The Stria Vascularis: Renewed Attention on a Key Player in Age-Related Hearing Loss
Abstract
:1. Introduction
2. Structure and Function of the Stria Vascularis
2.1. Marginal Cells
2.2. Intermediate Cells
2.3. Basal Cells and Fibrocytes
2.4. Capillary Network and the Blood–Labyrinth Barrier
3. Mechanisms Contributing to Age-Related Loss of Strial Function
3.1. Disrupted Ion Transport
3.2. Variation in Pigmentation in the Stria Vascularis
3.3. Tissue-Resident Macrophages and Inflammatory Responses
3.4. Vascular Atrophy
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. World Report on Hearing; World Health Organization: Geneva, Switzerland, 2021; ISBN 978-92-4-002048-1.
- Schuknecht, H.F. Presbycusis. Laryngoscope 1955, 65, 402–419. [Google Scholar] [CrossRef]
- Schuknecht, H.F. Further Observations on the Pathology of Presbycusis. Arch. Otolaryngol. Head Neck Surg. 1964, 80, 369–382. [Google Scholar] [CrossRef] [PubMed]
- Schuknecht, H.F.; Watanuki, K.; Takahashi, T.; Aziz Belal, A.; Kimura, R.S.; Jones, D.D.; Ota, C.Y. Atrophy of the Stria Vascularis, a Common Cause for Hearing Loss. Laryngoscope 1974, 84, 1777–1821. [Google Scholar] [CrossRef] [PubMed]
- Schuknecht, H.F.; Gacek, M.R. Cochlear Pathology in Presbycusis. Ann. Otol. Rhinol. Laryngol. 1993, 102, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Wangemann, P.; Marcus, D.C. Ion and Fluid Homeostasis in the Cochlea. In Understanding the Cochlea; Manley, G.A., Gummer, A.W., Popper, A.N., Fay, R.R., Eds.; Springer Handbook of Auditory Research; Springer International Publishing: Cham, Switzerland, 2017; Volume 62, pp. 253–286. ISBN 978-3-319-52071-1. [Google Scholar]
- Pauler, M.; Schuknecht, H.F.; White, J.A. Atrophy of the Stria Vascularis as a Cause of Sensorineural Hearing Loss. Laryngoscope 1988, 98, 754–759. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.; O’Malley, J.T.; de Gruttola, V.; Liberman, M.C. Age-Related Hearing Loss Is Dominated by Damage to Inner Ear Sensory Cells, Not the Cellular Battery That Powers Them. J. Neurosci. 2020, 40, 6357–6366. [Google Scholar] [CrossRef]
- Takahashi, T. The Ultrastructure of the Pathologic Stria Vascularis and Spiral Prominence in Man. Ann. Otol. Rhinol. Laryngol. 1971, 80, 721–735. [Google Scholar] [CrossRef]
- Hibino, H.; Nin, F.; Tsuzuki, C.; Kurachi, Y. How Is the Highly Positive Endocochlear Potential Formed? The Specific Architecture of the Stria Vascularis and the Roles of the Ion-Transport Apparatus. Pflug. Arch. Eur. J. Physiol. 2010, 459, 521–533. [Google Scholar] [CrossRef]
- Chan, D.K.; Hudspeth, A.J. Ca2+ Current–Driven Nonlinear Amplification by the Mammalian Cochlea in Vitro. Nat. Neurosci. 2005, 8, 149–155. [Google Scholar] [CrossRef]
- Liberman, M.C.; Kujawa, S.G. Cochlear Synaptopathy in Acquired Sensorineural Hearing Loss: Manifestations and Mechanisms. Hear. Res. 2017, 349, 138–147. [Google Scholar] [CrossRef]
- Eckert, M.A.; Harris, K.C.; Lang, H.; Lewis, M.A.; Schmiedt, R.A.; Schulte, B.A.; Steel, K.P.; Vaden, K.I.; Dubno, J.R. Translational and Interdisciplinary Insights into Presbyacusis: A Multidimensional Disease. Hear. Res. 2021, 402, 108109. [Google Scholar] [CrossRef] [PubMed]
- Vaden, K.I.; Eckert, M.A.; Matthews, L.J.; Schmiedt, R.A.; Dubno, J.R. Metabolic and Sensory Components of Age-Related Hearing Loss. J. Assoc. Res. Otolaryngol. 2022, 23, 253–272. [Google Scholar] [CrossRef]
- Trpchevska, N.; Freidin, M.B.; Broer, L.; Oosterloo, B.C.; Yao, S.; Zhou, Y.; Vona, B.; Bishop, C.; Bizaki-Vallaskangas, A.; Canlon, B.; et al. Genome-Wide Association Meta-Analysis Identifies 48 Risk Variants and Highlights the Role of the Stria Vascularis in Hearing Loss. Am. J. Hum. Genet. 2022, 109, 1077–1091. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.; Zong, S.; Du, P.; Zhou, P.; Li, H.; Wang, E.; Xiao, H. Role of the Stria Vascularis in the Pathogenesis of Sensorineural Hearing Loss: A Narrative Review. Front. Neurosci. 2021, 15, 774585. [Google Scholar] [CrossRef]
- Thulasiram, M.R.; Ogier, J.M.; Dabdoub, A. Hearing Function, Degeneration, and Disease: Spotlight on the Stria Vascularis. Front. Cell Dev. Biol. 2022, 10, 841708. [Google Scholar] [CrossRef]
- Johns, J.D.; Adadey, S.M.; Hoa, M. The Role of the Stria Vascularis in Neglected Otologic Disease. Hear. Res. 2023, 428, 108682. [Google Scholar] [CrossRef]
- Schmidt, R.S. Independence of the Endovestibular Potential in Homeotherms. J. Gen. Physiol. 1963, 47, 371–378. [Google Scholar] [CrossRef]
- Bielefeld, E.C.; Tanaka, C.; Chen, G.; Henderson, D. Age-Related Hearing Loss: Is It a Preventable Condition? Hear. Res. 2010, 264, 98–107. [Google Scholar] [CrossRef] [PubMed]
- Kujawa, S.G.; Liberman, M.C. Translating Animal Models to Human Therapeutics in Noise-Induced and Age-Related Hearing Loss. Hear. Res. 2019, 377, 44–52. [Google Scholar] [CrossRef]
- Ohlemiller, K.K. Mechanisms and Genes in Human Strial Presbycusis from Animal Models. Brain Res. 2009, 1277, 70–83. [Google Scholar] [CrossRef]
- Ryan, A. Hearing Sensitivity of the Mongolian Gerbil, Meriones unguiculatis. J. Acoust. Soc. Am. 1976, 59, 1222–1226. [Google Scholar] [CrossRef] [PubMed]
- Gleich, O.; Strutz, J. The Mongolian Gerbil as a Model for the Analysis of Peripheral and Central Age-Dependent Hearing Loss. In Hearing Loss; Naz, S., Ed.; InTechOpen: London, UK, 2012; ISBN 978-953-51-0366-0. [Google Scholar]
- Schmiedt, R.A.; Mills, J.H.; Adams, J.C. Tuning and Suppression in Auditory Nerve Fibers of Aged Gerbils Raised in Quiet or Noise. Hear. Res. 1990, 45, 221–236. [Google Scholar] [CrossRef] [PubMed]
- Tarnowski, B.I.; Schmiedt, R.A.; Hellstrom, L.I.; Lee, F.S.; Adams, J.C. Age-Related Changes in Cochleas of Mongolian Gerbils. Hear. Res. 1991, 54, 123–134. [Google Scholar] [CrossRef] [PubMed]
- Gleich, O.; Semmler, P.; Strutz, J. Behavioral Auditory Thresholds and Loss of Ribbon Synapses at Inner Hair Cells in Aged Gerbils. Exp. Gerontol. 2016, 84, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Steenken, F.; Heeringa, A.N.; Beutelmann, R.; Zhang, L.; Bovee, S.; Klump, G.M.; Köppl, C. Age-Related Decline in Cochlear Ribbon Synapses and Its Relation to Different Metrics of Auditory-Nerve Activity. Neurobiol. Aging 2021, 108, 133–145. [Google Scholar] [CrossRef] [PubMed]
- Bovee, S.; Klump, G.M.; Pyott, S.J.; Sielaff, C.; Köppl, C. Cochlear Ribbon Synapses in Aged Gerbils. Int. J. Mol. Sci. 2024, 25, 2738. [Google Scholar] [CrossRef] [PubMed]
- Kujawa, S.G.; Liberman, M.C. Adding Insult to Injury: Cochlear Nerve Degeneration after “Temporary” Noise-Induced Hearing Loss. J. Neurosci. 2009, 29, 14077–14085. [Google Scholar] [CrossRef] [PubMed]
- Bourien, J.; Tang, Y.; Batrel, C.; Huet, A.; Lenoir, M.; Ladrech, S.; Desmadryl, G.; Nouvian, R.; Puel, J.-L.; Wang, J. Contribution of Auditory Nerve Fibers to Compound Action Potential of the Auditory Nerve. J. Neurophysiol. 2014, 112, 1025–1039. [Google Scholar] [CrossRef] [PubMed]
- Heeringa, A.N.; Köppl, C. The Aging Cochlea: Towards Unraveling the Functional Contributions of Strial Dysfunction and Synaptopathy. Hear. Res. 2019, 376, 111–124. [Google Scholar] [CrossRef]
- Mills, J.; Schmiedt, R.; Schulte, B.; Dubno, J. Age-Related Hearing Loss: A Loss of Voltage, Not Hair Cells. Semin. Hear. 2006, 27, 228–236. [Google Scholar] [CrossRef]
- Schmiedt, R.A.; Lang, H.; Okamura, H.; Schulte, B.A. Effects of Furosemide Applied Chronically to the Round Window: A Model of Metabolic Presbyacusis. J. Neurosci. 2002, 22, 9643–9650. [Google Scholar] [CrossRef] [PubMed]
- Lang, H.; Schulte, B.A.; Schmiedt, R.A. Effects of Chronic Furosemide Treatment and Age on Cell Division in the Adult Gerbil Inner Ear. J. Assoc. Res. Otolaryngol. 2003, 4, 164–175. [Google Scholar] [CrossRef] [PubMed]
- Lang, H.; Jyothi, V.; Smythe, N.M.; Dubno, J.R.; Schulte, B.A.; Schmiedt, R.A. Chronic Reduction of Endocochlear Potential Reduces Auditory Nerve Activity: Further Confirmation of an Animal Model of Metabolic Presbyacusis. J. Assoc. Res. Otolaryngol. 2010, 11, 419–434. [Google Scholar] [CrossRef] [PubMed]
- Wangemann, P. K+ Cycling and the Endocochlear Potential. Hear. Res. 2002, 165, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Hibino, H.; Kurachi, Y. Molecular and Physiological Bases of the K+ Circulation in the Mammalian Inner Ear. Physiology 2006, 21, 336–345. [Google Scholar] [CrossRef] [PubMed]
- Wangemann, P. Supporting Sensory Transduction: Cochlear Fluid Homeostasis and the Endocochlear Potential: Cochlear Homeostasis. J. Physiol. 2006, 576, 11–21. [Google Scholar] [CrossRef] [PubMed]
- Sagara, T.; Furukawa, H.; Makishima, K.; Fujimoto, S. Differentiation of the Rat Stria Vascularis. Hear. Res. 1995, 83, 121–132. [Google Scholar] [CrossRef] [PubMed]
- Schulte, B.A.; Adams, J.C. Distribution of Immunoreactive Na+,K+-ATPase in Gerbil Cochlea. J. Histochem. Cytochem. 1989, 37, 127–134. [Google Scholar] [CrossRef]
- Sweadner, K.J.; Rael, E. The FXYD Gene Family of Small Ion Transport Regulators or Channels: cDNA Sequence, Protein Signature Sequence, and Expression. Genomics 2000, 68, 41–56. [Google Scholar] [CrossRef]
- Blanco, G. Na,K-ATPase Subunit Heterogeneity as a Mechanism for Tissue-Specific Ion Regulation. Semin. Nephrol. 2005, 25, 292–303. [Google Scholar] [CrossRef]
- Geering, K. Functional Roles of Na,K-ATPase Subunits. Curr. Opin. Nephrol. Hypertens. 2008, 17, 526–532. [Google Scholar] [CrossRef]
- McGuirt, J.P.; Schulte, B.A. Distribution of Immunoreactive Alpha- and Beta-Subunit Isoforms of Na,K-ATPase in the Gerbil Inner Ear. J. Histochem. Cytochem. 1994, 42, 843–853. [Google Scholar] [CrossRef]
- Schulte, B.A.; Steel, K.P. Expression of α and β Subunit Isoforms of Na,K-ATPase in the Mouse Inner Ear and Changes with Mutations at the Wv or Sld Loci. Hear. Res. 1994, 78, 65–76. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Dai, M.; Wilson, T.M.; Omelchenko, I.; Klimek, J.E.; Wilmarth, P.A.; David, L.L.; Nuttall, A.L.; Gillespie, P.G.; Shi, X. Na+/K+-ATPase A1 Identified as an Abundant Protein in the Blood-Labyrinth Barrier That Plays an Essential Role in the Barrier Integrity. PLoS ONE 2011, 6, e16547. [Google Scholar] [CrossRef] [PubMed]
- McLean, W.J.; Smith, K.A.; Glowatzki, E.; Pyott, S.J. Distribution of the Na,K-ATPase α Subunit in the Rat Spiral Ganglion and Organ of Corti. J. Assoc. Res. Otolaryngol. 2009, 10, 37–49. [Google Scholar] [CrossRef]
- Liu, W.; Luque, M.; Glueckert, R.; Danckwardt-Lillieström, N.; Nordström, C.K.; Schrott-Fischer, A.; Rask-Andersen, H. Expression of Na/K-ATPase Subunits in the Human Cochlea: A Confocal and Super-Resolution Microscopy Study with Special Reference to Auditory Nerve Excitation and Cochlear Implantation. Upsala J. Med. Sci. 2019, 124, 168–179. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Rask-Andersen, H. Na/K-ATPase Gene Expression in the Human Cochlea: A Study Using mRNA in Situ Hybridization and Super-Resolution Structured Illumination Microscopy. Front. Mol. Neurosci. 2022, 15, 857216. [Google Scholar] [CrossRef]
- Crouch, J.J.; Sakaguchi, N.; Lytle, C.; Schulte, B.A. Immunohistochemical Localization of the Na-K-Cl Co-Transporter (NKCC1) in the Gerbil Inner Ear. J. Histochem. Cytochem. 1997, 45, 773–778. [Google Scholar] [CrossRef]
- Russell, J.M. Sodium-Potassium-Chloride Cotransport. Physiol. Rev. 2000, 80, 211–276. [Google Scholar] [CrossRef]
- Liu, Y.; Chu, H.; Chen, J.; Zhou, L.; Chen, Q.; Yu, Y.; Wu, Z.; Wang, S.; Lai, Y.; Pan, C.; et al. Age-Related Change in the Expression of NKCC1 in the Cochlear Lateral Wall of C57BL/6J Mice. Acta Oto. Laryngol. 2014, 134, 1047–1051. [Google Scholar] [CrossRef]
- Koumangoye, R.; Bastarache, L.; Delpire, E. NKCC1: Newly Found as a Human Disease-Causing Ion Transporter. Function 2020, 2, zqaa028. [Google Scholar] [CrossRef] [PubMed]
- Renauld, J.M.; Khan, V.; Basch, M.L. Intermediate Cells of Dual Embryonic Origin Follow a Basal to Apical Gradient of Ingression into the Lateral Wall of the Cochlea. Front. Cell Dev. Biol. 2022, 10, 867153. [Google Scholar] [CrossRef] [PubMed]
- Kikuchi, K.; Hilding, D.A. The Development of the Stria Vascularis in the Mouse. Acta Oto. Laryngol. 1966, 62, 277–291. [Google Scholar] [CrossRef] [PubMed]
- Locher, H.; de Groot, J.C.M.J.; van Iperen, L.; Huisman, M.A.; Frijns, J.H.M.; Chuva de Sousa Lopes, S.M. Development of the Stria Vascularis and Potassium Regulation in the Human Fetal Cochlea: Insights into Hereditary Sensorineural Hearing Loss. Dev. Neurobiol. 2015, 75, 1219–1240. [Google Scholar] [CrossRef]
- Conlee, J.W.; Parks, T.N.; Schwartz, I.R.; Creel, D.J. Comparative Anatomy of Melanin Pigment in the Stria Vascularis: Evidence for a Distinction between Melanocytes and Intermediate Cells. Cat. Acta Oto. Laryngol. 1989, 107, 48–58. [Google Scholar] [CrossRef]
- Park, H.-Y.; Yaar, M. Chapter 72. Biology of Melanocytes. In Fitzpatrick’s Dermatology in General Medicine, 8th ed.; Goldsmith, L.A., Katz, S.I., Gilchrest, B.A., Paller, A.S., Leffell, D.J., Wolff, K., Eds.; The McGraw-Hill Companies: New York, NY, USA, 2012. [Google Scholar]
- Różanowska, M.; Sarna, T.; Land, E.J.; Truscott, T.G. Free Radical Scavenging Properties of Melanin. Free. Radic. Biol. Med. 1999, 26, 518–525. [Google Scholar] [CrossRef] [PubMed]
- Wright, C.G.; Lee, D.H. Pigmented Cells of the Stria Vascularis and Spiral Ligament of the Chinchilla. Acta Oto. Laryngol. 1989, 108, 190–200. [Google Scholar] [CrossRef] [PubMed]
- Cable, J.; Steel, K.P. Identification of Two Types of Melanocyte Within the Stria Vascularis of the Mouse Inner Ear. Pigment. Cell Res. 1991, 4, 87–101. [Google Scholar] [CrossRef]
- Barrenäs, M.-L.; Axelsson, A. The Development of Melanin in the Stria Vascularis of the Gerbil. Acta Oto. Laryngol. 1992, 112, 50–58. [Google Scholar] [CrossRef]
- Spicer, S.S.; Schulte, B.A. Novel Structures in Marginal and Intermediate Cells Presumably Relate to Functions of Apical versus Basal Strial Strata. Hear. Res. 2005, 200, 87–101. [Google Scholar] [CrossRef]
- Ando, M.; Takeuchi, S. Immunological Identification of an Inward Rectifier K+ Channel (Kir4.1) in the Intermediate Cell (Melanocyte) of the Cochlear Stria Vascularis of Gerbils and Rats. Cell Tissue Res. 1999, 298, 179–183. [Google Scholar] [CrossRef] [PubMed]
- Spicer, S.S.; Schulte, B.A. Pathologic Changes of Presbycusis Begin in Secondary Processes and Spread to Primary Processes of Strial Marginal Cells. Hear. Res. 2005, 205, 225–240. [Google Scholar] [CrossRef] [PubMed]
- Steel, K.P.; Barkway, C. Another Role for Melanocytes: Their Importance for Normal Stria Vascularis Development in the Mammalian Inner Ear. Development 1989, 107, 453–463. [Google Scholar] [CrossRef] [PubMed]
- Trowe, M.-O.; Maier, H.; Petry, M.; Schweizer, M.; Schuster-Gossler, K.; Kispert, A. Impaired Stria Vascularis Integrity upon Loss of E-Cadherin in Basal Cells. Dev. Biol. 2011, 359, 95–107. [Google Scholar] [CrossRef] [PubMed]
- Kikuchi, T.; Adams, J.C.; Miyabe, Y.; So, E.; Kobayashi, T. Potassium Ion Recycling Pathway via Gap Junction Systems in the Mammalian Cochlea and Its Interruption in Hereditary Nonsyndromic Deafness. Med. Electron Microsc. 2000, 33, 51–56. [Google Scholar] [CrossRef] [PubMed]
- Kitajiri, S.; Furuse, M.; Morita, K.; Saishin-Kiuchi, Y.; Kido, H.; Ito, J.; Tsukita, S. Expression Patterns of Claudins, Tight Junction Adhesion Molecules, in the Inner Ear. Hear. Res. 2004, 187, 25–34. [Google Scholar] [CrossRef] [PubMed]
- Sakaguchi, N.; Crouch, J.J.; Lytle, C.; Schulte, B.A. Na-K-Cl Cotransporter Expression in the Developing and Senescent Gerbil Cochlea. Hear. Res. 1998, 118, 114–122. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Han, W.; Yamamoto, H.; Tang, W.; Lin, X.; Xiu, R.; Trune, D.R.; Nuttall, A.L. The Cochlear Pericytes. Microcirculation 2008, 15, 515–529. [Google Scholar] [CrossRef] [PubMed]
- Nyberg, S.; Abbott, N.J.; Shi, X.; Steyger, P.S.; Dabdoub, A. Delivery of Therapeutics to the Inner Ear: The Challenge of the Blood-Labyrinth Barrier. Sci. Transl. Med. 2019, 11, eaao0935. [Google Scholar] [CrossRef]
- Inamura, N.; Salt, A.N. Permeability Changes of the Blood-Labyrinth Barrier Measured in Vivo during Experimental Treatments. Hear. Res. 1992, 61, 12–18. [Google Scholar] [CrossRef]
- Neuwelt, E.A.; Baker, D.E.; Pagel, M.A.; Blank, N.K. Cerebrovascular Permeability and Delivery of Gentamicin to Normal Brain and Experimental Brain Abscess in Rats. J. Neurosurg. 1984, 61, 430–439. [Google Scholar] [CrossRef] [PubMed]
- Ito, T.; Kurata, N.; Fukunaga, Y. Tissue-Resident Macrophages in the Stria Vascularis. Front. Neurol. 2022, 13, 818395. [Google Scholar] [CrossRef] [PubMed]
- Kishimoto, I.; Okano, T.; Nishimura, K.; Motohashi, T.; Omori, K. Early Development of Resident Macrophages in the Mouse Cochlea Depends on Yolk Sac Hematopoiesis. Front. Neurol. 2019, 10, 1115. [Google Scholar] [CrossRef]
- Sato, E.; Shick, H.E.; Ransohoff, R.M.; Hirose, K. Repopulation of Cochlear Macrophages in Murine Hematopoietic Progenitor Cell Chimeras: The Role of CX3CR1. J. Comp. Neurol. 2008, 506, 930–942. [Google Scholar] [CrossRef] [PubMed]
- Okano, T.; Nakagawa, T.; Kita, T.; Kada, S.; Yoshimoto, M.; Nakahata, T.; Ito, J. Bone Marrow-Derived Cells Expressing Iba1 Are Constitutively Present as Resident Tissue Macrophages in the Mouse Cochlea. J. Neurosci. Res. 2008, 86, 1758–1767. [Google Scholar] [CrossRef]
- Shi, X. Resident Macrophages in the Cochlear Blood-Labyrinth Barrier and Their Renewal via Migration of Bone-Marrow-Derived Cells. Cell Tissue Res. 2010, 342, 21–30. [Google Scholar] [CrossRef]
- Schmiedt, R.A. The Physiology of Cochlear Presbycusis. In The Aging Auditory System; Gordon-Salant, S., Frisina, R.D., Popper, A.N., Fay, R.R., Eds.; Springer Handbook of Auditory Research; Springer: New York, NY, USA, 2010; Volume 34, pp. 9–38. ISBN 978-1-4419-0992-3. [Google Scholar]
- Dubno, J.R.; Eckert, M.A.; Lee, F.-S.; Matthews, L.J.; Schmiedt, R.A. Classifying Human Audiometric Phenotypes of Age-Related Hearing Loss from Animal Models. J. Assoc. Res. Otolaryngol. 2013, 14, 687–701. [Google Scholar] [CrossRef]
- Kaur, C.; Wu, P.-Z.; O’Malley, J.T.; Liberman, M.C. Predicting Atrophy of the Cochlear Stria Vascularis from the Shape of the Threshold Audiogram. J. Neurosci. 2023, 43, 8801–8811. [Google Scholar] [CrossRef]
- Békésy, V.G. DC Resting Potentials Inside the Cochlear Partition. J. Acoust. Soc. Am. 1952, 24, 72–76. [Google Scholar] [CrossRef]
- Tasaki, I.; Spyropoulos, C.S. Stria Vascularis as Source of Endocochlear Potential. J. Neurophysiol. 1959, 22, 149–155. [Google Scholar] [CrossRef]
- Ohlemiller, K.K.; Rybak Rice, M.E.; Lett, J.M.; Gagnon, P.M. Absence of Strial Melanin Coincides with Age-Associated Marginal Cell Loss and Endocochlear Potential Decline. Hear. Res. 2009, 249, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Marcus, D.C.; Wu, T.; Wangemann, P.; Kofuji, P. KCNJ10 (Kir4.1) Potassium Channel Knockout Abolishes Endocochlear Potential. Am. J. Physiol. Cell Physiol. 2002, 282, C403–C407. [Google Scholar] [CrossRef] [PubMed]
- Sewell, W.F. The Effects of Furosemide on the Endocochlear Potential and Auditory-Nerve Fiber Tuning Curves in Cats. Hear. Res. 1984, 14, 305–314. [Google Scholar] [CrossRef] [PubMed]
- Ohlemiller, K.K.; Lett, J.M.; Gagnon, P.M. Cellular Correlates of Age-Related Endocochlear Potential Reduction in a Mouse Model. Hear. Res. 2006, 220, 10–26. [Google Scholar] [CrossRef]
- Spicer, S.S.; Schulte, B.A. Spiral Ligament Pathology in Quiet-Aged Gerbils. Hear. Res. 2002, 172, 172–185. [Google Scholar] [CrossRef] [PubMed]
- Mahendrasingam, S.; MacDonald, J.A.; Furness, D.N. Relative Time Course of Degeneration of Different Cochlear Structures in the CD/1 Mouse Model of Accelerated Aging. J. Assoc. Res. Otolaryngol. 2011, 12, 437–453. [Google Scholar] [CrossRef]
- Hellier, W.P.L.; Wagstaff, S.A.; O’Leary, S.J.; Shepherd, R.K. Functional and Morphological Response of the Stria Vascularis Following a Sensorineural Hearing Loss. Hear. Res. 2002, 172, 127–136. [Google Scholar] [CrossRef]
- Hirose, K.; Liberman, M.C. Lateral Wall Histopathology and Endocochlear Potential in the Noise-Damaged Mouse Cochlea. J. Assoc. Res. Otolaryngol. 2003, 4, 339–352. [Google Scholar] [CrossRef]
- Xiong, H.; Chu, H.; Zhou, X.; Huang, X.; Cui, Y.; Zhou, L.; Chen, J.; Li, J.; Wang, Y.; Chen, Q.; et al. Conservation of Endocochlear Potential in Mice with Profound Hearing Loss Induced by Co-Administration of Kanamycin and Furosemide. Lab. Anim. 2011, 45, 95–102. [Google Scholar] [CrossRef]
- Yang, H.; Xiong, H.; Huang, Q.; Pang, J.; Zheng, X.; Chen, L.; Yu, R.; Zheng, Y. Compromised Potassium Recycling in the Cochlea Contributes to Conservation of Endocochlear Potential in a Mouse Model of Age-Related Hearing Loss. Neurosci. Lett. 2013, 555, 97–101. [Google Scholar] [CrossRef]
- Wang, Y.; Fallah, E.; Olson, E.S. Adaptation of Cochlear Amplification to Low Endocochlear Potential. Biophys. J. 2019, 116, 1769–1786. [Google Scholar] [CrossRef] [PubMed]
- Schulte, B.A.; Schmiedt, R.A. Lateral Wall Na, K-ATPase and Endocochlear Potentials Decline with Age in Quiet-Reared Gerbils. Hear. Res. 1992, 61, 35–46. [Google Scholar] [CrossRef] [PubMed]
- Ding, B.; Walton, J.P.; Zhu, X.; Frisina, R.D. Age-Related Changes in Na, K-ATPase Expression, Subunit Isoform Selection and Assembly in the Stria Vascularis Lateral Wall of Mouse Cochlea. Hear. Res. 2018, 367, 59–73. [Google Scholar] [CrossRef] [PubMed]
- Gratton, M.A.; Smyth, B.J.; Schulte, B.A.; Vincent, D.A. Na,K-ATPase Activity Decreases in the Cochlear Lateral Wall of Quiet-Aged Gerbils. Hear. Res. 1995, 83, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Stephenson, R.; Mangasarian, A.; Ishiyama, G.; Hosokawa, K.; Hosokawa, S.; Ishiyama, A.; Lopez, I.A. Immunohistochemical Location of Na+, K+-ATPase A1 Subunit in the Human Inner Ear. Hear. Res. 2021, 400, 108113. [Google Scholar] [CrossRef] [PubMed]
- Schmiedt, R.A. Cochlear Potentials in Quiet-Aged Gerbils: Does the Aging Cochlea Need a Jump Start? In Sensory Research: Multimodal Perspectives; Verrillo, R.T., Zwislocki, J.J., Eds.; L. Erlbaum Associates: Hillsdale, NJ, USA, 1993; pp. 91–103. ISBN 978-0-8058-1342-5. [Google Scholar]
- Gratton, M.A.; Smyth, B.J.; Lam, C.F.; Boettcher, F.A.; Schmiedt, R.A. Decline in the Endocochlear Potential Corresponds to Decreased Na,K-ATPase Activity in the Lateral Wall of Quiet-Aged Gerbils. Hear. Res. 1997, 108, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Schmiedt, R.A. Effects of Aging on Potassium Homeostasis and the Endocochlear Potential in the Gerbil Cochlea. Hear. Res. 1996, 102, 125–132. [Google Scholar] [CrossRef]
- Delpire, E.; Lu, J.; England, R.; Dull, C.; Thorne, T. Deafness and Imbalance Associated with Inactivation of the Secretory Na-K-2Cl Co-Transporter. Nat. Genet. 1999, 22, 192–195. [Google Scholar] [CrossRef] [PubMed]
- Flagella, M.; Clarke, L.L.; Miller, M.L.; Erway, L.C.; Giannella, R.A.; Andringa, A.; Gawenis, L.R.; Kramer, J.; Duffy, J.J.; Doetschman, T.; et al. Mice Lacking the Basolateral Na-K-2Cl Cotransporter Have Impaired Epithelial Chloride Secretion and Are Profoundly Deaf. J. Biol. Chem. 1999, 274, 26946–26955. [Google Scholar] [CrossRef]
- Diaz, R.C.; Vazquez, A.E.; Dou, H.; Wei, D.; Cardell, E.L.; Lingrel, J.; Shull, G.E.; Doyle, K.J.; Yamoah, E.N. Conservation of Hearing by Simultaneous Mutation of Na,K-ATPase and NKCC1. J. Assoc. Res. Otolaryngol. 2007, 8, 422–434. [Google Scholar] [CrossRef]
- Marcus, D.C.; Thalmann, R.; Marcus, N.Y. Respiratory Rate and Atp Content of Stria Vascularis of Guinea Pig In Vitro. Laryngoscope 1978, 88, 1825–1835. [Google Scholar] [CrossRef] [PubMed]
- Böttger, E.C.; Schacht, J. The Mitochondrion: A Perpetrator of Acquired Hearing Loss. Hear. Res. 2013, 303, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Kamogashira, T.; Fujimoto, C.; Yamasoba, T. Reactive Oxygen Species, Apoptosis, and Mitochondrial Dysfunction in Hearing Loss. BioMed Res. Int. 2015, 2015, 617207. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.E.; Nakagawa, T.; Kita, T.; Kim, T.S.; Iguchi, F.; Endo, T.; Shiga, A.; Lee, S.H.; Ito, J. Mechanisms of Apoptosis Induced by Cisplatin in Marginal Cells in Mouse Stria Vascularis. ORL 2004, 66, 111–118. [Google Scholar] [CrossRef]
- Wangemann, P.; Itza, E.M.; Albrecht, B.; Wu, T.; Jabba, S.V.; Maganti, R.J.; Ho Lee, J.; Everett, L.A.; Wall, S.M.; Royaux, I.E.; et al. Loss of KCNJ10 Protein Expression Abolishes Endocochlear Potential and Causes Deafness in Pendred Syndrome Mouse Model. BMC Med. 2004, 2, 30. [Google Scholar] [CrossRef] [PubMed]
- Jabba, S.V.; Oelke, A.; Singh, R.; Maganti, R.J.; Fleming, S.; Wall, S.M.; Everett, L.A.; Green, E.D.; Wangemann, P. Macrophage Invasion Contributes to Degeneration of Stria Vascularis in Pendred Syndrome Mouse Model. BMC Med. 2006, 4, 37. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Li, G.; Noble, K.V.; Li, Y.; Barth, J.L.; Schulte, B.A.; Lang, H. Age-Dependent Alterations of Kir4.1 Expression in Neural Crest–Derived Cells of the Mouse and Human Cochlea. Neurobiol. Aging 2019, 80, 210–222. [Google Scholar] [CrossRef] [PubMed]
- Gottesberge, A.M.Z. Physiology and Pathophysiology of Inner Ear Melanin. Pigment. Cell Res. 1988, 1, 238–249. [Google Scholar] [CrossRef] [PubMed]
- Enochs, W.S.; Petherick, P.; Bogdanova, A.; Mohr, U.; Weissleder, R. Paramagnetic Metal Scavenging by Melanin: MR Imaging. Radiology 1997, 204, 417–423. [Google Scholar] [CrossRef]
- Larsson, B.S. Interaction Between Chemicals and Melanin. Pigment. Cell Res. 1993, 6, 127–133. [Google Scholar] [CrossRef]
- Bielefeld, E.C.; Coling, D.; Chen, G.-D.; Li, M.; Tanaka, C.; Hu, B.-H.; Henderson, D. Age-Related Hearing Loss in the Fischer 344/NHsd Rat Substrain. Hear. Res. 2008, 241, 26–33. [Google Scholar] [CrossRef] [PubMed]
- Ohlemiller, K.K.; Rice, M.E.R.; Gagnon, P.M. Strial Microvascular Pathology and Age-Associated Endocochlear Potential Decline in NOD Congenic Mice. Hear. Res. 2008, 244, 85–97. [Google Scholar] [CrossRef]
- Dum, N.; Schmidt, U.; Wedel, H. Age-Dependence of the Neural Auditory Thresholds of Albino and Pigmented Guinea Pigs. Arch. Otorhinolaryngol. 1980, 229, 191–199. [Google Scholar] [CrossRef]
- Murillo-Cuesta, S.; Contreras, J.; Zurita, E.; Cediel, R.; Cantero, M.; Varela-Nieto, I.; Montoliu, L. Melanin Precursors Prevent Premature Age-Related and Noise-Induced Hearing Loss in Albino Mice: Albino Mice Become Deaf Prematurely. Pigment. Cell Melanoma Res. 2010, 23, 72–83. [Google Scholar] [CrossRef]
- Keithley, E.M.; Ryan, A.F.; Feldman, M.L. Cochlear Degeneration in Aged Rats of Four Strains. Hear. Res. 1992, 59, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Conlee, J.W.; Abdul-Baqi, K.J.; McCandless, G.A.; Creel, D.J. Differential Susceptibility to Noise-Induced Permanent Threshold Shift between Albino and Pigmented Guinea Pigs. Hear. Res. 1986, 23, 81–91. [Google Scholar] [CrossRef]
- Gratton, M.A.; Wright, C.G. Hyperpigmentation of Chinchilla Stria Vascularis Following Acoustic Trauma. Pigment. Cell Res. 1992, 5, 30–37. [Google Scholar] [CrossRef]
- Agrawal, Y. Prevalence of Hearing Loss and Differences by Demographic Characteristics Among US Adults: Data from the National Health and Nutrition Examination Survey, 1999–2004. Arch. Intern. Med. 2008, 168, 1522. [Google Scholar] [CrossRef] [PubMed]
- Lin, F.R.; Maas, P.; Chien, W.; Carey, J.P.; Ferrucci, L.; Thorpe, R. Association of Skin Color, Race/Ethnicity, and Hearing Loss Among Adults in the USA. J. Assoc. Res. Otolaryngol. 2012, 13, 109–117. [Google Scholar] [CrossRef]
- Sun, D.Q.; Zhou, X.; Lin, F.R.; Francis, H.W.; Carey, J.P.; Chien, W.W. Racial Difference in Cochlear Pigmentation Is Associated with Hearing Loss Risk. Otol. Neurotol. 2014, 35, 1509–1514. [Google Scholar] [CrossRef]
- Andresen, N.S.; Coreas, S.; Villavisanis, D.F.; Lauer, A.M. Comparison of Age-Related Pigmentary Changes in the Auditory and Vestibular Systems Within Mouse and Human Temporal Bones. Front. Neurosci. 2021, 15, 680994. [Google Scholar] [CrossRef]
- Hood, J.D.; Poole, J.P.; Freedman, L. The Influence of Eye Colour upon Temporary Threshold Shift. Int. J. Audiol. 1976, 15, 449–464. [Google Scholar] [CrossRef]
- Barrenäs, M.-L.; Lindgren, F. The Influence of Inner Ear Melanin on Susceptibility to TTS in Humans. Scand. Audiol. 1990, 19, 97–102. [Google Scholar] [CrossRef]
- Barrenäs, M.-L.; Lindgren, F. The Influence of Eye Colour on Susceptibility to TTS in Humans. Br. J. Audiol. 1991, 25, 303–307. [Google Scholar] [CrossRef]
- Hayashi, H.; Sone, M.; Schachern, P.A.; Wakamatsu, K.; Paparella, M.M.; Nakashima, T. Comparison of the Quantity of Cochlear Melanin in Young and Old C57BL/6 Mice. Arch. Otolaryngol. Head. Neck. Surg. 2007, 133, 151. [Google Scholar] [CrossRef]
- Davies, L.C.; Jenkins, S.J.; Allen, J.E.; Taylor, P.R. Tissue-Resident Macrophages. Nat. Immunol. 2013, 14, 986–995. [Google Scholar] [CrossRef]
- Ito, T.; Li, X.; Kurima, K.; Choi, B.Y.; Wangemann, P.; Griffith, A.J. Slc26a4-Insufficiency Causes Fluctuating Hearing Loss and Stria Vascularis Dysfunction. Neurobiol. Dis. 2014, 66, 53–65. [Google Scholar] [CrossRef]
- Koizumi, T.; Kerkhofs, D.; Mizuno, T.; Steinbusch, H.W.M.; Foulquier, S. Vessel-Associated Immune Cells in Cerebrovascular Diseases: From Perivascular Macrophages to Vessel-Associated Microglia. Front. Neurosci. 2019, 13, 1291. [Google Scholar] [CrossRef]
- Zhang, W.; Dai, M.; Fridberger, A.; Hassan, A.; DeGagne, J.; Neng, L.; Zhang, F.; He, W.; Ren, T.; Trune, D.; et al. Perivascular-Resident Macrophage-like Melanocytes in the Inner Ear Are Essential for the Integrity of the Intrastrial Fluid–Blood Barrier. Proc. Natl. Acad. Sci. USA 2012, 109, 10388–10393. [Google Scholar] [CrossRef]
- Neng, L.; Zhang, F.; Kachelmeier, A.; Shi, X. Endothelial Cell, Pericyte, and Perivascular Resident Macrophage-Type Melanocyte Interactions Regulate Cochlear Intrastrial Fluid–Blood Barrier Permeability. J. Assoc. Res. Otolaryngol. 2013, 14, 175–185. [Google Scholar] [CrossRef]
- Shi, X. Pathophysiology of the Cochlear Intrastrial Fluid-Blood Barrier (Review). Hear. Res. 2016, 338, 52–63. [Google Scholar] [CrossRef]
- Hirose, K.; Li, S.-Z. The Role of Monocytes and Macrophages in the Dynamic Permeability of the Blood-Perilymph Barrier. Hear. Res. 2019, 374, 49–57. [Google Scholar] [CrossRef]
- Bae, S.H.; Kwak, S.H.; Yoo, J.E.; Kim, K.M.; Hyun, Y.M.; Choi, J.Y.; Jung, J. Three-Dimensional Distribution of Cochlear Macrophages in the Lateral Wall of Cleared Cochlea. Clin. Exp. Otorhinolaryngol. 2021, 14, 179–184. [Google Scholar] [CrossRef]
- Lang, H.; Noble, K.V.; Barth, J.L.; Rumschlag, J.A.; Jenkins, T.R.; Storm, S.L.; Eckert, M.A.; Dubno, J.R.; Schulte, B.A. The Stria Vascularis in Mice and Humans Is an Early Site of Age-Related Cochlear Degeneration, Macrophage Dysfunction, and Inflammation. J. Neurosci. 2023, 43, 5057–5075. [Google Scholar] [CrossRef]
- Noble, K.V.; Liu, T.; Matthews, L.J.; Schulte, B.A.; Lang, H. Age-Related Changes in Immune Cells of the Human Cochlea. Front. Neurol. 2019, 10, 895. [Google Scholar] [CrossRef]
- Liu, W.; Danckwardt-Lillieström, N.; Schrott-Fischer, A.; Glueckert, R.; Rask-Andersen, H. Distribution of Immune Cells Including Macrophages in the Human Cochlea. Front. Neurol. 2021, 12, 781702. [Google Scholar] [CrossRef]
- Carraro, M.; Harrison, R.V. Degeneration of Stria Vascularis in Age-Related Hearing Loss; a Corrosion Cast Study in a Mouse Model. Acta Oto. Laryngol. 2016, 136, 385–390. [Google Scholar] [CrossRef]
- Thomopoulos, G.N.; Spicer, S.S.; Gratton, M.A.; Schulte, B.A. Age-Related Thickening of Basement Membrane in Stria Vascularis Capillaries. Hear. Res. 1997, 111, 31–41. [Google Scholar] [CrossRef]
- Gratton, M.A.; Schulte, B.A. Alterations in Microvasculature Are Associated with Atrophy of the Stria Vascularis in Quiet-Aged Gerbils. Hear. Res. 1995, 82, 44–52. [Google Scholar] [CrossRef]
- Gratton, M.A.; Schulte, B.A.; Smythe, N.M. Quantification of the Stria Vascularis and Strial Capillary Areas in Quiet-Reared Young and Aged Gerbils. Hear. Res. 1997, 114, 1–9. [Google Scholar] [CrossRef]
- Prazma, J.; Carrasco, V.N.; Butler, B.; Waters, G.; Anderson, T.; Pillsbury, H.C. Cochlear Microcirculation in Young and Old Gerbils. Arch. Otolaryngol. Head Neck Surg. 1990, 116, 932–936. [Google Scholar] [CrossRef] [PubMed]
- Gratton, M.A.; Schmiedt, R.A.; Schulte, B.A. Age-Related Decreases in Endocochlear Potential Are Associated with Vascular Abnormalities in the Stria Vascularis. Hear. Res. 1996, 102, 181–190. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Shi, K.; Nielson, C.; Graham, E.M.; Price, M.S.; Haller, T.J.; Carraro, M.; Firpo, M.A.; Park, A.H.; Harrison, R.V. Hearing Loss Caused by CMV Infection Is Correlated with Reduced Endocochlear Potentials Caused by Strial Damage in Murine Models. Hear. Res. 2022, 417, 108454. [Google Scholar] [CrossRef]
- Goderis, J.; De Leenheer, E.; Smets, K.; Van Hoecke, H.; Keymeulen, A.; Dhooge, I. Hearing Loss and Congenital CMV Infection: A Systematic Review. Pediatrics 2014, 134, 972–982. [Google Scholar] [CrossRef] [PubMed]
- Carraro, M.; Almishaal, A.; Hillas, E.; Firpo, M.; Park, A.; Harrison, R.V. Cytomegalovirus (CMV) Infection Causes Degeneration of Cochlear Vasculature and Hearing Loss in a Mouse Model. J. Assoc. Res. Otolaryngol. 2017, 18, 263–273. [Google Scholar] [CrossRef] [PubMed]
- Bradford, R.D.; Yoo, Y.-G.; Golemac, M.; Pugel, E.P.; Jonjic, S.; Britt, W.J. Murine CMV-Induced Hearing Loss Is Associated with Inner Ear Inflammation and Loss of Spiral Ganglia Neurons. PLoS Pathog. 2015, 11, e1004774. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bovee, S.; Klump, G.M.; Köppl, C.; Pyott, S.J. The Stria Vascularis: Renewed Attention on a Key Player in Age-Related Hearing Loss. Int. J. Mol. Sci. 2024, 25, 5391. https://doi.org/10.3390/ijms25105391
Bovee S, Klump GM, Köppl C, Pyott SJ. The Stria Vascularis: Renewed Attention on a Key Player in Age-Related Hearing Loss. International Journal of Molecular Sciences. 2024; 25(10):5391. https://doi.org/10.3390/ijms25105391
Chicago/Turabian StyleBovee, Sonny, Georg M. Klump, Christine Köppl, and Sonja J. Pyott. 2024. "The Stria Vascularis: Renewed Attention on a Key Player in Age-Related Hearing Loss" International Journal of Molecular Sciences 25, no. 10: 5391. https://doi.org/10.3390/ijms25105391
APA StyleBovee, S., Klump, G. M., Köppl, C., & Pyott, S. J. (2024). The Stria Vascularis: Renewed Attention on a Key Player in Age-Related Hearing Loss. International Journal of Molecular Sciences, 25(10), 5391. https://doi.org/10.3390/ijms25105391