Clinical Studies Using Topical Melatonin
Abstract
:1. Introduction
2. Methods
3. Pharmacology of Melatonin
4. Rationale of Using Topical Melatonin to Treat Skin Conditions
5. Melatonin as a Photoprotective and Anti-Inflammatory Agent
Topical Intervention and Dosage a | Skin Condition | Measured Parameters | Differences from the Control (p Values) b | Reference |
---|---|---|---|---|
0.5% melatonin (0.12 mg/cm2) after irradiation | UV-induced erythema | all volunteers | Bangha et al., 1996 [44] | |
erythema (SBCA) c | ns | |||
erythema a*—redness | ns | |||
high responders | ||||
erythema (SBCA) c | p < 0.05 | |||
erythema a*—redness | p < 0.05 | |||
0.5% melatonin (0.6 mg/cm2) before irradiation | UV-induced erythema | erythema (SBCA) c | p < 0.01 p < 0.01 p < 0.01 | Bangha et al., 1997 [48] |
erythema a*—redness | ||||
erythema L*—luminance | ||||
2.5% melatonin (5 mg/cm2) 2% vitamin E 5% vitamin C before irradiation | UV-induced erythema | erythema (SBCA) c | p < 0.05 | Dreher et al., 1998 [49] |
dermal blood flow | p < 0.05 | |||
erythema a*—redness | p < 0.05 | |||
transepidermal water loss | ns | |||
electrical capacitance | ns | |||
2.5% melatonin (5 mg/cm2) 2% vitamin E 5% vitamin C after irradiation | UV-induced erythema | erythema (SBCA) c erythema a*—redness dermal blood flow | ns ns ns | Dreher et al., 1999 [50] |
5% melatonin (0.1 mg/cm2) after irradiation | UV-induced erythema | erythema index erythema (SBCA) c | ns ns | Howes et al., 2006 [51] |
12.5% melatonin (33.2 mg/cm2) before exposure | solar erythema | all volunteers | Scheuer et al., 2016 [52] | |
erythema a*—redness | ns | |||
erythema (SBCA) c | ns | |||
high responders erythema a*—redness erythema (SBCA) c | ||||
p = 0.013 p = 0.02 | ||||
melatonin (ng) before irradiation | radiodermatitis | dermatitis (SBCA) c | p < 0.05 | Ben-David et al., 2016 [62] |
2.5% melatonin 1.5% dimethyl sulfoxide before irradiation | radiodermatitis | breast symptom score (SBCA) c | p < 0.5 | Zetner et al., 2023 [63] |
6. Melatonin as a Skin Anti-Aging Agent
Topical Intervention and Dosage a | Skin Condition | Trial Design b | Measured Parameters | Differences from the Control (p Values) c | Reference |
---|---|---|---|---|---|
0.012% melatonin | oxidative stress from cigarette smoking | OL, AC, NTC | lipid peroxidation | ns | Sagan et al., 2017 [68] |
sebum | p < 0.05 | ||||
moisture | ns | ||||
elasticity | ns | ||||
pigmentation | ns | ||||
0.0002% melatonin 0.0002% vitamin E 0.0002% b-glucan | skin aging | R, DB, PC | hydration | p < 0.005 | Morganti et al., 2012 [69] |
lipids | p < 0.005 | ||||
elasticity | p < 0.005 | ||||
lipid peroxidation | p < 0.005 | ||||
fine wrinkles (SBCA) d | p < 0.005 | ||||
senile dryness (SBCA) d | p < 0.005 | ||||
skin atrophy (SBCA) d | p < 0.005 | ||||
black spots (SBCA) d | p < 0.005 | ||||
telangiectasia (SBCA) d | p < 0.005 | ||||
0.1% melatonin in lipospheres | skin aging | R, OL, SF, AB | wrinkles | p = 0.05 | Milani et al., 2018 [73] |
microrelief | p = 0.001 | ||||
tonicity (SBCA) d | p = 0.05 | ||||
dryness (SBCA) d | p = 0.01 | ||||
melatonin (ng) ascorbyl tetraisopalmitate (ng) bakuchiol (ng) | skin aging | OL, NC | Rz—average relief height | p = 0.09 | Goldberg et al., 2019 [74] |
Rt—maximum relief height | p = 0.03 | ||||
deformation volume | p < 0.01 | ||||
deformation depth | p < 0.01 | ||||
L*—lightness | p < 0.01 | ||||
b*—blue/yellow color | p < 0.01 | ||||
individual typology angle | p < 0.01 | ||||
pigmentation | p < 0.01 | ||||
hydration | p < 0.05 | ||||
transepidermal water loss | p < 0.05 | ||||
sebum | p < 0.01 | ||||
wrinkles (SBCA) d | p < 0.01 | ||||
firmness (SBCA) d | p < 0.01 | ||||
redness (SBCA) d | p < 0.01 | ||||
melatonin (ng) carnosine (ng) Helichrysum italicum (ng) | skin aging | OL, NC | hydration | p < 0.05 | Granger et al., 2020 [78] |
transepidermal water loss | ns | ||||
wrinkles count | p < 0.05 | ||||
wrinkles volume | p < 0.05 | ||||
wrinkles depth | p < 0.05 | ||||
Ra—arithmetic mean roughness | p < 0.05 | ||||
Rz—roughness depth | ns | ||||
brown spot count | p < 0.05 | ||||
brown spot area | p < 0.05 | ||||
UV spot count | p < 0.05 | ||||
UV spot area | p < 0.05 | ||||
R0—firmness | p < 0.05 | ||||
R2—elasticity | p < 0.05 | ||||
stinging score (SBCA) d | p < 0.01 | ||||
dryness (SBCA) d | p < 0.01 | ||||
erythema (SBCA) d | p < 0.01 | ||||
desquamation (SBCA) d | p < 0.01 | ||||
roughness (SBCA) d | p < 0.01 |
7. Melatonin as a Topical Agent to Treat Alopecia
Topical Intervention and Dosage a | Skin Condition | Trial Design b | Measured Parameters | Differences from the Control (p Values) c | Reference |
---|---|---|---|---|---|
0.1% melatonin | female androgenetic and diffuse alopecia | R, DB, PC | androgenetic alopecia | Fischer et al., 2004 [93] | |
anagen/non-anagen hair count (frontal area) | ns | ||||
anagen/non-anagen hair count (occipital area) | p = 0.012 | ||||
diffused alopecia | |||||
anagen/non-anagen hair count (frontal area) | p = 0.046 | ||||
anagen/non-anagen hair count (occipital area) | ns | ||||
0.1 mg melatonin | male androgenetic alopecia | OL, NC | hair density (parietal area) | ns | Baldari et al., 2007 [96] |
hair density (frontal area) | ns | ||||
0.0033% melatonin biotin (ng) Ginko biloba (ng) | female and male androgenetic alopecia | OL, NC | hair density hair count | p < 0.01 p < 0.01 | Fischer et al., 2012 [97] |
2.5% melatonin in nanostructured lipid carriers | male androgenetic alopecia | OL, NC | baldness degree (SBCA) d | p < 0.05 | Hatem et al., 2018 [98] |
hair loss | p < 0.05 | ||||
hair thickness | p < 0.05 | ||||
sebaceus debris | p < 0.05 | ||||
hair density | p < 0.05 | ||||
10.6% melatonin in ascorbyl palmitate multilamellar nanovesicles | male androgenetic alopecia | OL, NC | baldness degree (SBCA) d | p < 0.05 | Hatem et al., 2018 [100] |
hair loss | p < 0.05 | ||||
hair thickness | p < 0.05 | ||||
sebaceus debris | p < 0.05 | ||||
hair density | p < 0.05 |
8. Achievements, Limitations, and Future Prospects of Clinical Studies on Topical Melatonin
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Tordjman, S.; Chokron, S.; Delorme, R.; Charrier, A.; Bellissant, E.; Jaafari, N.; Fougerou, C. Melatonin: Pharmacology, Functions and Therapeutic Benefits. Curr. Neuropharmacol. 2017, 15, 434–443. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Dickson, E.J.; Jung, S.-R.; Koh, D.-S.; Hille, B. High Membrane Permeability for Melatonin. J. Gen. Physiol. 2016, 147, 63–76. [Google Scholar] [CrossRef]
- Buscemi, N.; Vandermeer, B.; Pandya, R.; Hooton, N.; Tjosvold, L.; Hartling, L.; Baker, G.; Vohra, S.; Klassen, T. Melatonin for Treatment of Sleep Disorders. In AHRQ Evidence Report Summaries; AHRQ Publication No. 05-E002-2; Agency for Healthcare Research and Quality (US): Rockville, MD, USA, 2004; pp. 1–7. [Google Scholar] [CrossRef]
- Buscemi, N.; Vandermeer, B.; Hooton, N.; Pandya, R.; Tjosvold, L.; Hartling, L.; Baker, G.; Klassen, T.P.; Vohra, S. The Efficacy and Safety of Exogenous Melatonin for Primary Sleep Disorders a Meta-Analysis. J. Gen. Intern. Med. 2005, 20, 1151–1158. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.; Park, S.; Koyanagi, A.; Yang, J.W.; Jacob, L.; Yon, D.K.; Lee, S.W.; Kim, M.S.; Il Shin, J.; Smith, L. Effects of Exogenous Melatonin Supplementation on Health Outcomes: An Umbrella Review of Meta-Analyses Based on Randomized Controlled Trials. Pharmacol. Res. 2022, 176, 106052. [Google Scholar] [CrossRef] [PubMed]
- Boutin, J.A.; Kennaway, D.J.; Jockers, R. Melatonin: Facts, Extrapolations and Clinical Trials. Biomolecules 2023, 13, 943. [Google Scholar] [CrossRef] [PubMed]
- Slominski, A.; Wortsman, J.; Tobin, D.J. The Cutaneous Serotoninergic/Melatoninergic System: Securing a Place under the Sun. FASEB J. 2005, 19, 176–194. [Google Scholar] [CrossRef] [PubMed]
- Fischer, T.W.; Greif, C.; Fluhr, J.W.; Wigger-Alberti, W.; Elsner, P. Percutaneous Penetration of Topically Applied Melatonin in a Cream and an Alcoholic Solution. Ski. Pharmacol. Physiol. 2004, 17, 190–194. [Google Scholar] [CrossRef] [PubMed]
- Dubocovich, M.L.; Delagrange, P.; Krause, D.N.; Sugden, D.; Cardinali, D.P.; Olcese, J. International Union of Basic and Clinical Pharmacology. LXXV. Nomenclature, Classification, and Pharmacology of G Protein-Coupled Melatonin Receptors. Pharmacol. Rev. 2010, 62, 343–380. [Google Scholar] [CrossRef] [PubMed]
- Cecon, E.; Oishi, A.; Jockers, R. Melatonin Receptors: Molecular Pharmacology and Signalling in the Context of System Bias. Br. J. Pharmacol. 2018, 175, 3263–3280. [Google Scholar] [CrossRef]
- Rodriguez, C.; Mayo, J.C.; Sainz, R.M.; Antolín, I.; Herrera, F.; Martín, V.; Reiter, R.J. Regulation of Antioxidant Enzymes: A Significant Role for Melatonin. J. Pineal Res. 2004, 36, 1–9. [Google Scholar] [CrossRef]
- Fischer, T.W.; Kleszczyński, K.; Hardkop, L.H.; Kruse, N.; Zillikens, D. Melatonin Enhances Antioxidative Enzyme Gene Expression (CAT, GPx, SOD), Prevents Their UVR-induced Depletion, and Protects against the Formation of DNA Damage (8-hydroxy-2’-deoxyguanosine) in Ex Vivo Human Skin. J. Pineal Res. 2013, 54, 303–312. [Google Scholar] [CrossRef]
- Santofimia-Castaño, P.; Clea Ruy, D.; Garcia-Sanchez, L.; Jimenez-Blasco, D.; Fernandez-Bermejo, M.; Bolaños, J.P.; Salido, G.M.; Gonzalez, A. Melatonin Induces the Expression of Nrf2-Regulated Antioxidant Enzymes via PKC and Ca2+ Influx Activation in Mouse Pancreatic Acinar Cells. Free Radic. Biol. Med. 2015, 87, 226–236. [Google Scholar] [CrossRef]
- Janjetovic, Z.; Jarrett, S.G.; Lee, E.F.; Duprey, C.; Reiter, R.J.; Slominski, A.T. Melatonin and Its Metabolites Protect Human Melanocytes against UVB-Induced Damage: Involvement of NRF2-Mediated Pathways. Sci. Rep. 2017, 7, 1274. [Google Scholar] [CrossRef]
- Denison, M.S.; Pandini, A.; Nagy, S.R.; Baldwin, E.P.; Bonati, L. Ligand Binding and Activation of the Ah Receptor. Chem. Biol. Interact. 2002, 141, 3–24. [Google Scholar] [CrossRef]
- Rosen, E.D.; Spiegelman, B.M. PPARγ: A Nuclear Regulator of Metabolism, Differentiation, and Cell Growth. J. Biol. Chem. 2001, 276, 37731–37734. [Google Scholar] [CrossRef]
- Slominski, A.T.; Kim, T.-K.; Slominski, R.M.; Song, Y.; Qayyum, S.; Placha, W.; Janjetovic, Z.; Kleszczyński, K.; Atigadda, V.; Song, Y.; et al. Melatonin and Its Metabolites Can Serve as Agonists on the Aryl Hydrocarbon Receptor and Peroxisome Proliferator-Activated Receptor Gamma. Int. J. Mol. Sci. 2023, 24, 15496. [Google Scholar] [CrossRef]
- Lee, C. Collaborative Power of Nrf2 and PPAR γ Activators against Metabolic and Drug-Induced Oxidative Injury. Oxid. Med. Cell Longev. 2017, 2017, 1378175. [Google Scholar] [CrossRef]
- Vriend, J.; Reiter, R.J. The Keap1-Nrf2-Antioxidant Response Element Pathway: A Review of Its Regulation by Melatonin and the Proteasome. Mol. Cell Endocrinol. 2015, 401, 213–220. [Google Scholar] [CrossRef]
- Espino, J.; Rodríguez, A.B.; Pariente, J.A. The Inhibition of TNF-α-induced Leucocyte Apoptosis by Melatonin Involves Membrane Receptor MT1/MT2 Interaction. J. Pineal Res. 2013, 54, 442–452. [Google Scholar] [CrossRef] [PubMed]
- Nosjean, O.; Ferro, M.; Cogé, F.; Beauverger, P.; Henlin, J.-M.; Lefoulon, F.; Fauchère, J.-L.; Delagrange, P.; Canet, E.; Boutin, J.A. Identification of the Melatonin-Binding SiteMT 3 as the Quinone Reductase 2. J. Biol. Chem. 2000, 275, 31311–31317. [Google Scholar] [CrossRef] [PubMed]
- Boutin, J.A. Quinone Reductase 2 as a Promising Target of Melatonin Therapeutic Actions. Expert. Opin. Ther. Targets 2016, 20, 303–317. [Google Scholar] [CrossRef] [PubMed]
- Tan, D.; Reiter, R.; Manchester, L.; Yan, M.; El-Sawi, M.; Sainz, R.; Mayo, J.; Kohen, R.; Allegra, M.; Hardelan, R. Chemical and Physical Properties and Potential Mechanisms: Melatonin as a Broad Spectrum Antioxidant and Free Radical Scavenger. Curr. Top. Med. Chem. 2002, 2, 181–197. [Google Scholar] [CrossRef] [PubMed]
- Sreedhar, A.; Aguilera-Aguirre, L.; Singh, K.K. Mitochondria in Skin Health, Aging, and Disease. Cell Death Dis. 2020, 11, 444. [Google Scholar] [CrossRef] [PubMed]
- Arioz, B.I.; Tarakcioglu, E.; Olcum, M.; Genc, S. The Role of Melatonin on NLRP3 Inflammasome Activation in Diseases. Antioxidants 2021, 10, 1020. [Google Scholar] [CrossRef] [PubMed]
- Acuña-Castroviejo, D.; Rahim, I.; Acuña-Fernández, C.; Fernández-Ortiz, M.; Solera-Marín, J.; Sayed, R.K.A.; Díaz-Casado, M.E.; Rusanova, I.; López, L.C.; Escames, G. Melatonin, Clock Genes and Mitochondria in Sepsis. Cell. Mol. Life Sci. 2017, 74, 3965–3987. [Google Scholar] [CrossRef] [PubMed]
- Deng, W.-G.; Tang, S.-T.; Tseng, H.-P.; Wu, K.K. Melatonin Suppresses Macrophage Cyclooxygenase-2 and Inducible Nitric Oxide Synthase Expression by Inhibiting P52 Acetylation and Binding. Blood 2006, 108, 518–524. [Google Scholar] [CrossRef] [PubMed]
- Rudra, D.S.; Pal, U.; Maiti, N.C.; Reiter, R.J.; Swarnakar, S. Melatonin Inhibits Matrix Metalloproteinase-9 Activity by Binding to Its Active Site. J. Pineal Res. 2013, 54, 398–405. [Google Scholar] [CrossRef] [PubMed]
- Slominski, A.T.; Zmijewski, M.A.; Semak, I.; Kim, T.-K.; Janjetovic, Z.; Slominski, R.M.; Zmijewski, J.W. Melatonin, Mitochondria, and the Skin. Cell. Mol. Life Sci. 2017, 74, 3913–3925. [Google Scholar] [CrossRef]
- Slominski, A.T.; Semak, I.; Fischer, T.W.; Kim, T.; Kleszczyński, K.; Hardeland, R.; Reiter, R.J. Metabolism of Melatonin in the Skin: Why Is It Important? Exp. Dermatol. 2017, 26, 563–568. [Google Scholar] [CrossRef]
- Andersen, L.P.H.; Werner, M.U.; Rosenkilde, M.M.; Harpsøe, N.G.; Fuglsang, H.; Rosenberg, J.; Gögenur, I. Pharmacokinetics of Oral and Intravenous Melatonin in Healthy Volunteers. BMC Pharmacol. Toxicol. 2016, 17, 8. [Google Scholar] [CrossRef]
- DeMuro, R.L.; Nafziger, A.N.; Blask, D.E.; Menhinick, A.M.; Bertino, J.S. The Absolute Bioavailability of Oral Melatonin. J. Clin. Pharmacol. 2000, 40, 781–784. [Google Scholar] [CrossRef] [PubMed]
- Slominski, A.; Pisarchik, A.; Johansson, O.; Jing, C.; Semak, I.; Slugocki, G.; Wortsman, J. Tryptophan Hydroxylase Expression in Human Skin Cells. Biochim. Biophys. Acta BBA Mol. Basis Dis. 2003, 1639, 80–86. [Google Scholar] [CrossRef]
- Kim, T.-K.; Lin, Z.; Tidwell, W.J.; Li, W.; Slominski, A.T. Melatonin and Its Metabolites Accumulate in the Human Epidermis in Vivo and Inhibit Proliferation and Tyrosinase Activity in Epidermal Melanocytes in Vitro. Mol. Cell Endocrinol. 2015, 404, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Slominski, A.; Fischer, T.W.; Zmijewski, M.A.; Wortsman, J.; Semak, I.; Zbytek, B.; Slominski, R.M.; Tobin, D.J. On the Role of Melatonin in Skin Physiology and Pathology. Endocrine 2005, 27, 137–148. [Google Scholar] [CrossRef] [PubMed]
- Slominski, A.; Tobin, D.J.; Zmijewski, M.A.; Wortsman, J.; Paus, R. Melatonin in the Skin: Synthesis, Metabolism and Functions. Trends Endocrinol. Metab. 2008, 19, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Bae, S.; Yoon, Y.G.; Kim, J.Y.; Park, I.-C.; An, S.; Lee, J.H.; Bae, S. Melatonin Increases Growth Properties in Human Dermal Papilla Spheroids by Activating AKT/GSK3β/β-Catenin Signaling Pathway. PeerJ 2022, 10, e13461. [Google Scholar] [CrossRef] [PubMed]
- Babadjouni, A.; Reddy, M.; Zhang, R.; Raffi, J.; Phong, C.; Mesinkovska, N. Melatonin and the Human Hair Follicle. J. Drugs Dermatol. 2023, 22, 260–264. [Google Scholar] [CrossRef] [PubMed]
- Watson, R.E.B.; Gibbs, N.K.; Griffiths, C.E.M.; Sherratt, M.J. Damage to Skin Extracellular Matrix Induced by UV Exposure. Antioxid. Redox Signal 2014, 21, 1063–1077. [Google Scholar] [CrossRef]
- Liebel, F.; Kaur, S.; Ruvolo, E.; Kollias, N.; Southall, M.D. Irradiation of Skin with Visible Light Induces Reactive Oxygen Species and Matrix-Degrading Enzymes. J. Investig. Dermatol. 2012, 132, 1901–1907. [Google Scholar] [CrossRef]
- Cho, S.; Shin, M.H.; Kim, Y.K.; Seo, J.-E.; Lee, Y.M.; Park, C.-H.; Chung, J.H. Effects of Infrared Radiation and Heat on Human Skin Aging in Vivo. J. Investig. Dermatol. Symp. Proc. 2009, 14, 15–19. [Google Scholar] [CrossRef]
- Lodovici, M.; Bigagli, E. Oxidative Stress and Air Pollution Exposure. J. Toxicol. 2011, 2011, 487074. [Google Scholar] [CrossRef]
- Duarte, I.; Silveira, J.E.P.S.; Hafner, M.d.F.S.; Toyota, R.; Pedroso, D.M.M. Sensitive Skin: Review of an Ascending Concept. Bras. Dermatol. 2017, 92, 521–525. [Google Scholar] [CrossRef]
- Bangha, E.; Elsner, P.; Kistler, G.S. Suppression of UV-Induced Erythema by Topical Treatment with Melatonin (N-Acetyl-5-Methoxytryptamine). A Dose Response Study. Arch. Dermatol. Res. 1996, 288, 522–526. [Google Scholar] [CrossRef] [PubMed]
- Fitzpatrick, T. Soleil et Peau [Sun and Skin]. J. De. Med. Esthet. 1975, 2, 33–34. [Google Scholar]
- Frosch, P.J.; Kligman, A.M. The Soap Chamber Test. J. Am. Acad. Dermatol. 1979, 1, 35–41. [Google Scholar] [CrossRef]
- Elsner, P. Chromametry: Hardware Measuring Principles and Standardization of Measurements. In Bioengineering of the Skin: Cutaneous Blood Flow and Erythema; CRC Press, Inc.: Boca Raton, FL, USA, 1994; pp. 247–252. [Google Scholar]
- Bangha, E.; Elsner, P.; Kistler, G.S. Suppression of UV-Lnduced Erythema by Topical Treatment with Melatonin (N-Acetyl-5-Methoxytryptamine). Influence of Application Time Point. Dermatology 1997, 195, 248–252. [Google Scholar] [CrossRef]
- Dreher, F.; Gabard, B.; Schwindt, D.A.; Maibach, H.I. Topical Melatonin in Combination with Vitamins E and C Protects Skin from Ultraviolet-Induced Erythema: A Human Study in Vivo. Br. J. Dermatol. 1998, 139, 332–339. [Google Scholar] [CrossRef]
- Dreher, F.; Denig, N.; Gabard, B.; Schwindt, D.A.; Maibach, H.I. Effect of Topical Antioxidants on UV-Induced Erythema Formation When Administered after Exposure. Dermatology 1999, 198, 52–55. [Google Scholar] [CrossRef]
- Howes, R.A.; Halliday, G.M.; Damian, D.L. Effect of Topical Melatonin on Ultraviolet Radiation-induced Suppression of Mantoux Reactions in Humans. Photodermatol. Photoimmunol. Photomed. 2006, 22, 267–269. [Google Scholar] [CrossRef]
- Scheuer, C.; Pommergaard, H.-C.; Rosenberg, J.; Gögenur, I. Dose Dependent Sun Protective Effect of Topical Melatonin: A Randomized, Placebo-Controlled, Double-Blind Study. J. Dermatol. Sci. 2016, 84, 178–185. [Google Scholar] [CrossRef]
- Scheuer, C.; Pommergaard, H.-C.; Rosenberg, J.; Gögenur, I. Effect of Topical Application of Melatonin Cream 12.5% on Cognitive Parameters: A Randomized, Placebo-Controlled, Double-Blind Crossover Study in Healthy Volunteers. J. Dermatol. Treat. 2016, 27, 488–494. [Google Scholar] [CrossRef]
- Arendt, J. Melatonin and the Mammalian Pineal Gland; Chapmann & Hall: London, UK, 1995. [Google Scholar]
- Åkerstedt, T.; Gillberg, M. Subjective and Objective Sleepiness in the Active Individual. Int. J. Neurosci. 1990, 52, 29–37. [Google Scholar] [CrossRef]
- Axelrod, B.N.; Meyers, J.E.; Davis, J.J. Finger Tapping Test Performance as a Measure of Performance Validity. Clin. Neuropsychol. 2014, 28, 876–888. [Google Scholar] [CrossRef]
- Elsass, P. Continuous Reaction Times in Cerebral Dysfunction. Acta Neurol. Scand. 2009, 73, 225–246. [Google Scholar] [CrossRef]
- Tzischinsky, O.; Lavie, P. Melatonin Possesses Time-Dependent Hypnotic Effects. Sleep 1994, 17, 638–645. [Google Scholar] [CrossRef]
- Bolderston, A.; Lloyd, N.S.; Wong, R.K.S.; Holden, L.; Robb-Blenderman, L. The Prevention and Management of Acute Skin Reactions Related to Radiation Therapy: A Systematic Review and Practice Guideline. Support. Care Cancer 2006, 14, 802–817. [Google Scholar] [CrossRef]
- Salvo, N.; Barnes, E.; van Draanen, J.; Stacey, E.; Mitera, G.; Breen, D.; Giotis, A.; Czarnota, G.; Pang, J.; De Angelis, C. Prophylaxis and Management of Acute Radiation-Induced Skin Reactions: A Systematic Review of the Literature. Curr. Oncol. 2010, 17, 94–112. [Google Scholar] [CrossRef]
- Naylor, W.; Mallett, J. Management of Acute Radiotherapy Induced Skin Reactions: A Literature Review. Eur. J. Oncol. Nurs. 2001, 5, 221–233. [Google Scholar] [CrossRef]
- Ben-David, M.A.; Elkayam, R.; Gelernter, I.; Pfeffer, R.M. Melatonin for Prevention of Breast Radiation Dermatitis: A Phase II, Prospective, Double-Blind Randomized Trial. Isr. Med. Assoc. J. 2016, 18, 188–192. [Google Scholar]
- Zetner, D.; Kamby, C.; Gülen, S.; Christophersen, C.; Paulsen, C.B.; Piga, E.; Hoffmeyer, B.; Mahmood, F.; Rosenberg, J. Quality-of-life Outcomes Following Topical Melatonin Application against Acute Radiation Dermatitis in Patients with Early Breast Cancer: A Double-blind, Randomized, Placebo-controlled Trial. J. Pineal Res. 2023, 74, e12840. [Google Scholar] [CrossRef]
- Sanmartín-Suárez, C.; Soto-Otero, R.; Sánchez-Sellero, I.; Méndez-Álvarez, E. Antioxidant Properties of Dimethyl Sulfoxide and Its Viability as a Solvent in the Evaluation of Neuroprotective Antioxidants. J. Pharmacol. Toxicol. Methods 2011, 63, 209–215. [Google Scholar] [CrossRef]
- Friedman, O. Changes Associated with the Aging Face. Facial Plast. Surg. Clin. N. Am. 2005, 13, 371–380. [Google Scholar] [CrossRef]
- Shin, S.H.; Lee, Y.H.; Rho, N.-K.; Park, K.Y. Skin Aging from Mechanisms to Interventions: Focusing on Dermal Aging. Front. Physiol. 2023, 14, 1195272. [Google Scholar] [CrossRef]
- Jenkins, G. Molecular Mechanisms of Skin Ageing. Mech. Ageing Dev. 2002, 123, 801–810. [Google Scholar] [CrossRef]
- Sagan, D.; Stepniak, J.; Gesing, A.; Lewinski, A.; Karbownik-Lewinska, M. Melatonin Reverses the Enhanced Oxidative Damage to Membrane Lipids and Improves Skin Biophysical Characteristics in Former-Smokers—A Study in Postmenopausal Women. Ann. Agric. Environ. Med. 2017, 24, 659–666. [Google Scholar] [CrossRef]
- Morganti, P.; Fabrizi, G.; Palombo, P.; Palombo, M.; Guarneri, F.; Cardillo, A.; Morganti, G. New Chitin Complexes and Their Anti-Aging Activity from inside Out. J. Nutr. Health Aging 2012, 16, 242–245. [Google Scholar] [CrossRef]
- Murphy, E.J.; Rezoagli, E.; Major, I.; Rowan, N.J.; Laffey, J.G. β-Glucan Metabolic and Immunomodulatory Properties and Potential for Clinical Application. J. Fungi 2020, 6, 356. [Google Scholar] [CrossRef]
- Zhong, X.; Wang, G.; Li, F.; Fang, S.; Zhou, S.; Ishiwata, A.; Tonevitsky, A.G.; Shkurnikov, M.; Cai, H.; Ding, F. Immunomodulatory Effect and Biological Significance of β-Glucans. Pharmaceutics 2023, 15, 1615. [Google Scholar] [CrossRef]
- Du, B.; Bian, Z.; Xu, B. Skin Health Promotion Effects of Natural Beta-Glucan Derived from Cereals and Microorganisms: A Review. Phytother. Res. 2014, 28, 159–166. [Google Scholar] [CrossRef]
- Milani, M.; Sparavigna, A. Antiaging Efficacy of Melatonin-Based Day and Night Creams: A Randomized, Split-Face, Assessor-Blinded Proof-of-Concept Trial. Clin. Cosmet. Investig. Dermatol. 2018, 11, 51–57. [Google Scholar] [CrossRef]
- Goldberg, D.J.; Robinson, D.M.; Granger, C. Clinical Evidence of the Efficacy and Safety of a New 3-in-1 Anti-aging Topical Night Serum-in-oil Containing Melatonin, Bakuchiol, and Ascorbyl Tetraisopalmitate: 103 Females Treated from 28 to 84 Days. J. Cosmet. Dermatol. 2019, 18, 806–814. [Google Scholar] [CrossRef]
- Jafernik, K.; Halina, E.; Ercisli, S.; Szopa, A. Characteristics of Bakuchiol—The Compound with High Biological Activity and the Main Source of Its Acquisition—Cullen Corylifolium (L.) Medik. Nat. Prod. Res. 2021, 35, 5828–5842. [Google Scholar] [CrossRef]
- Dhaliwal, S.; Rybak, I.; Ellis, S.R.; Notay, M.; Trivedi, M.; Burney, W.; Vaughn, A.R.; Nguyen, M.; Reiter, P.; Bosanac, S.; et al. Prospective, Randomized, Double-blind Assessment of Topical Bakuchiol and Retinol for Facial Photoageing. Br. J. Dermatol. 2019, 180, 289–296. [Google Scholar] [CrossRef]
- Maia Campos, P.M.B.G.; Gianeti, M.D.; Camargo, F.B.; Gaspar, L.R. Application of Tetra-Isopalmitoyl Ascorbic Acid in Cosmetic Formulations: Stability Studies and in Vivo Efficacy. Eur. J. Pharm. Biopharm. 2012, 82, 580–586. [Google Scholar] [CrossRef]
- Granger, C.; Brown, A.; Aladren, S.; Narda, M. Night Cream Containing Melatonin, Carnosine and Helichrysum Italicum Extract Helps Reduce Skin Reactivity and Signs of Photodamage: Ex Vivo and Clinical Studies. Dermatol. Ther. 2020, 10, 1315–1329. [Google Scholar] [CrossRef]
- Lolli, F.; Pallotti, F.; Rossi, A.; Fortuna, M.C.; Caro, G.; Lenzi, A.; Sansone, A.; Lombardo, F. Androgenetic Alopecia: A Review. Endocrine 2017, 57, 9–17. [Google Scholar] [CrossRef]
- Fischer, T. Alopezien—Diagnostisches Und Therapeutisches Management. Aktuelle Derm. 2008, 34, 209–225. [Google Scholar] [CrossRef]
- Ramot, Y.; Czarnowicki, T.; Zlotogorski, A. Finasteride Induced Gynecomastia: Case Report and Review of the Literature. Int. J. Trichology 2009, 1, 27. [Google Scholar] [CrossRef]
- Rossi, A.; Cantisani, C.; Melis, L.; Iorio, A.; Scali, E.; Calvieri, S. Minoxidil Use in Dermatology, Side Effects and Recent Patents. Recent. Pat. Inflamm. Allergy Drug Discov. 2012, 6, 130–136. [Google Scholar] [CrossRef]
- Leenen, F.; Smith, D.; Unger, W. Topical Minoxidil: Cardiac Effects in Bald Man. Br. J. Clin. Pharmacol. 1988, 26, 481–485. [Google Scholar] [CrossRef]
- Meidan, V.M.; Touitou, E. Treatments for Androgenetic Alopecia and Alopecia Areata. Drugs 2001, 61, 53–69. [Google Scholar] [CrossRef]
- Pratt, C.H.; King, L.E.; Messenger, A.G.; Christiano, A.M.; Sundberg, J.P. Alopecia Areata. Nat. Rev. Dis. Primers 2017, 3, 17011. [Google Scholar] [CrossRef]
- Rose, J.; Oldfield, J.; Stormshak, F. Apparent Role of Melatonin and Prolactin in Initiating Winter Fur Growth in Mink. Gen. Comp. Endocrinol. 1987, 65, 212–215. [Google Scholar] [CrossRef]
- Morgan, P.J.; Mercer, J.G. Control of Seasonality by Melatonin. Proc. Nutr. Soc. 1994, 53, 483–493. [Google Scholar] [CrossRef]
- Ge, W.; Wang, S.-H.; Sun, B.; Zhang, Y.-L.; Shen, W.; Khatib, H.; Wang, X. Melatonin Promotes Cashmere Goat (Capra Hircus) Secondary Hair Follicle Growth: A View from Integrated Analysis of Long Non-Coding and Coding RNAs. Cell Cycle 2018, 17, 1255–1267. [Google Scholar] [CrossRef]
- Kobayashi, H.; Kromminga, A.; Dunlop, T.W.; Tychsen, B.; Conrad, F.; Suzuki, N.; Memezawa, A.; Bettermann, A.; Aiba, S.; Carlberg, C.; et al. A Role of Melatonin in Neuroectodermal-mesodermal Interactions: The Hair Follicle Synthesizes Melatonin and Expresses Functional Melatonin Receptors. FASEB J. 2005, 19, 1710–1712. [Google Scholar] [CrossRef]
- Mayo, J.C.; Hevia, D.; Quiros-Gonzalez, I.; Rodriguez-Garcia, A.; Gonzalez-Menendez, P.; Cepas, V.; Gonzalez-Pola, I.; Sainz, R.M. IGFBP3 and MAPK/ERK Signaling Mediates Melatonin-induced Antitumor Activity in Prostate Cancer. J. Pineal Res. 2017, 62, e12373. [Google Scholar] [CrossRef]
- Liu, V.; Yau, W.; Tam, C.; Yao, K.-M.; Shiu, S. Melatonin Inhibits Androgen Receptor Splice Variant-7 (AR-V7)-Induced Nuclear Factor-Kappa B (NF-ΚB) Activation and NF-ΚB Activator-Induced AR-V7 Expression in Prostate Cancer Cells: Potential Implications for the Use of Melatonin in Castration-Resistant Prostate Cancer (CRPC) Therapy. Int. J. Mol. Sci. 2017, 18, 1130. [Google Scholar] [CrossRef]
- Rimler, A.; Culig, Z.; Lupowitz, Z.; Zisapel, N. Nuclear Exclusion of the Androgen Receptor by Melatonin. J. Steroid Biochem. Mol. Biol. 2002, 81, 77–84. [Google Scholar] [CrossRef]
- Fischer, T.W.; Burmeister, G.; Schmidt, H.W.; Elsner, P. Melatonin Increases Anagen Hair Rate in Women with Androgenetic Alopecia or Diffuse Alopecia: Results of a Pilot Randomized Controlled Trial. Br. J. Dermatol. 2004, 150, 341–345. [Google Scholar] [CrossRef]
- Hibberts, N.; Howell, A.; Randall, V. Balding Hair Follicle Dermal Papilla Cells Contain Higher Levels of Androgen Receptors than Those from Non-Balding Scalp. J. Endocrinol. 1998, 156, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Randall, V.A.; Ebling, F.J.G. Seasonal Changes in Human Hair Growth. Br. J. Dermatol. 1991, 124, 146–151. [Google Scholar] [CrossRef] [PubMed]
- Baldari, M.; Montinari, M.; Guarrera, M. Topical Melatonin in the Treatment of Early Stages of Male Androgenetic Alopecia. G. Ital. Di Dermatol. E Venereol. 2007, 142, 35–39. [Google Scholar]
- Fischer, T.; Hänggi, G.; Innocenti, M.; Elsner, P.; Trüeb, R. Topical Melatonin for Treatment of Androgenetic Alopecia. Int. J. Trichology 2012, 4, 236. [Google Scholar] [CrossRef] [PubMed]
- Hatem, S.; Nasr, M.; Moftah, N.H.; Ragai, M.H.; Geneidi, A.S.; Elkheshen, S.A. Clinical Cosmeceutical Repurposing of Melatonin in Androgenic Alopecia Using Nanostructured Lipid Carriers Prepared with Antioxidant Oils. Expert. Opin. Drug Deliv. 2018, 15, 927–935. [Google Scholar] [CrossRef] [PubMed]
- McDonald, K.A.; Shelley, A.J.; Colantonio, S.; Beecker, J. Hair Pull Test: Evidence-Based Update and Revision of Guidelines. J. Am. Acad. Dermatol. 2017, 76, 472–477. [Google Scholar] [CrossRef]
- Hatem, S.; Nasr, M.; Moftah, N.H.; Ragai, M.H.; Geneidi, A.S.; Elkheshen, S.A. Melatonin Vitamin C-Based Nanovesicles for Treatment of Androgenic Alopecia: Design, Characterization and Clinical Appraisal. Eur. J. Pharm. Sci. 2018, 122, 246–253. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Greco, G.; Di Lorenzo, R.; Ricci, L.; Di Serio, T.; Vardaro, E.; Laneri, S. Clinical Studies Using Topical Melatonin. Int. J. Mol. Sci. 2024, 25, 5167. https://doi.org/10.3390/ijms25105167
Greco G, Di Lorenzo R, Ricci L, Di Serio T, Vardaro E, Laneri S. Clinical Studies Using Topical Melatonin. International Journal of Molecular Sciences. 2024; 25(10):5167. https://doi.org/10.3390/ijms25105167
Chicago/Turabian StyleGreco, Giovanni, Ritamaria Di Lorenzo, Lucia Ricci, Teresa Di Serio, Eleonora Vardaro, and Sonia Laneri. 2024. "Clinical Studies Using Topical Melatonin" International Journal of Molecular Sciences 25, no. 10: 5167. https://doi.org/10.3390/ijms25105167
APA StyleGreco, G., Di Lorenzo, R., Ricci, L., Di Serio, T., Vardaro, E., & Laneri, S. (2024). Clinical Studies Using Topical Melatonin. International Journal of Molecular Sciences, 25(10), 5167. https://doi.org/10.3390/ijms25105167