 | 8370–9318 |
ALBU–THRB | 213–2147 | H4–TRAM1 | 8370–23471 |
ALBU–QTRD1 | 213–79691 | H4–PNISR | 8370–25957 |
ALBU–LC7L2 | 213–51631 | H4–ESYT2–DJC25 | 8370–57488–548645 |
ALBU–VINEX–CTSR1 | 213–10174–117144 | ||
ALBU–NECD–RL5–M3K14 | 213–4692–6125–9020 |
Clinical Characteristics | N (%) | |
---|---|---|
Tumor stage | T1 | 20 (100%) |
Lymph node status | N0 | 20 (100%) |
Distant metastasis | M0 | 20 (100%) |
Receptor status | ER-positive PR-positive | 20 (100%) 20 (100%) |
HER-2 status | Negative | 20 (100%) |
Histologic grade | II III | 19 (95%) 1 (5%) |
Histological type | Invasive ductal carcinoma | 20 (100%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tutanov, O.; Shefer, A.; Shefer, E.; Ruzankin, P.; Tsentalovich, Y.; Tamkovich, S. DNA-Binding Proteins and Passenger Proteins in Plasma DNA–Protein Complexes: Imprint of Parental Cells or Key Mediators of Carcinogenesis Processes? Int. J. Mol. Sci. 2024, 25, 5165. https://doi.org/10.3390/ijms25105165
Tutanov O, Shefer A, Shefer E, Ruzankin P, Tsentalovich Y, Tamkovich S. DNA-Binding Proteins and Passenger Proteins in Plasma DNA–Protein Complexes: Imprint of Parental Cells or Key Mediators of Carcinogenesis Processes? International Journal of Molecular Sciences. 2024; 25(10):5165. https://doi.org/10.3390/ijms25105165
Chicago/Turabian StyleTutanov, Oleg, Aleksei Shefer, Evgenii Shefer, Pavel Ruzankin, Yuri Tsentalovich, and Svetlana Tamkovich. 2024. "DNA-Binding Proteins and Passenger Proteins in Plasma DNA–Protein Complexes: Imprint of Parental Cells or Key Mediators of Carcinogenesis Processes?" International Journal of Molecular Sciences 25, no. 10: 5165. https://doi.org/10.3390/ijms25105165
APA StyleTutanov, O., Shefer, A., Shefer, E., Ruzankin, P., Tsentalovich, Y., & Tamkovich, S. (2024). DNA-Binding Proteins and Passenger Proteins in Plasma DNA–Protein Complexes: Imprint of Parental Cells or Key Mediators of Carcinogenesis Processes? International Journal of Molecular Sciences, 25(10), 5165. https://doi.org/10.3390/ijms25105165