Metabolic Acidosis in CKD: Pathogenesis, Adverse Effects, and Treatment Effects
Abstract
:1. Introduction
2. Genesis of Chronic Metabolic Acidosis in CKD
3. Adverse Effects of Chronic Metabolic Acidosis in CKD
4. Effects of Pharmacological Alkali Therapy in CKD
4.1. Kidney Effects
Study | Population | Baseline Bicarbonate (mEq/L) | Total Sample Size | Intervention | Duration | Main Findings |
---|---|---|---|---|---|---|
UBI [64] | CKD stages 3–5 | 18–24 | 795 | NaHCO3 to target bicarbonate 24–28 mEq/L | 36 months | Lower risks of serum creatinine doubling, renal replacement therapy, and death |
BiCARB [67] | Age > 60 eGFR < 30 | <22 | 300 | NaHCO3 up to 3000 mg/d | 24 months | No significant effect on short physical performance battery after 12 months. Shorter 6-minute walking distance and reduction in handgrip strength in treatment group. More adverse events with treatment |
Alkali Therapy in CKD [69] | CKD stage 3 or 4 | 20–26 | 149 | NaHCO3 0.4 mEq/kg (ideal bodyweight/day) | 24 months | No significant effects on bone mineral density, sit-to-stand time, other physical function assessments, and eGFR |
BASE Pilot Trial [70] | CKD stage 3b or 4; or CKD stage 3a with ACR ≥ 50 mg/g | 20–28 | 192 | NaHCO3 0.5 or 0.8 mEq/kg (lean bodyweight/day) | 28 weeks | No significant effects on blood pressure and weight Dose-dependent increase in sodium bicarbonate levels Dose-dependent increase in urinary ACR |
VA–Bicarb Trial [68] | Diabetic CKD stages 2–4 with ACR > 30 mg/g | 22–28 | 74 | NaHCO3 0.5 mEq/kg lean bodyweight/day | 6 months | No statistically significant effects on urinary markers of kidney injury |
Veverimer (40-week extension study) [71] | eGFR 20–40 mL/min per 1.73 m2 | 12–20 | 196 | Veverimer 6g/day then titrated to target bicarbonate level (22–29 mEq/L) | 52 weeks | 3% in veverimer vs. 10% in placebo; discontinued treatment Treatment with veverimer improved physical function. Fewer treated with veverimer died or progressed to ESKD. |
VALOR–CKD Trial [62] | eGFR 20–40 mL/min per 1.73 m2 | 12–20 | 1480 | Veverimer vs. placebo | Mean follow-up: 26.7 months | Higher-than-expected bicarbonate level in placebo group No statistically significant difference in kidney events |
De brito-Ashurst et al. [63] | CKD stages 4–5 | 17–19 | 134 | NaHCO3 titrate to ≥23 mEq/L vs. usual care | 2 years | Lower CrCl decline (−1.88 vs. −5.93 mL/min) Lower relative risk of ESKD 0.13 (95% CI, 0.04–0.40) |
Phisitkul et al. [37] | eGFR 20–60, Hypertension | <22 | 59 | Sodium Citrate 1 mEq/kg/d vs. usual care | 2 years | Lower eGFR decline (−3.6 vs. −8.7 mL/min/1.73 m2) |
Mahajan et al. [65] | CKD stage 2, Hypertension, ACR ≥ 300 | - | 120 | NaHCO3 0.5 mEq/kg/d vs. equimolar NaCl vs. placebo | 5 years | Lower eGFR decline (−6.8 vs. −10.8 vs. −12.7 mL/min/1.73 m2) |
Preserve-Transplant Study [66] | Kidney transplant recipient >1 year, eGFR 15–89 | <22 | 242 | NaHCO3 1.5–4.5 g/d vs. placebo | 2 years | No difference in eGFR between the groups. |
4.2. Bone Effects
4.3. Effects on Muscle and Protein
4.4. Cardiovascular Effects
5. Nutritional Alkali Therapy in CKD
6. Summary
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jager, K.J.; Kovesdy, C.; Langham, R.; Rosenberg, M.; Jha, V.; Zoccali, C. A single number for advocacy and communication—Worldwide more than 850 million individuals have kidney diseases. Nephrol. Dial. Transplant. 2019, 34, 1803–1805. [Google Scholar] [CrossRef] [PubMed]
- Collister, D.; Ferguson, T.W.; Funk, S.E.; Reaven, N.L.; Mathur, V.; Tangri, N. Metabolic Acidosis and Cardiovascular Disease in CKD. Kidney Med. 2021, 3, 753–761.e1. [Google Scholar] [CrossRef] [PubMed]
- Dobre, M.; Pajewski, N.M.; Beddhu, S.; Chonchol, M.; Hostetter, T.H.; Li, P.; Rahman, M.; Servilla, K.; Weiner, D.E.; Wright, J.T.; et al. Serum bicarbonate and cardiovascular events in hypertensive adults: Results from the Systolic Blood Pressure Intervention Trial. Nephrol. Dial. Transpl. 2020, 35, 1377–1384. [Google Scholar] [CrossRef] [PubMed]
- Bushinsky, D.A.; Chabala, J.M.; Gavrilov, K.L.; Levi-Setti, R. Effects of in vivo metabolic acidosis on midcortical bone ion composition. Am. J. Physiol. 1999, 277, F813–F819. [Google Scholar] [CrossRef] [PubMed]
- Krieger, N.S.; Sessler, N.E.; Bushinsky, D.A. Acidosis inhibits osteoblastic and stimulates osteoclastic activity in vitro. Am. J. Physiol. 1992, 262, F442–F448. [Google Scholar] [CrossRef] [PubMed]
- Bailey, J.L.; Wang, X.; England, B.K.; Price, S.R.; Ding, X.; Mitch, W.E. The acidosis of chronic renal failure activates muscle proteolysis in rats by augmenting transcription of genes encoding proteins of the ATP-dependent ubiquitin-proteasome pathway. J. Clin. Investig. 1996, 97, 1447–1453. [Google Scholar] [CrossRef] [PubMed]
- May, R.C.; Kelly, R.A.; Mitch, W.E. Metabolic acidosis stimulates protein degradation in rat muscle by a glucocorticoid-dependent mechanism. J. Clin. Investig. 1986, 77, 614–621. [Google Scholar] [CrossRef] [PubMed]
- Dobre, M.; Yang, W.; Pan, Q.; Appel, L.; Bellovich, K.; Chen, J.; Feldman, H.; Fischer, M.J.; Ham, L.L.; Hostetter, T.; et al. Persistent high serum bicarbonate and the risk of heart failure in patients with chronic kidney disease (CKD): A report from the Chronic Renal Insufficiency Cohort (CRIC) study. J. Am. Heart Assoc. 2015, 4, e001599. [Google Scholar] [CrossRef]
- Kovesdy, C.P.; Anderson, J.E.; Kalantar-Zadeh, K. Association of serum bicarbonate levels with mortality in patients with non-dialysis-dependent CKD. Nephrol. Dial. Transpl. 2009, 24, 1232–1237. [Google Scholar] [CrossRef] [PubMed]
- Navaneethan, S.D.; Schold, J.D.; Arrigain, S.; Jolly, S.E.; Wehbe, E.; Raina, R.; Simon, J.F.; Srinivas, T.R.; Jain, A.; Schreiber, M.J., Jr.; et al. Serum bicarbonate and mortality in stage 3 and stage 4 chronic kidney disease. Clin. J. Am. Soc. Nephrol. 2011, 6, 2395–2402. [Google Scholar] [CrossRef]
- Park, S.; Kang, E.; Park, S.; Kim, Y.C.; Han, S.S.; Ha, J.; Kim, D.K.; Kim, S.; Park, S.K.; Han, D.J.; et al. Metabolic Acidosis and Long-Term Clinical Outcomes in Kidney Transplant Recipients. J. Am. Soc. Nephrol. 2017, 28, 1886–1897. [Google Scholar] [CrossRef]
- Raphael, K.L.; Zhang, Y.; Wei, G.; Greene, T.; Cheung, A.K.; Beddhu, S. Serum bicarbonate and mortality in adults in NHANES III. Nephrol. Dial. Transpl. 2013, 28, 1207–1213. [Google Scholar] [CrossRef] [PubMed]
- Tangri, N.; Reaven, N.L.; Funk, S.E.; Ferguson, T.W.; Collister, D.; Mathur, V. Metabolic acidosis is associated with increased risk of adverse kidney outcomes and mortality in patients with non-dialysis dependent chronic kidney disease: An observational cohort study. BMC Nephrol. 2021, 22, 185. [Google Scholar] [CrossRef] [PubMed]
- Harambat, J.; Kunzmann, K.; Azukaitis, K.; Bayazit, A.K.; Canpolat, N.; Doyon, A.; Duzova, A.; Niemirska, A.; Sozeri, B.; Thurn-Valsassina, D.; et al. Metabolic acidosis is common and associates with disease progression in children with chronic kidney disease. Kidney Int. 2017, 92, 1507–1514. [Google Scholar] [CrossRef] [PubMed]
- Brown, D.D.; Roem, J.; Ng, D.K.; Reidy, K.J.; Kumar, J.; Abramowitz, M.K.; Mak, R.H.; Furth, S.L.; Schwartz, G.J.; Warady, B.A.; et al. Low Serum Bicarbonate and CKD Progression in Children. Clin. J. Am. Soc. Nephrol. 2020, 15, 755–765. [Google Scholar] [CrossRef]
- Raphael, K.L.; Zhang, Y.; Ying, J.; Greene, T. Prevalence of and risk factors for reduced serum bicarbonate in chronic kidney disease. Nephrology 2014, 19, 648–654. [Google Scholar] [CrossRef] [PubMed]
- Moranne, O.; Froissart, M.; Rossert, J.; Gauci, C.; Boffa, J.J.; Haymann, J.P.; Ben M’rad, M.; Jacquot, C.; Houillier, P.; Stengel, B.; et al. Timing of onset of CKD-related metabolic complications. J. Am. Soc. Nephrol. 2009, 20, 164–171. [Google Scholar] [CrossRef]
- Hamm, L.L.; Nakhoul, N.; Hering-Smith, K.S. Acid-Base Homeostasis. Clin. J. Am. Soc. Nephrol. 2015, 10, 2232–2242. [Google Scholar] [CrossRef] [PubMed]
- Vallet, M.; Metzger, M.; Haymann, J.P.; Flamant, M.; Gauci, C.; Thervet, E.; Boffa, J.J.; Vrtovsnik, F.; Froissart, M.; Stengel, B.; et al. Urinary ammonia and long-term outcomes in chronic kidney disease. Kidney Int. 2015, 88, 137–145. [Google Scholar] [CrossRef]
- Nagami, G.T.; Hamm, L.L. Regulation of Acid-Base Balance in Chronic Kidney Disease. Adv. Chronic Kidney Dis. 2017, 24, 274–279. [Google Scholar] [CrossRef]
- Onishi, A.; Fu, Y.; Patel, R.; Darshi, M.; Crespo-Masip, M.; Huang, W.; Song, P.; Freeman, B.; Kim, Y.C.; Soleimani, M.; et al. A role for tubular Na(+)/H(+) exchanger NHE3 in the natriuretic effect of the SGLT2 inhibitor empagliflozin. Am. J. Physiol. Ren. Physiol. 2020, 319, F712–F728. [Google Scholar] [CrossRef]
- Palmer, B.F.; Clegg, D.J. Euglycemic Ketoacidosis as a Complication of SGLT2 Inhibitor Therapy. Clin. J. Am. Soc. Nephrol. 2021, 16, 1284–1291. [Google Scholar] [CrossRef] [PubMed]
- K/DOQI, National Kidney Foundation. Clinical practice guidelines for nutrition in chronic renal failure. Am. J. Kidney Dis. 2000, 35, S17–S104. [Google Scholar] [CrossRef] [PubMed]
- Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int. Suppl. 2013, 3, 1–150. [Google Scholar]
- Raphael, K.L. Metabolic Acidosis and Subclinical Metabolic Acidosis in CKD. J. Am. Soc. Nephrol. 2018, 29, 376–382. [Google Scholar] [CrossRef]
- Raphael, K.L.; Carroll, D.J.; Murray, J.; Greene, T.; Beddhu, S. Urine Ammonium Predicts Clinical Outcomes in Hypertensive Kidney Disease. J. Am. Soc. Nephrol. 2017, 28, 2483–2490. [Google Scholar] [CrossRef] [PubMed]
- Nath, K.A.; Hostetter, M.K.; Hostetter, T.H. Pathophysiology of chronic tubulo-interstitial disease in rats. Interactions of dietary acid load, ammonia, and complement component C3. J. Clin. Investig. 1985, 76, 667–675. [Google Scholar] [CrossRef]
- Tolins, J.P.; Hostetter, M.K.; Hostetter, T.H. Hypokalemic nephropathy in the rat. Role of ammonia in chronic tubular injury. J. Clin. Investig. 1987, 79, 1447–1458. [Google Scholar] [CrossRef] [PubMed]
- Morita, Y.; Ikeguchi, H.; Nakamura, J.; Hotta, N.; Yuzawa, Y.; Matsuo, S. Complement activation products in the urine from proteinuric patients. J. Am. Soc. Nephrol. 2000, 11, 700–707. [Google Scholar] [CrossRef]
- Raphael, K.L.; Gilligan, S.; Hostetter, T.H.; Greene, T.; Beddhu, S. Association between Urine Ammonium and Urine TGF-beta1 in CKD. Clin. J. Am. Soc. Nephrol. 2018, 13, 223–230. [Google Scholar] [CrossRef]
- Kohan, D.E.; Inscho, E.W.; Wesson, D.; Pollock, D.M. Physiology of endothelin and the kidney. Compr. Physiol. 2011, 1, 883–919. [Google Scholar] [CrossRef] [PubMed]
- Khanna, A.; Simoni, J.; Wesson, D.E. Endothelin-induced increased aldosterone activity mediates augmented distal nephron acidification as a result of dietary protein. J. Am. Soc. Nephrol. 2005, 16, 1929–1935. [Google Scholar] [CrossRef] [PubMed]
- Kohan, D.E.; Barton, M. Endothelin and endothelin antagonists in chronic kidney disease. Kidney Int. 2014, 86, 896–904. [Google Scholar] [CrossRef] [PubMed]
- Wesson, D.E.; Dolson, G.M. Endothelin-1 increases rat distal tubule acidification in vivo. Am. J. Physiol. 1997, 273, F586–F594. [Google Scholar] [CrossRef] [PubMed]
- Wesson, D.E.; Nathan, T.; Rose, T.; Simoni, J.; Tran, R.M. Dietary protein induces endothelin-mediated kidney injury through enhanced intrinsic acid production. Kidney Int. 2007, 71, 210–217. [Google Scholar] [CrossRef] [PubMed]
- Phisitkul, S.; Hacker, C.; Simoni, J.; Tran, R.M.; Wesson, D.E. Dietary protein causes a decline in the glomerular filtration rate of the remnant kidney mediated by metabolic acidosis and endothelin receptors. Kidney Int. 2008, 73, 192–199. [Google Scholar] [CrossRef] [PubMed]
- Phisitkul, S.; Khanna, A.; Simoni, J.; Broglio, K.; Sheather, S.; Rajab, M.H.; Wesson, D.E. Amelioration of metabolic acidosis in patients with low GFR reduced kidney endothelin production and kidney injury, and better preserved GFR. Kidney Int. 2010, 77, 617–623. [Google Scholar] [CrossRef]
- Wesson, D.E.; Simoni, J. Acid retention during kidney failure induces endothelin and aldosterone production which lead to progressive GFR decline, a situation ameliorated by alkali diet. Kidney Int. 2010, 78, 1128–1135. [Google Scholar] [CrossRef] [PubMed]
- Wesson, D.E.; Jo, C.H.; Simoni, J. Angiotensin II-mediated GFR decline in subtotal nephrectomy is due to acid retention associated with reduced GFR. Nephrol. Dial. Transpl. 2015, 30, 762–770. [Google Scholar] [CrossRef] [PubMed]
- Wesson, D.E.; Jo, C.H.; Simoni, J. Angiotensin II receptors mediate increased distal nephron acidification caused by acid retention. Kidney Int. 2012, 82, 1184–1194. [Google Scholar] [CrossRef]
- Bento, L.M.; Fagian, M.M.; Vercesi, A.E.; Gontijo, J.A. Effects of NH4Cl-induced systemic metabolic acidosis on kidney mitochondrial coupling and calcium transport in rats. Nephrol. Dial. Transpl. 2007, 22, 2817–2823. [Google Scholar] [CrossRef] [PubMed]
- Pickering, W.P.; Price, S.R.; Bircher, G.; Marinovic, A.C.; Mitch, W.E.; Walls, J. Nutrition in CAPD: Serum bicarbonate and the ubiquitin-proteasome system in muscle. Kidney Int. 2002, 61, 1286–1292. [Google Scholar] [CrossRef]
- Schindler, R. Causes and therapy of microinflammation in renal failure. Nephrol. Dial. Transpl. 2004, 19 (Suppl. S5), V34–V40. [Google Scholar] [CrossRef]
- Farwell, W.R.; Taylor, E.N. Serum anion gap, bicarbonate and biomarkers of inflammation in healthy individuals in a national survey. Can. Med. Assoc. J. 2010, 182, 137–141. [Google Scholar] [CrossRef]
- Kobayashi, S.; Maesato, K.; Moriya, H.; Ohtake, T.; Ikeda, T. Insulin resistance in patients with chronic kidney disease. Am. J. Kidney Dis. 2005, 45, 275–280. [Google Scholar] [CrossRef]
- Driver, T.H.; Shlipak, M.G.; Katz, R.; Goldenstein, L.; Sarnak, M.J.; Hoofnagle, A.N.; Siscovick, D.S.; Kestenbaum, B.; de Boer, I.H.; Ix, J.H. Low serum bicarbonate and kidney function decline: The Multi-Ethnic Study of Atherosclerosis (MESA). Am. J. Kidney Dis. 2014, 64, 534–541. [Google Scholar] [CrossRef]
- Goldenstein, L.; Driver, T.H.; Fried, L.F.; Rifkin, D.E.; Patel, K.V.; Yenchek, R.H.; Harris, T.B.; Kritchevsky, S.B.; Newman, A.B.; Sarnak, M.J.; et al. Serum bicarbonate concentrations and kidney disease progression in community-living elders: The Health, Aging, and Body Composition (Health ABC) Study. Am. J. Kidney Dis. 2014, 64, 542–549. [Google Scholar] [CrossRef]
- Shah, S.N.; Abramowitz, M.; Hostetter, T.H.; Melamed, M.L. Serum bicarbonate levels and the progression of kidney disease: A cohort study. Am. J. Kidney Dis. 2009, 54, 270–277. [Google Scholar] [CrossRef] [PubMed]
- Lemann, J., Jr.; Litzow, J.R.; Lennon, E.J. The effects of chronic acid loads in normal man: Further evidence for the participation of bone mineral in the defense against chronic metabolic acidosis. J. Clin. Investig. 1966, 45, 1608–1614. [Google Scholar] [CrossRef] [PubMed]
- Lemann, J.; Litzow, J.R.; Lennon, E.J. Studies of the mechanism by which chronic metabolic acidosis augments urinary calcium excretion in man. J. Clin. Investig. 1967, 46, 1318–1328. [Google Scholar] [CrossRef]
- Chen, W.; Melamed, M.L.; Abramowitz, M.K. Serum bicarbonate and bone mineral density in US adults. Am. J. Kidney Dis. 2015, 65, 240–248. [Google Scholar] [CrossRef]
- Tabatabai, L.S.; Cummings, S.R.; Tylavsky, F.A.; Bauer, D.C.; Cauley, J.A.; Kritchevsky, S.B.; Newman, A.; Simonsick, E.M.; Harris, T.B.; Sebastian, A.; et al. Arterialized venous bicarbonate is associated with lower bone mineral density and an increased rate of bone loss in older men and women. J. Clin. Endocrinol. Metab. 2015, 100, 1343–1349. [Google Scholar] [CrossRef]
- Levy, R.V.; McMahon, D.J.; Agarwal, S.; Dempster, D.; Zhou, H.; Misof, B.M.; Guo, X.E.; Kamanda-Kosseh, M.; Aponte, M.A.; Reidy, K.; et al. Comprehensive Associations Between Acidosis and the Skeleton in Patients with Kidney Disease. J. Am. Soc. Nephrol. 2023, 34, 668–681. [Google Scholar] [CrossRef]
- Yenchek, R.; Ix, J.H.; Rifkin, D.E.; Shlipak, M.G.; Sarnak, M.J.; Garcia, M.; Patel, K.V.; Satterfield, S.; Harris, T.B.; Newman, A.B.; et al. Association of serum bicarbonate with incident functional limitation in older adults. Clin. J. Am. Soc. Nephrol. 2014, 9, 2111–2116. [Google Scholar] [CrossRef] [PubMed]
- Abramowitz, M.K.; Hostetter, T.H.; Melamed, M.L. Association of serum bicarbonate levels with gait speed and quadriceps strength in older adults. Am. J. Kidney Dis. 2011, 58, 29–38. [Google Scholar] [CrossRef]
- Abramowitz, M.K.; Hostetter, T.H.; Melamed, M.L. Lower serum bicarbonate and a higher anion gap are associated with lower cardiorespiratory fitness in young adults. Kidney Int. 2012, 81, 1033–1042. [Google Scholar] [CrossRef]
- Navaneethan, S.D.; Beddhu, S. Associations of serum uric acid with cardiovascular events and mortality in moderate chronic kidney disease. Nephrol. Dial. Transpl. 2009, 24, 1260–1266. [Google Scholar] [CrossRef]
- Raphael, K.L.; Wei, G.; Baird, B.C.; Greene, T.; Beddhu, S. Higher serum bicarbonate levels within the normal range are associated with better survival and renal outcomes in African Americans. Kidney Int. 2011, 79, 356–362. [Google Scholar] [CrossRef]
- Djamali, A.; Singh, T.; Melamed, M.L.; Stein, J.H.; Aziz, F.; Parajuli, S.; Mohamed, M.; Garg, N.; Mandelbrot, D.; Wesson, D.E.; et al. Metabolic Acidosis 1 Year Following Kidney Transplantation and Subsequent Cardiovascular Events and Mortality: An Observational Cohort Study. Am. J. Kidney Dis. 2019, 73, 476–485. [Google Scholar] [CrossRef] [PubMed]
- Benyon-Cobb, B.; Louca, P.; Hoorn, E.; Menni, C.; Padmanabhan, S. Effect of sodium bicarbonate on systolic blood pressure in CKD: A Systematic Review and Meta-Analysis. Clin. J. Am. Soc. Nephrol. 2023, 18, 435–445. [Google Scholar] [CrossRef] [PubMed]
- Raphael, K.L.; Katz, R.; Larive, B.; Kendrick, C.; Isakova, T.; Sprague, S.; Wolf, M.; Raj, D.S.; Fried, L.F.; Gassman, J.; et al. Oral Sodium Bicarbonate and Bone Turnover in CKD: A Secondary Analysis of the BASE Pilot Trial. J. Am. Soc. Nephrol. 2024, 35, 57–65. [Google Scholar] [CrossRef]
- Tangri, N.; Mathur, V.S.; Bushinsky, D.A.; Klaerner, G.; Li, E.; Parsell, D.; Stasiv, Y.; Walker, M.; Wesson, D.E.; Wheeler, D.C.; et al. VALOR-CKD: A Multicenter, Randomized, Double-Blind Placebo-Controlled Trial Evaluating Veverimer in Slowing Progression of Chronic Kidney Disease in Patients with Metabolic Acidosis. J. Am. Soc. Nephrol. 2024, 35, 311–320. [Google Scholar] [CrossRef]
- de Brito-Ashurst, I.; Varagunam, M.; Raftery, M.J.; Yaqoob, M.M. Bicarbonate supplementation slows progression of CKD and improves nutritional status. J. Am. Soc. Nephrol. 2009, 20, 2075–2084. [Google Scholar] [CrossRef]
- Di Iorio, B.R.; Bellasi, A.; Raphael, K.L.; Santoro, D.; Aucella, F.; Garofano, L.; Ceccarelli, M.; Di Lullo, L.; Capolongo, G.; Di Iorio, M.; et al. Treatment of metabolic acidosis with sodium bicarbonate delays progression of chronic kidney disease: The UBI Study. J. Nephrol. 2019, 32, 989–1001. [Google Scholar] [CrossRef]
- Mahajan, A.; Simoni, J.; Sheather, S.J.; Broglio, K.R.; Rajab, M.H.; Wesson, D.E. Daily oral sodium bicarbonate preserves glomerular filtration rate by slowing its decline in early hypertensive nephropathy. Kidney Int. 2010, 78, 303–309. [Google Scholar] [CrossRef]
- Mohebbi, N.; Ritter, A.; Wiegand, A.; Graf, N.; Dahdal, S.; Sidler, D.; Arampatzis, S.; Hadaya, K.; Mueller, T.F.; Wagner, C.A.; et al. Sodium bicarbonate for kidney transplant recipients with metabolic acidosis in Switzerland: A multicentre, randomised, single-blind, placebo-controlled, phase 3 trial. Lancet 2023, 401, 557–567. [Google Scholar] [CrossRef]
- BiCARB Study Group. Clinical and cost-effectiveness of oral sodium bicarbonate therapy for older patients with chronic kidney disease and low-grade acidosis (BiCARB): A pragmatic randomised, double-blind, placebo-controlled trial. BMC Med. 2020, 18, 91. [Google Scholar] [CrossRef]
- Raphael, K.L.; Greene, T.; Wei, G.; Bullshoe, T.; Tuttle, K.; Cheung, A.K.; Beddhu, S. Sodium Bicarbonate Supplementation and Urinary TGF-beta1 in Nonacidotic Diabetic Kidney Disease: A Randomized, Controlled Trial. Clin. J. Am. Soc. Nephrol. 2020, 15, 200–208. [Google Scholar] [CrossRef]
- Melamed, M.L.; Horwitz, E.J.; Dobre, M.A.; Abramowitz, M.K.; Zhang, L.; Lo, Y.; Mitch, W.E.; Hostetter, T.H. Effects of Sodium Bicarbonate in CKD Stages 3 and 4: A Randomized, Placebo-Controlled, Multicenter Clinical Trial. Am. J. Kidney Dis. 2020, 75, 225–234. [Google Scholar] [CrossRef]
- Raphael, K.L.; Isakova, T.; Ix, J.H.; Raj, D.S.; Wolf, M.; Fried, L.F.; Gassman, J.J.; Kendrick, C.; Larive, B.; Flessner, M.F.; et al. A Randomized Trial Comparing the Safety, Adherence, and Pharmacodynamics Profiles of Two Doses of Sodium Bicarbonate in CKD: The BASE Pilot Trial. J. Am. Soc. Nephrol. 2020, 31, 161–174. [Google Scholar] [CrossRef] [PubMed]
- Wesson, D.E.; Mathur, V.; Tangri, N.; Stasiv, Y.; Parsell, D.; Li, E.; Klaerner, G.; Bushinsky, D.A. Long-term safety and efficacy of veverimer in patients with metabolic acidosis in chronic kidney disease: A multicentre, randomised, blinded, placebo-controlled, 40-week extension. Lancet 2019, 394, 396–406. [Google Scholar] [CrossRef]
- Mathur, R.P.; Dash, S.C.; Gupta, N.; Prakash, S.; Saxena, S.; Bhowmik, D. Effects of correction of metabolic acidosis on blood urea and bone metabolism in patients with mild to moderate chronic kidney disease: A prospective randomized single blind controlled trial. Ren. Fail. 2006, 28, 1–5. [Google Scholar] [CrossRef]
- Kendrick, J.; Shah, P.; Andrews, E.; You, Z.; Nowak, K.; Pasch, A.; Chonchol, M. Effect of Treatment of Metabolic Acidosis on Vascular Endothelial Function in Patients with CKD: A Pilot Randomized Cross-Over Study. Clin. J. Am. Soc. Nephrol. 2018, 13, 1463–1470. [Google Scholar] [CrossRef]
- Starke, A.; Corsenca, A.; Kohler, T.; Knubben, J.; Kraenzlin, M.; Uebelhart, D.; Wuthrich, R.P.; von Rechenberg, B.; Muller, R.; Ambuhl, P.M. Correction of metabolic acidosis with potassium citrate in renal transplant patients and its effect on bone quality. Clin. J. Am. Soc. Nephrol. 2012, 7, 1461–1472. [Google Scholar] [CrossRef]
- Frassetto, L.; Morris, R.C., Jr.; Sebastian, A. Long-term persistence of the urine calcium-lowering effect of potassium bicarbonate in postmenopausal women. J. Clin. Endocrinol. Metab. 2005, 90, 831–834. [Google Scholar] [CrossRef]
- Jehle, S.; Zanetti, A.; Muser, J.; Hulter, H.N.; Krapf, R. Partial neutralization of the acidogenic Western diet with potassium citrate increases bone mass in postmenopausal women with osteopenia. J. Am. Soc. Nephrol. 2006, 17, 3213–3222. [Google Scholar] [CrossRef]
- Sebastian, A.; Harris, S.T.; Ottaway, J.H.; Todd, K.M.; Morris, R.C., Jr. Improved mineral balance and skeletal metabolism in postmenopausal women treated with potassium bicarbonate. N. Engl. J. Med. 1994, 330, 1776–1781. [Google Scholar] [CrossRef]
- Abramowitz, M.K.; Melamed, M.L.; Bauer, C.; Raff, A.C.; Hostetter, T.H. Effects of oral sodium bicarbonate in patients with CKD. Clin. J. Am. Soc. Nephrol. 2013, 8, 714–720. [Google Scholar] [CrossRef]
- Navaneethan, S.D.; Shao, J.; Buysse, J.; Bushinsky, D.A. Effects of Treatment of Metabolic Acidosis in CKD: A Systematic Review and Meta-Analysis. Clin. J. Am. Soc. Nephrol. 2019, 14, 1011–1020. [Google Scholar] [CrossRef] [PubMed]
- Whitescarver, S.A.; Ott, C.E.; Jackson, B.A.; Guthrie, G.P., Jr.; Kotchen, T.A. Salt-sensitive hypertension: Contribution of chloride. Science 1984, 223, 1430–1432. [Google Scholar] [CrossRef] [PubMed]
- Sato, Y.; Ogata, E.; Fujita, T. Role of chloride in angiotensin II-induced salt-sensitive hypertension. Hypertension 1991, 18, 622–629. [Google Scholar] [CrossRef]
- Passmore, J.C.; Whitescarver, S.A.; Ott, C.E.; Kotchen, T.A. Importance of chloride for deoxycorticosterone acetate-salt hypertension in the rat. Hypertension 1985, 7, I115–I120. [Google Scholar] [CrossRef]
- Motoyama, T.; Sano, H.; Suzuki, H.; Kawaguchi, K.; Fukuzaki, H.; Yamanishi, J.; Furuta, Y.; Omatsu, T.; Saito, K. The role of chloride on deoxycorticosterone acetate-salt hypertension. Jpn. Circ. J. 1987, 51, 1191–1198. [Google Scholar] [CrossRef]
- Kurtz, T.W.; Morris, R.C., Jr. Dietary chloride as a determinant of “sodium-dependent” hypertension. Science 1983, 222, 1139–1141. [Google Scholar] [CrossRef]
- Kotchen, T.A.; Luke, R.G.; Ott, C.E.; Galla, J.H.; Whitescarver, S. Effect of chloride on renin and blood pressure responses to sodium chloride. Ann. Intern. Med. 1983, 98, 817–822. [Google Scholar] [CrossRef]
- Gorriz, J.L.; Molina, P.; Cerveron, M.J.; Vila, R.; Bover, J.; Nieto, J.; Barril, G.; Martinez-Castelao, A.; Fernandez, E.; Escudero, V.; et al. Vascular calcification in patients with nondialysis CKD over 3 years. Clin. J. Am. Soc. Nephrol. 2015, 10, 654–666. [Google Scholar] [CrossRef]
- Mendoza, F.J.; Lopez, I.; Montes de Oca, A.; Perez, J.; Rodriguez, M.; Aguilera-Tejero, E. Metabolic acidosis inhibits soft tissue calcification in uremic rats. Kidney Int. 2008, 73, 407–414. [Google Scholar] [CrossRef]
- Lomashvili, K.; Garg, P.; O’Neill, W.C. Chemical and hormonal determinants of vascular calcification in vitro. Kidney Int. 2006, 69, 1464–1470. [Google Scholar] [CrossRef]
- de Solis, A.J.; Gonzalez-Pacheco, F.R.; Deudero, J.J.; Neria, F.; Albalate, M.; Petkov, V.; Susanibar, L.; Fernandez-Sanchez, R.; Calabia, O.; Ortiz, A.; et al. Alkalinization potentiates vascular calcium deposition in an uremic milieu. J. Nephrol. 2009, 22, 647–653. [Google Scholar]
- Kendrick, J.; You, Z.; Andrews, E.; Farmer-Bailey, H.; Moreau, K.; Chonchol, M.; Steele, C.; Wang, W.; Nowak, K.L.; Patel, N. Sodium Bicarbonate Treatment and Vascular Function in CKD: A Randomized, Double-Blind, Placebo-Controlled Trial. J. Am. Soc. Nephrol. 2023, 34, 1433–1444. [Google Scholar] [CrossRef]
- Edmonston, D.; Grabner, A.; Wolf, M. FGF23 and klotho at the intersection of kidney and cardiovascular disease. Nat. Rev. Cardiol. 2024, 21, 11–24. [Google Scholar] [CrossRef]
- Yoon, J.; Liu, Z.; Lee, E.; Liu, L.; Ferre, S.; Pastor, J.; Zhang, J.; Moe, O.W.; Chang, A.N.; Miller, R.T. Physiologic Regulation of Systemic Klotho Levels by Renal CaSR Signaling in Response to CaSR Ligands and pHo. J. Am. Soc. Nephrol. 2021, 32, 3051–3065. [Google Scholar] [CrossRef]
- Banerjee, T.; Crews, D.C.; Wesson, D.E.; Tilea, A.; Saran, R.; Rios Burrows, N.; Williams, D.E.; Powe, N.R.; Centers for Disease, C.; Prevention Chronic Kidney Disease Surveillance, T. Dietary acid load and chronic kidney disease among adults in the United States. BMC Nephrol. 2014, 15, 137. [Google Scholar] [CrossRef]
- Banerjee, T.; Crews, D.C.; Wesson, D.E.; Tilea, A.M.; Saran, R.; Rios-Burrows, N.; Williams, D.E.; Powe, N.R.; Centers for Disease, C.; Prevention Chronic Kidney Disease Surveillance, T. High Dietary Acid Load Predicts ESRD among Adults with CKD. J. Am. Soc. Nephrol. 2015, 26, 1693–1700. [Google Scholar] [CrossRef]
- Yeung, S.M.H.; Gomes-Neto, A.W.; Oste, M.C.J.; van den Berg, E.; Kootstra-Ros, J.E.; Sanders, J.S.F.; Berger, S.P.; Carrero, J.J.; De Borst, M.H.; Navis, G.J.; et al. Net Endogenous Acid Excretion and Kidney Allograft Outcomes. Clin. J. Am. Soc. Nephrol. 2021, 16, 1398–1406. [Google Scholar] [CrossRef]
- Rebholz, C.M.; Crews, D.C.; Grams, M.E.; Steffen, L.M.; Levey, A.S.; Miller, E.R., 3rd; Appel, L.J.; Coresh, J. DASH (Dietary Approaches to Stop Hypertension) Diet and Risk of Subsequent Kidney Disease. Am. J. Kidney Dis. 2016, 68, 853–861. [Google Scholar] [CrossRef]
- Banerjee, T.; Crews, D.C.; Tuot, D.S.; Pavkov, M.E.; Burrows, N.R.; Stack, A.G.; Saran, R.; Bragg-Gresham, J.; Powe, N.R.; Centers for Disease, C.; et al. Poor accordance to a DASH dietary pattern is associated with higher risk of ESRD among adults with moderate chronic kidney disease and hypertension. Kidney Int. 2019, 95, 1433–1442. [Google Scholar] [CrossRef]
- Goraya, N.; Simoni, J.; Jo, C.; Wesson, D.E. Dietary acid reduction with fruits and vegetables or bicarbonate attenuates kidney injury in patients with a moderately reduced glomerular filtration rate due to hypertensive nephropathy. Kidney Int. 2012, 81, 86–93. [Google Scholar] [CrossRef]
- Goraya, N.; Simoni, J.; Jo, C.H.; Wesson, D.E. A comparison of treating metabolic acidosis in CKD stage 4 hypertensive kidney disease with fruits and vegetables or sodium bicarbonate. Clin. J. Am. Soc. Nephrol. 2013, 8, 371–381. [Google Scholar] [CrossRef] [PubMed]
- Goraya, N.; Simoni, J.; Jo, C.H.; Wesson, D.E. Treatment of metabolic acidosis in patients with stage 3 chronic kidney disease with fruits and vegetables or oral bicarbonate reduces urine angiotensinogen and preserves glomerular filtration rate. Kidney Int. 2014, 86, 1031–1038. [Google Scholar] [CrossRef] [PubMed]
- Klahr, S.; Levey, A.S.; Beck, G.J.; Caggiula, A.W.; Hunsicker, L.; Kusek, J.W.; Striker, G. The effects of dietary protein restriction and blood-pressure control on the progression of chronic renal disease. Modification of Diet in Renal Disease Study Group. N. Engl. J. Med. 1994, 330, 877–884. [Google Scholar] [CrossRef] [PubMed]
- Menon, V.; Kopple, J.D.; Wang, X.; Beck, G.J.; Collins, A.J.; Kusek, J.W.; Greene, T.; Levey, A.S.; Sarnak, M.J. Effect of a very low-protein diet on outcomes: Long-term follow-up of the Modification of Diet in Renal Disease (MDRD) Study. Am. J. Kidney Dis. 2009, 53, 208–217. [Google Scholar] [CrossRef] [PubMed]
- Goraya, N.; Wesson, D.E. Management of the Metabolic Acidosis of Chronic Kidney Disease. Adv. Chronic Kidney Dis. 2017, 24, 298–304. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raphael, K.L. Metabolic Acidosis in CKD: Pathogenesis, Adverse Effects, and Treatment Effects. Int. J. Mol. Sci. 2024, 25, 5187. https://doi.org/10.3390/ijms25105187
Raphael KL. Metabolic Acidosis in CKD: Pathogenesis, Adverse Effects, and Treatment Effects. International Journal of Molecular Sciences. 2024; 25(10):5187. https://doi.org/10.3390/ijms25105187
Chicago/Turabian StyleRaphael, Kalani L. 2024. "Metabolic Acidosis in CKD: Pathogenesis, Adverse Effects, and Treatment Effects" International Journal of Molecular Sciences 25, no. 10: 5187. https://doi.org/10.3390/ijms25105187
APA StyleRaphael, K. L. (2024). Metabolic Acidosis in CKD: Pathogenesis, Adverse Effects, and Treatment Effects. International Journal of Molecular Sciences, 25(10), 5187. https://doi.org/10.3390/ijms25105187